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Abstract: This paper integrates multichannel analysis of surface waves (MASW) and time-lapse
electrical resistivity tomography (ERT) to define aquifer geometry and identify transient groundwater
features of the Cascalheira Stream Basin Holocene alluvial aquifer (aquifer H), which contributes to the
Santo André Lagoon, part of a coastal groundwater-dependent ecosystem (GDE), located in southwest
Portugal. MASW measures shear-wave velocity (VS), allowing one to obtain steady geological models
of the subsurface, and ERT measures subsurface electrical resistivity (ER), being subjected to
ambient changes. MASW enables disambiguation of geological structures in low ER environments,
such as coastal areas. This research covered one natural year and involved one MASW campaign,
four ERT campaigns, and additional geological field surveys and groundwater monitoring to assist
interpretation of results. In the area, the conjugate NW–SE and NE–SW strike-slip fault systems
determine compartmentalization of geological structures and subsequent accommodation space for
Holocene sedimentation. MASW and ERT surveys show how the NW–SE system deepens these
structures toward the coast, whereas the NE–SW system generates small horsts and grabens, being one
of these occupied by aquifer H. From upstream to downstream, aquifer H thickness and width
increase from 10 m to 12 m and from 140 m to 240 m, respectively. Performance of VS and ER models
was satisfactory, with a normalized error of the VR and ER models in the 0.01–0.09 range, meaning
that a quantitative quota of uncertainty can be segregated from the overall uncertainty of groundwater
models without substantially affecting its simulations accuracy. This methodology seeks to improve
the design of shallow groundwater research in GDE preservation policies.

Keywords: multichannel analysis of surface waves; electrical resistivity tomography; time-lapse
inversion; aquifer geometry; groundwater-dependent ecosystem; Santo André Lagoon; Portugal
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1. Introduction

Aquifers play a critical role in sustaining the economy and the environment of coastal areas [1].
These areas are often subjected to high rates of groundwater drawing to meet the increasing urban,
tourism, industrial, and agricultural demands, adding stress to groundwater bodies and dependent
ecosystems [2,3]. The combination of global climate forces underlying human pressures threatens
the fragile balance between freshwater and saltwater and therefore the quantity and quality levels
required for a good functioning of groundwater-dependent ecosystems (GDE) [4]. These effects are
especially visible in small unconfined aquifers because their greater exposure to human impacts and
smaller storage capacity may limit a regular water provision to ecosystems during drier periods [5,6].

This is the case of the Santo André Lagoon (SAL), which, together with the Sancha Lagoon, form a
coastal GDE space in southwest Portugal whose hydrological functioning depends on regular inputs
of fresh surface water and groundwater [7,8]. This GDE space was catalogued in 1993 as a Special
Protection RAMSAR Area due to its ecological value for wildlife preservation [RAMSAR website:
https://www.ramsar.org/es/humedal/portugal]. This type of ecosystem is environmentally protected by
the European Water Framework Directive [9], which also establishes the obligation to permanently
characterize its hydrological functioning.

Preliminary findings from the Portuguese R&D Groundscene Project [10,11] showed that freshwater
contribution from tributary streams, which in turn are groundwater-dependent, regulates the water salinity
balance of the SAL ecosystem. The Groundscene Project left a blank in what concerns the detailed
hydrological functioning needed for predictive modeling under scenarios of climate change and subsequent
new land and water uses for human adaptation. This is a large task in progress that is being boarded
through implementing and coupling well suited rainfall-runoff and groundwater modeling tools [12–14].

Over the base of detailed and existing or compiled weather, land use, and water fluxes
datasets, implementation of groundwater modeling tools involves three general stages for aquifer
conceptualization [15–17]: (1) geometry definition, (2) acquisition of hydraulics data, and (3) evaluation
of water balance components. This paper is aimed at advancing the first stage, i.e., aquifer geometry
definition, and at qualifying some transient groundwater features subordinately. In flat coastal areas,
near-surface geophysical techniques have been widely used in groundwater research to acquire this
basic information [8,18–24]. These techniques are non-invasive, usually cheap to apply, and useful when
geotechnical sounding data are sparse or not able to provide detailed subsurface information required
for groundwater modeling, such as aquifer geometry and some transient groundwater features.

This paper integrates multichannel analysis of surface waves (MASW) and time-lapse electrical
resistivity tomography (ERT) to define aquifer geometry and qualitatively identify some transient
groundwater features of the alluvial aquifer contributing to the SAL. Integrated MASW and ERT
results were intentional for this purpose because the MASW technique responds to the steady shear
modulus of subsurface materials, expressing seismic shear-wave velocity (VS) [25–28], whereas ERT
responds to the electrical conductivity (EC) of subsurface media, which is subjected to transient ambient
changes [21,29–31].

The use of MASW in groundwater research is incipient [32–34] and has mostly addressed
disambiguation of the subsurface geological structures deduced from ERT in high EC environments,
such as coastal areas [33,35–37]. MASW and ERT show advantages and limitations in what concerns the
reached exploration depth and the resolution of the subsurface geological structures. MASW provides
higher exploration depths than ERT but less detailed resolution, whereas ERT is highly responsive to
detailed subsurface EC changes related to geological and hydrological heterogeneities [23,29,31,38].
The limited capability of ERT for geological definition contrasts with its ability to identify temporal
groundwater changes. This way, time-lapse ERT can be used to disambiguate steady features of
geological media (e.g., bulk density, clay content, and organic matter content) from transient features
of saturated media (e.g., groundwater storage, dissolved ions). These transient features result from the
variable combination of the non-evaporative fractions of precipitation [6] and atmospheric salinity
rates [39] reaching the water table over time.

https://www.ramsar.org/es/humedal/portugal
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This research covered the natural year 2014 and involved a geophysical survey characterized by
one MASW campaign and four (quarterly) ERT campaigns. Besides this, two other complementary
tasks were: a geological survey to define the local faulting and its correspondence to the regional
structural setting; and aquifer monitoring, with quarterly piezometry measurements to draw water
table fluctuation along the preferential groundwater flow path, and some EC measurements to support
the hydrogeological interpretation of ERT surveys. Since the contributing area to the SAL is too large
for making up these tasks in detail, only the Cascalheira Stream Basin (CSB), the largest and most
representative tributary, was selected to define the geological structure and the preliminary hydrological
functioning of the Upper Miocene—Quaternary sedimentary body hydraulically connected to the SAL.
For a fluent reading, a description of acronyms used is in Table 1.

Table 1. Description of acronyms used.

Acronym Definition

Aquifer H Holocene alluvial aquifer
CSB Cascalheira Stream Basin

CVMAE Normalized MAE
CVRMSE Normalized RMSE
CVSTD Normalized STD

EC Electrical conductivity
ER Electrical resistivity

ERT Electrical resistivity tomography
GDE Groundwater-dependent ecosystem
GEC Groundwater electrical conductivity
GER Groundwater electrical resistivity

lnNSE Logarithmic form of NSE
MAE Mean error

MASW Multichannel analysis of surface waves
MRE Mean relative error
NAO North Atlantic Oscillation
NSE Nash–Sutcliffe efficiency coefficient

PBIAS Percent bias
R2 Coefficient of determination
RD Relative difference

RMSE Root-mean-square error
RSR RMSE relative to STD
SAL Santo André Lagoon
STD Standard deviation of the measured data

SWQM SAL water quality monitoring
VS Shear-wave velocity

WFD European Water Framework Directive

2. Study Area

2.1. Location and Climate

The study area is located at the outlet of the CSB (08◦38′–08◦47′ W, 38◦05′–38◦07′ N) in the
southwest coast of Portugal (Figure 1a). The CSB covers an area of 31.5 km2, has a mean elevation
of 230 m a.s.l. (outlet is 2 m a.s.l. on the West and peak elevation is 290 m a.s.l. on the East), and its
surface water and groundwater components flow westwards to the SAL [40]. The CSB is the main
tributary to the SAL.

Climate is warm-summer Mediterranean according to the Köppen classification, which means
temperate dry summers and rainy winters [11,41]. Weather data compiled from Sines and Monte
Velho meteorological stations (Figure 1a) show that precipitation (P) occurs in three distinctive phases:
(1) a predominant rainy phase from October to January with average monthly P from 70 to 90 mm,
which represents around 60% of annual P; (2) a moderately rainy phase from February to May with
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average monthly P from 30 to 50 mm, which means around 30% of annual P; and (3) a dry phase from
June to September with average monthly P below 10 mm and occasional rainfall events exceeding
30 mm [40]. Average annual P is around 505 mm with a coefficient of variation of 0.35 over the period
1970–2016. Average monthly temperature (T) varies from 10.6 ◦C in January to 19.5 ◦C in July. Average
minimum and maximum monthly T vary in the 5.8–15.4 ◦C and 14.1–24.9 ◦C ranges in January and
July, respectively [42]. Average annual T is around 15.1 ◦C with a coefficient of variation of 0.05 over
the period 1973–2007 [40]. Average annual actual evapotranspiration (E) is around 410 mm, thus the
E-to-P ratio is about 0.2 [42].
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Figure 1. (a) Location of the study area in southwest Portugal, showing the Santo André Lagoon
(SAL) and its contributing basin, the Cascalheira Stream Basin (CSB), and the Sines (SI) and Monte
Velho (MV) meteorological stations. (b) Geological map (scale 1:50,000) of the CSB according to [43]
and direct field observations. (c) Land-use units of the CSB according to [42], aerial photographs,
and direct field observations. (d) Holocene alluvial aquifer (aquifer H) contributing to the SAL,
showing geophysical surveys performed along the main groundwater flow path at sites 1 (MASW1,
ERT1), 2 (ERT2), and 3 (MASW3, ERT3), aquifer monitoring points (handmade open wells W1 to
W6), geotechnical soundings S1 to S3 after [40], stream water EC measurements within the SAL Water
Quality Monitoring (SWQM) Programme, and geographical features and sites cited in the text.
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2.2. Geological and Hydrogeological Setting

The study area (Figure 1b) belongs to the western Mesozoic extensional margin of the Iberian
Plate, which has had a long distensive tectonic and magmatic history from the Late Triassic up to
the present [44,45]. Locally, the CSB includes the following synthetic succession from bottom to
top [40,46–49]: (1) Variscan crystalline bedrock includes (i) Devonian low-grade metapelites and
quartzites, and (ii) Carboniferous low-grade metapelites, vulcano-sediments, and tuffites underlying
to metapelites, greywakes, and conglomerates; (2) Mesozoic sedimentary cover includes (i) Triassic
continental sandstones intruded by basaltic and doleritic dikes, and (ii) Lower Jurassic platform
dolomites, carbonates, and marls; and (3) Upper Miocene to present sedimentary filling includes (i)
Pliocene marine sandstones, biocalcarenites, and marls, (ii) Pleistocene continental fluvial terraces and
clay-rich colluvials underlying to coastal sand dunes, and (iii) Holocene alluvial, lagoon, and beach
sands sediments.

In this extensional geological domain, the conjugate NE–SW and NW–SE strike-slip fault systems
affecting underlying formations since the Neogene determine the accommodation space for Holocene
sedimentation [43,47], the subject of this paper. As a result, the Holocene sedimentary record may
reach 20 m in thickness in the CSB–SAL boundary (Figure 1b) with the following detailed succession
from bottom to top (1) alternating marine muds and tidal sands below the SAL, (2) organic matter-rich
lagoon muds with more than 20% of bioclasts below the SAL, (3) fluvial coarse sands and sandy
loam with some bioclasts in the old (currently inland) lagoon space, and (4) coarse-grained deposits
occupying the current flood plain of the Cascalheira stream valley [40,46–48].

In hydrogeological terms, geological formations can be classified into four groups according to
the permeability type and the storage capacity reported by [46,50]: (1) Devonian and Carboniferous
metapelitics are low-permeability formations forming the impervious basement of local aquifers;
(2) Triassic sandstones and Lower Jurassic carbonates form moderately to highly permeable aquifers with
karst features and thickness up to 200 m; (3) Pliocene and Pleistocene sediments are low-to-moderate
permeable formations forming an unconfined multilayer aquifer of about 30 m in thickness hydraulically
connected to the uppermost Holocene formations; and (4) Holocene alluvial deposits comprise sand,
gravels, and silt of 10 m to 20 m in thickness filling the Cascalheira Stream valley, an unconfined aquifer
(hereafter aquifer H) of 1.46 km2 at the CSB outlet that contributes to the SAL (Figure 1b).

The hydrogeological functioning of the CSB depends on water exchange between aquifer H and
underlying Pliocene and Pleistocene formations, the extent of weathered metapelitics slopes upstream,
and thickness and extent of aquifer H downstream (Figure 2). Recharge to aquifer H comes from direct
rainfall and runoff infiltration, interflow runoff from fissured and weathered metapelitics upstream,
transferences from underlying formations, and some irrigation return from agriculture. Discharge
from aquifer H depends on actual evapotranspiration and the scarce groundwater pumping in the
area. The resulting positive net groundwater balance from aquifer H sustains the freshwater-saltwater
balance of the SAL. However, groundwater contribution to the SAL is temporally retained at the aquifer
H outlet because the existence of low-permeability (clay-rich) interbedded lagoon sediments diminishes
the hydraulic connectivity between aquifer H and the SAL, and saltwater-freshwater interface within
the sediments underlying the SAL forces fresh groundwater to be discharged above it [7,51]. The result
is that the piezometric level of aquifer H rises above topography after rainfall-recharge events and
a significant fraction of groundwater flooding the CSB outlet is evacuated to the SAL as surface
runoff [7,8]. Additionally to this natural functioning, groundwater renovation depends on the annual
opening of the coastal sand bar that separates the SAL from the Atlantic Ocean to favor discharge
of temporary surface water retained at the aquifer H outlet and the subsequent groundwater level
depletion required for agricultural and livestock practices inland [11]. In 2014, the coastal sandbar was
opened on 28 February.
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Figure 2. Conceptualization of the hydrogeological functioning of aquifer H during (a) the dry phase
in summer and (b) predominant rainy phase in winter. Scale-out scheme after [7,46,51], and direct
field observations. SAL, Santo André lagoon; LPS, low-permeability (clay-rich) lagoon sediments; ITL,
inland temporary lagoon.

2.3. Land and Groundwater Use

In the CSB, land use is mostly devoted to different rainfed crops and forest, 7% is irrigated crops,
5% is pasture, and less than 1% is urbanized areas (Figure 1c). Irrigated crops (mainly corn) are
practically restricted to the aquifer H floodplain during spring season, after the coastal sandbar is
opened. In this irrigated land, the average soil texture is 53% sand, 31% silt, 14% clay, and 4% organic
matter, with maximum soil depth reaching up to 1.3 m. Water allocation for irrigation is around
6600 m3 per hectare and year [42]. Irrigation water comes from upstream derivations, so the existing
hand-made open wells are scarcely used. Irrigation is done through drip systems, which reduce
evaporation and infiltration losses and increases salinity of irrigation return. At the west end of the
study area, the SAL and some neighboring spaces (Figure 1d) were catalogued in 1993 as a Special
Protection RAMSAR Area due to its ecological value for wildlife preservation [RAMSAR website:
https://www.ramsar.org/wetland/portugal].

3. Methods

3.1. Overall Framework for Data Collection

Frequency for geophysical surveying and subsequent groundwater monitoring was adapted
to the particular groundwater quantity (flow) and quality (EC) temporal dynamics of aquifer H.
In small, high-yielding alluvial aquifers having almost null groundwater exploitation such as aquifer
H, the average groundwater turnover time identifies well the infilling–emptying cycles produced from
rainy and dry phases, and consequently the minimum monitoring frequency required to characterize
groundwater flow and EC responses. The average groundwater turnover time was deduced from
preliminary aquifer geometry and hydraulics data by assuming a predominant piston (plug) flow
condition [5,6,52] as:

G = b·A·S/T, (1)

where G is average groundwater turnover time [T], b is a dimensionless flow-path form parameter
determined by the aquifer geometry, A is aquifer surface [L2], S is the dimensionless aquifer storage
coefficient or drainable porosity for unconfined aquifers, and T is aquifer transmissibility [L2 T−1],
which is the product of aquifer hydraulic conductivity [L T−1] and saturated thickness [L].

https://www.ramsar.org/wetland/portugal
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Aimed at interpreting the ERT surveys properly [23], aquifer monitoring included piezometry
and EC measurements in selected handmade open wells (Figure 1d). Piezometry was measured using
a level probe from Seba Hydrometrie, with a precision of 0.005 m. EC was measured each 1-m from
1 m below water table to 8 m depth using a multi parameter probe from Hanna Instruments, with a
precision of 0.01 mS cm−1; the average value of these measures was calculated for each well.

3.2. MASW Surveys

MASW is a seismic geophysical technique in which the Rayleigh wave fundamental mode
dispersion curve and higher modes (if present) are extracted from a shot record and then inverted to
generate a 1D VS [L T−1] model [27,28]. This technique allows for analyzing the fundamental and higher
modes simultaneously, thus permitting to obtain more accurate VS models [25,26]. A roll-along setup
with a land-streamer acquisition system was used to obtain a continuous 2D VS model. This procedure
enables us to acquire data rapidly because it is not necessary to plant the geophones each time a
measurement is made.

MASW data were acquired using a 24-channel SUMMIT II Compact Seismograph by DMT,
Germany, with the following configuration: recording array of 24 vertical component geophones, 2-m
geophone spacing, 4-m separation between the source impact point and first geophone to minimize
near-source effects, two stacks, 10-m displacement between readings, and a sampling rate of 0.25 m s.
A 5 kg sledge hammer was used to generate the Rayleigh waves.

Data analysis was carried out with SurfSeis3 software® by the Kansas Geological Survey,
The University of Kansas, USA. Data processing consisted of geometry edition, data filtering, muting
(when needed), generation of overtones (frequency–time energy diagrams), and fundamental and
higher modes (if present) identification. Finally, dispersion curves were determined and then subjected
to a mathematical inversion process to obtain continuous 2D VS models. These were plotted using the
triangulation with linear interpolation method, which gives good results for evenly distributed data
over the mapping area.

3.3. ERT Surveys

ERT is an electrical geophysical technique that uses measurements of voltage between two
reading electrodes installed in land surface, once direct current in two other electrodes is injected.
This technique allows for calculating the subsurface electrical resistivity (ER) [Ω m], reciprocal of EC
[S m−1] [29,31,38], as:

ER = 1/EC, (2)

Disposition of the electrodes changes depending on the array used, so a grid of subsurface
apparent resistivity values is obtained. These values are then mathematically inverted to obtain
subsurface ER models. Penetration depth depends on subsurface EC, which is a function of pore-water
EC and ground EC, the input voltage used, and the electrode spacing adopted [38].

ERT data were acquired using a GL-16 resistivity meter with a P-100-2 accumulator ® by PASI
Instruments. A dipole–dipole array was the electrode disposition used since it provides good resolution
both on vertical and horizontal directions. Configuration was: 6-m electrode spacing, 36-m maximum
separation between dipoles, and 200 V as the input voltage applied.

Since the resistivity meter used is not automatic, it was possible to repeat each measurement
in the field, whenever the data represented an outlier to the dataset, guaranteeing the acquisition of
good quality data. Data were preprocessed in order to calculate the apparent resistivity measured
in each node of the subsurface grid. Simultaneous space–time inversion of time-lapse ERT data
was carried out using the RES2DINV software® by Geotomo Software, with a blocky constraint to
minimize exaggeration of smooth model changes when subsurface changes are locally limited [53] and
a severe reduction of side blocks effects to minimize exaggeration from robust inversion [54]. Iterations
were limited to three so as not to create artifacts, since the inversion error had low reduction in third
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iteration comparatively to former iterations. In profiles ERT1 and ERT3, the electrode spacing unit was
reduced by half (3 m) to minimize the effect of large near-surface resistivity variations, as proposed
by [54]. Similarly to VS models, ER models were also plotted using the triangulation with linear
interpolation method.

3.4. Topographic Correction of 2D VS and ER Models

Topographic correction of 2D VS and ER models followed two steps. First, ground relief was
measured in the field using a leveled civil-work laser and a vertical leveled ruler. Height regarding the
ground was measured in equally spaced points along profiles. The first profile point was considered
the relative vertical zero from which the other measured heights were summed or subtracted to create
relative relief profiles. Later, relative relief profiles were converted into georeferenced elevation profiles
using the Earth Digital Model from the ArcGIS software® by ESRI.

4. Results

4.1. Frequency for Geophysical Surveying

Frequency for geophysical surveying and subsequent groundwater monitoring was calculated
through Equation (1). Geological information deduced from geotechnical soundings S1 to S3 (Figure 1d)
after [40] and hydrogeological data compiled from [7,10] were used for this attempt. Taking average
b = 1.1 for predominant longitudinal groundwater flow paths [55] such as in aquifer H, A = 1.46 km2

(Figure 1b), S = 0.05 [40], and T = 300 m2 day−1 and 800 m2 day−1, measured respectively in dry and
rainy phases by [10], and G varied in the 3.2–8.9-month range.

All geophysical surveys were performed during 2014 (Figure 3). Long-term significance of
the selected year 2014 was evaluated from the analysis of the global North Atlantic Oscillation
index [NAO website: http://www.cpc.ncep.noaa.gov/] (Figure 3a). The NAO index controls
long-term precipitation and temperature regimes in southern Portugal [56], and therefore actual
evapotranspiration (E) and stream flow rates [41]. The selected year 2014 fits well to the average
hydrological condition deduced from the long-term P (Figure 3b) and E (Figure 3c) time series from
Sines meteorological station (Figure 1a). Thus, geophysical and hydrogeological interpretations should
be framed into the context of an average hydrological condition in the area.

In this context, three months was the optimal frequency adopted for ERT surveying (Table 2) and
subsequent groundwater monitoring (Table 3) at sites 1, 2, and 3 (Figure 1d). This frequency covers
adequately the about four-month long predominately rainy, moderately rainy, and dry phases taking
place in the area, as shown graphically in Figure 4. Only one MASW survey was performed at sites 1
and 3 (Table 2).

Table 2. Description of MASW and ERT surveys.

Site Profile ID 1 Length, m Prospecting Depth, m Date

1

MASW1 230 30 23 June 2014
ERT1 90 13 13 March 2014

4 June 2014
12 September 2014
10 December 2014

2

ERT2 78 15 13 March 2014
4 June 2014

12 September 2014
10 December 2014

3

MASW3 310 27 23 June 2014
ERT3 108 13 12 March 2014

3 June 2014
10 September 2014

1 ID and location as in Figure 1d.

http://www.cpc.ncep.noaa.gov/
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and subsequent groundwater monitoring (Table 3) at sites 1, 2, and 3 (Figure 1d). This frequency 
covers adequately the about four-month long predominately rainy, moderately rainy, and dry phases 
taking place in the area, as shown graphically in Figure 4. Only one MASW survey was performed at 
sites 1 and 3 (Table 2). 

Table 2. Description of MASW and ERT surveys. 

Site Profile ID 1 Length, m Prospecting Depth, m Date 

1 

MASW1 230 30 23 June 2014 
ERT1 90 13 13 March 2014 

   4 June 2014 
   12 September 2014 
   10 December 2014 

2 

ERT2 78 15 13 March 2014 
   4 June 2014 
   12 September 2014 
   10 December 2014 

3 
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ERT3 108 13 12 March 2014 
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1 ID and location as in Figure 1d. 

Figure 3. For natural years 1997–2019 in the SAL area, (a) normalized North Atlantic Oscillation
(NAO) index (purple bars) [NAO website: http://www.cpc.ncep.noaa.gov/]; (b) annual precipitation (P)
time series from Sines meteorological station and cumulative deviation (CD) from average annual P,
mm year−1; and (c) annual actual evapotranspiration (E) time series from Sines meteorological station
and CD from average annual E, mm year−1. For (b,c), the average (0.5 percentile) of yearly data series
is indicated. Vertical dotted line indicates the study year 2014.

Table 3. Description of monitored variables in open wells.

Site ID 1 Elevation, m a.s.l. Aquifer and Flow Zone Variable 2 GEC 3 GER 4

Upstream W6 35.18 Pliocene, recharge PL, GEC 200 50

1 W5 14.06 Pleistocene, transit PL, GEC 500 20
W3 9.00 Pleistocene, discharge PL
W4 10.07 Holocene, recharge PL

2 W2 8.82 Holocene, transit PL

3 W1 4.57 Pliocene, discharge PL, GEC 393 25
1 ID and location as in Figure 1d. 2 PL is piezometric level as in Figure 4. 3 GEC is groundwater electrical conductivity
in µS cm−1 measured on 20 August 2014 when the multi-parameter probe was available; wells W3 and W4 were not
accessible. 4 GER is groundwater electrical resistivity in Ω m after GEC reversion using Equation (2).

4.2. Hydrogeophysical Basis for VS and ER Models Interpretation

When MASW and ERT are aimed at defining geological structures in porous saturated media,
a preliminary conceptualization of properties governing the magnitude of variables VS (MASW) and
ER (ERT) is needed. Some basic interpretative criteria are described below.

http://www.cpc.ncep.noaa.gov/
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Figure 4. For year 2014 in the SAL area, (a) 24-h P and T distribution, after P (mm) and T (◦C) records from
Sines meteorological station (Figure 1a); (b) monthly distribution of average precipitation-weighed
EC after EC (µS cm−1) and P (mm) records from Monte Velho meteorological station (Figure 1a),
and some Cascalheira stream water EC (µS cm−1) measurements at site 2 after the SWQM Programme
(Figure 1d); and (c) piezometry (m a.s.l.) in handmade open wells W1 to W6 (Table 3) ordered according
to the monitored geological formation (Pliocene, Pleistocene, Holocene) and groundwater flow zone
(recharge, transit, discharge). Vertical black dotted lines indicate geophysical surveying (Table 2)
and groundwater monitoring (Table 3) as ERT (ER) and MASW (MA) surveys, and piezometry (PI).
Vertical green dotted lines indicate human actions modifying water dynamics as SAL aperture (SA)
and groundwater pumping for irrigation (IR).
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In soft coarse-grained sediments, VS propagation is considered a site-specific steady property
determined by effective compaction, and as such, it is dependent on the age and depth of each
geological material piled on vertical [57,58]. Table 4 summarizes some reference VS values for
soft and stiff geological materials equivalent to those described in the SAL area [34,59]. Different
relationships between VS and age and depth for other similar lithologies can be found in the scientific
literature [60–64], which can be used to enlarge the ranges reported in Table 4. For the sedimentary
formations in the study area, VS values in the 50–900 m s−1 range are expected.

Table 4. Summary of some reference VS ranges compiled from the scientific literature for different
sediments and rocks, and its equivalence to the geological materials described in the SAL area.

Geomaterial VS, m s−1 Reference Equivalence 1

Soft clay 80–200 [34] Holocene clay
Loose sand 80–250 [34] Holocene sand

Loose sand and gravel 100–200 [59] Holocene sand and gravel
Anthropogenic filling 50–100 [59] Holocene floodplain

Cropland and organic soil 50–150 [59] Holocene floodplain
Stiff clay 200–600 [34] Pleistocene clay

Dense sand 150–500 [34] Pleistocene sand dunes
Soft-stiff sand 300–500 [59] Pleistocene sand

Stiff gravel 300–600 [34] Pleistocene conglomerate
Cemented clay 600–1000 [59] Pliocene marl
Cemented sand 500–900 [59] Pliocene calcarenite

Cemented gravel 500–900 [34] Pliocene conglomerate
Weathered carbonate bedrock 600–1000 [34] Jurassic marls
Weathered crystalline bedrock 800–1200 [59] Variscan weathered metapelites

Hard carbonate bedrock 1200–2500 [34] Jurassic carbonates
Hard crystalline bedrock 1500–2500 [59] Variscan metapelites

1 Geological description and location in Figure 1c.

In porous saturated media, ER corresponds to EC inferred from certain intrinsic geological features
and groundwater salinity; the former remains unvaried, whereas the latter varies over time. In pristine
coastal areas, groundwater electrical resistivity (GRE) determines ER when salinity contribution from
subsurface geology is negligible. In this case, in time-lapse ER models, transient GER changes ultimately
depend on the variable combination of the non-evaporative fractions of precipitation and atmospheric
bulk deposition salinity reaching the water table over time, which are predictable, measurable variables.
For instance, atmospheric bulk deposition EC decreases inland, so inland GEC (recharge zone) is
typically less than coastal GEC [5,39]. How the GER changes extend over space and time is crucial to
define the hydraulic boundaries of aquifer H.

In the SAL coastal fringe, atmospheric bulk deposition EC was deduced from the long-term
Monte Velho meteorological station (Figure 1a), which belongs to the Co-operative Programme for
Monitoring and Evaluation of the Long-Range Transmission of Air Pollutants in Europe [EMEP network: http:
//www.emep.int/] aimed at providing chemical analysis of precipitation [5,39]. In year 2014, monthly
precipitation-weighed EC varied in the 39–138 µS cm−1 range with typical values of 40–80 µS cm−1 in
the rainy phase and higher than 100 µS cm−1 in the dry phase (Figure 4b). The values in the rainy phase
determine the expected GEC in aquifer H since aquifer recharge from P in the dry phase is negligible
(Figure 4a). Applying the monthly E-to-P ratios deduced from daily P and T time series (Figure 3c) to
the atmospheric bulk deposition EC in the rainy phases, monthly GEC results in the 200–400 µS cm−1

range; GER being in 25–50 Ω m range using Equation (2). In addition to this theoretical appraisal, GEC
was measured in pristine (without apparent human influence) Pliocene (W1 and W6) and Pleistocene
(W5) wells to corroborate this regional GEC baseline (Table 3). GEC varied in the 200–500 µS cm−1

range, which is similar to the theoretical range described above, thus GER being in 20–50 Ω m range.
Unfortunately, there are no inland atmospheric bulk deposition EC data, although values 0.2-fold
of the magnitude reported in the coastal fringe can be assumed after the decreasing inland gradient

http://www.emep.int/
http://www.emep.int/
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documented by [39]. Applying this decreasing gradient to the theoretical coastal GEC and GER, inland
GEC and GER can be tentatively proposed in the 40–100 µS cm−1 and 100–250 Ω m ranges, respectively.
This theoretical GER baseline is a reference for interpreting experimental ER models in the study area.

Piezometry in wells W1 to W6 enables us to deduce how rainy phases and human actions determine
GER changes in each geological formation (Figure 4; Table 3). This hydrodynamics information is
crucial to qualify transient GER changes in sequential time-lapse ERT. Piezometry in Pliocene wells
W1 and W6 follows the seasonal weather phases (Figure 4c). In the recharge zone (W6), delayed
responses of about two months and three months during the rainy and dry phases, respectively,
are observed. In the discharge zone (W1), piezometry lightly depletes after the SAL opened on 28
February. Piezometry in Pleistocene wells W3 and W5 coarsely follows the weather phases with a
delayed response of about three months during both rainy and dry phases in the transit zone (W5);
there is no data for the recharge zone (Figure 4c). In the discharge zone (W3), the lightly influence of
groundwater pumping after the rainy phase and of irrigation return after the dry phase are observed;
note that W3 is hydraulically connected to aquifer H. Piezometry in Holocene wells W2 and W4 is
especially influenced by human actions (Figure 4c). In the recharge zone (W4), the effects of SAL
opening (with depletion in March), groundwater pumping for irrigation (with depletion in June),
and return of a fraction of the imported irrigation water (with rising in September) are observed.
In the transit zone (W2), piezometry progressively depletes in the dry phase in response to these
human actions.

4.3. 2D VS Models

Figure 5 shows the 2D VS models obtained in sites 1 and 3 (Figure 1d) on 23 June 2014 (Table 2).
Prospecting depth was 30 m in MASW1 (Figure 5a) and 27 m in MASW3 (Figure 5b). There is not
MASW2 survey in site 2 because the operation was cancelled due to a heavy storm occurred while
acquiring data, thus provoking a battery discharge that left the equipment inoperable. Both MASW1
and MASW3 were interpreted recurring to (i) reference VS values compiled from the scientific literature
for equivalent lithologies [34,59] as in Table 4, (ii) local geological information after [43,46–48], and (iii)
detailed geological data for Pliocene to Holocene formations deduced from geotechnical soundings S1
to S3 [40] as in Figure 1d.

In both MAWS1 and MASW3, VS is in the 50–950 m s−1 range. In general, VS increases in depth
according to the increasing age and compaction of sediments, from less than 200 m s−1 for Holocene,
200–500 m s−1 for Pleistocene, to more than 500 m s−1 for Pliocene formations. This vertical VS
distribution correlates well with regional geological information reported by [47,48] and geotechnical
data from soundings S1 to S3 [40]. The horizontal continuity of this vertical VS distribution is frequently
interrupted due to sedimentary processes (e.g., lateral facies changes, erosive channels) and action
of faults, which determine the accommodation space for Holocene sedimentation, as discussed in
Section 5.2.

In MASW1, the uppermost 8 m (northern and southern valley boundaries) and 10 m (central valley)
thick VS < 200 m s−1 values are attributed to aquifer H, the underlying 18 m (central valley) and 20 m (valley
boundaries) thick 200 < VS < 500 m s−1 to Pleistocene sands and gravels, and the deeper 5 m (central valley)
and 10 m (valley boundaries) thick VS > 500 m s−1 to Pliocene formations (Figure 5a).

In MASW3, VS data acquisition at distances 131–220 m was interrupted due to the impossibility
of the equipment to work in the inundated Cascalheira stream bed (Figure 5b). This VS model gap
does not compromise the geological interpretation because the ERT3 survey partially covered that
sector, as described in next Section 4.4. In MASW3, the uppermost 9 m (northern and southern
valley boundaries) and 12 m (central valley) thick VS < 200 m s−1 values are attributed to aquifer H,
the underlying 20 m (central valley) and 15 m (northern valley boundary) thick 200 < VS < 500 m
s−1 to Pleistocene sediments, and the deeper 7 m (northern valley boundary) thick VS > 500 m s−1 to
Pliocene formations (Figure 5b). At distances 220–310 m, the Pleistocene–Pliocene boundary is not
identified because it is below the prospecting depth. As in site 1, site 3 shows contrasted VS values
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associated to geological formations having different age and compaction. However, at the southern
sector, Holocene sediments and underlying Pleistocene sand dunes show similar VS < 200 m s−1,
thus limiting to identify its boundary. As described in next Section 4.4, ERT enables disambiguating
the boundary of these formations.
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Figure 5. MASW1 and MASW3 surveys at sites 1 (a) and 3 (b), respectively. A preliminary geological
interpretation of VS values is included, showing projected (Pj) log of geotechnical sounding S1 after [40],
and water table recorded in September 2014 in wells W4 (site 1) and W1 (site 3) as in Figure 4. Profiles
are topographically corrected and its vertical-to-horizontal scale ratio is 1:1. CS, Cascalheira Stream; H,
Holocene; Pe, Pleistocene; Pe-d, Pleistocene sand dunes; Pi, Pliocene; and F1 to F3, NW–SE strike-slip
faults. The dotted-line rectangle is the area covered by time-lapse ERT surveys at sites 1 and 3.

The VS models statistics are in Table 5. Average VS lightly decreases from MASW1 to MASW3
as the influence of high VS values from Pliocene materials decreases because they were below its
prospecting depth. The coefficient of variation of VS shows similar natural variability of VS in both
MASW1 and MASW3 associated to a similar, predictable vertical geological structure. As deduced,
VS is predictable enough to produce a confident near-surface geological definition.

Table 5. VS models statistics.

Profile ID 1 AV VS 2 SD VS 3 CV VS

MASW1 273.1 161.4 0.59
MASW3 215.1 126.8 0.59

1 ID and location as in Figure 1d. 2 AV and SD are average and standard deviation of VS in m s−1. 3 CV is dimensionless
coefficient of variation of VS (SD-to-AV ratio) as a fraction.

4.4. 2D ER Models

Sequential 2D ER models are used to refine geometry of aquifer H. As described in Section 4.2,
when porous geological media hardly contribute, ER changes can be attributed to transient GER
changes produced by temporal water transferences and fluxes [29,31]. The ER models showed in
Figure 6 were interpreted recurring to (i) previous VS models (Figure 5) and geological data [40,43,47,48]
to infer geology, and (ii) natural processes and some human actions modifying GER to deduce transient
water transferences and fluxes (Figure 4).
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the top left-hand corner of plots, green and red vertical arrows show, respectively, water-table raise 
and depletion relative to previous lapse. Preliminary geological and hydrogeological interpretations 
of ER models after integration of geological findings from VS models (Figure 5) and aquifer 
conceptualization (Figure 2) are included; red acronyms denotes groundwater types, and blue arrows 
and acronyms denote natural processes and human-induced actions determining transient water 
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Ω m range; the average value being 41.03 Ω m (Figure 6). This experimental ER range agrees with the 

Figure 6. At sites 1 (a), 2 (b), and 3 (c), time-lapse ERT1, ERT2, and ERT3 surveys in March, June,
September, and December 2014 (rows 1 to 4), and relative difference, RD = (z − z*)/z*, of nodal ER data
from March, June, and December lapses (z) regarding nodal ER data from the September lapse (z*)
(rows 5 to 7). The projected (Pj) logs of geotechnical soundings S2 and S3 after [40], and water table
recorded in each lapse in sites 1 (well W4), 2 (well W2), and 3 (well W1) as in Figure 4 are shown; in the
top left-hand corner of plots, green and red vertical arrows show, respectively, water-table raise and
depletion relative to previous lapse. Preliminary geological and hydrogeological interpretations of ER
models after integration of geological findings from VS models (Figure 5) and aquifer conceptualization
(Figure 2) are included; red acronyms denotes groundwater types, and blue arrows and acronyms denote
natural processes and human-induced actions determining transient water transferences and fluxes.
Profiles are topographically corrected and its vertical-to-horizontal scale ratio is 1:1. CS, Cascalheira
Stream; H, Holocene; Pe, Pleistocene; and F8, NE–SW strike-slip fault.

In sites 1 to 3 (Figure 1d), time-lapse ERT were in March, June, September, and December 2014
(Table 1) attending to the minimum frequency for optimal ERT surveying calculated in Section 4.1.
For reliable comparisons in each site, the 2D ER models keep the same prospecting distance and depth
(same grid). Prospecting depth was 13 m in ERT1 (Figure 6a), 15 m in ERT2 (Figure 6b), and 13 m in
ERT3 (Figure 6c). In site 1, the December 2014 survey was cancelled because the SAL overflowed and
inundated the ERT space after heavy rainfall events while the coastal sandbar was closed.
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For all time lapses in ERT1 to ERT3 surveys, the ER dataset is positively skewed in the 1.6–237.9 Ω m
range; the average value being 41.03 Ω m (Figure 6). This experimental ER range agrees with the
theoretical GER baseline deduced in Section 4.2. Thus, ER datasets in sites 1 to 3 are hardly influenced
by subsurface geology. In general, ER is 32–49 Ω m in ERT1, 21–44 Ω m in ERT2, and 37–38 Ω m
in ERT3. The 2D ER models identify well (i) the vertical distribution of Holocene and Pleistocene
formations deduced in Figure 5 and its horizontal interruptions mostly due to faults; and (ii) the
general groundwater types, both low-salinity Pleistocene and moderate salinity Holocene in sites 1
and 2 and saltwater Pleistocene and freshwater Holocene in site 3 as conceptualized in Figure 2. In site
3, sequential time-lapse ERT3 enabled to (i) infer geology due to interruption in VS acquisition at
distances 130–220 m in MASW3, and (ii) disambiguate aquifer H from Pleistocene sand dunes having
similar VS < 200 m s−1 (Figure 5b).

In detail, most of ER values in aquifer H are 20–40 Ω m in ERT1 (inland site) and in ERT2,
and 40–60 Ω m in ERT3 (coastal site). This ER distribution apparently contradicts the expected
decreasing inland gradient of GEC inferred by the decreasing inland gradient of atmospheric bulk
deposition EC reported in the southwest coast of Portugal [39]. Thus, another process such as
low-salinity (high-resistivity) groundwater transference from the hydraulically connected underlying
Pleistocene formation through faults is proposed to explain this ER pattern, as illustrated in ERT2
(Figure 6b). Most of ER values in Pleistocene formations are 50–70 Ω m in ERT1 (inland site) and in
ERT2, and 1–20 Ω m in ERT3 (coastal site) (Figure 6). In site 3, the lowest ER values in Pleistocene
formation are attributed to the saltwater lens conceptualized in Figure 2, whereas ER values in the
20–40 Ω m range are attributed to a thin freshwater-saltwater interface (Figure 6c).

As above described, ER changes inside steady ER shapes are associated to transient GER changes
due to water transferences and fluxes varying over time, both including natural processes such as
stream flow recharge, preferential flow through faults, lateral recharge, and freshwater discharge over
the saltwater lens, as well as human-induced actions such as irrigation return and organic matter-rich
leaching (Figure 6). In order to quantify how and where natural processes and human-induced actions
modify ER over time, in each site, nodal ER data from March, June, and December lapses (z) were
compared to nodal ER data from the September lapse (z*). The relative difference is:

RD = (z − z*)/z*. (3)

RD is mapped in Figure 6. The rationale for reference lapse choosing was that geological formations
must have the lowest GEC mass flow and storage in order to minimize the influence of groundwater
transference among them. September 2014 was the selected reference lapse for comparisons (Figure 4c).
RD values enable to show both natural processes and human-induced actions modifying ER.

Statistics of time-lapse ER models and RD values are in Table 6. Average ER follows the same
evolution in sites 1 and 2, with higher values in March and June and lower in December regarding
those observed in September. In site 3, lower ER values in March are attributed to the delayed influence
of brackish groundwater discharge stored after the SAL opened, whereas in December 2014 (this site
cannot be surveyed), the same evolution to sites 1 and 2 is presumed. It is important to note that ER
models (Table 6) are delayed regarding atmospheric bulk deposition EC values (Figure 4b). This fact
corroborates that average groundwater turnover time is higher than three months, long after the
dry phase (December 2014), because the ER evidences of current aquifer recharge and groundwater
transference from underlying geological formations have not yet arrived to aquifer H. The coefficient
of variation of ER evidences this temporal predictability.
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Table 6. Time-lapse ER models statistics.

Profile ID 1 Time-Lapse 2 AV ER 3 SD ER 3 CV ER 4 AV EC 3 RD ER 5

ERT1 March 44.06 23.06 0.52 300 0.043
June 43.37 22.78 0.53 310 0.028

September 42.15 22.83 0.54 320 0
December 38.18 19.96 0.52 340 −0.104

ERT2 March 48.85 33.18 0.68 250 0.034
June 49.00 31.51 0.64 250 0.037

September 47.17 37.12 0.79 270 0
December 45.69 30.78 0.67 270 −0.032

ERT3 March 37.34 20.65 0.55 580 −0.027
June 38.40 22.69 0.59 580 0.002

September 38.33 22.87 0.60 590 0
1 ID and location as in Figure 1d. 2 Dates are referred to year 2014 as in Table 2. 3 AV and SD are average and
standard deviation of ER in Ω m and of EC in µS cm−1. 4 CV is dimensionless coefficient of variation of ER (SD-to-AV
ratio) as a fraction. 5 RD = (z − z*)/z* is dimensionless relative difference of nodal ER data in a time-lapse ERT (z)
regarding nodal ER data in the September 2014 reference time-lapse ERT (z*), as a fraction.

5. Discussion

5.1. Performance of VS and ER Models

Performance analysis is crucial in measuring the quality of prognostics in different modeling fields
and consists of different statistical calculations between measured (M) and predicted (P) data. In this
paper, performance analysis allowed us to evaluate the prediction ability of the VS and ER models,
providing comparable quotas of uncertainty, which could not be done directly using the errors provided
by the geophysical software. In geosciences, there are no defined protocols or consensus on which
statistics or group of statistics are the best to evaluate performance of models [65–67]. For variables VS
and ER, multiple expressions for determining point distance between M and P data and comparable
quotas of the relative error between models are used to produce a complete evaluation of models
performance and error distribution, as proposed by [66–68].

Reliability of the performance and error expressions was analyzed, provided M and P data sets
were normal or lognormal distributed [6,52,67]. The Kolmogorov–Smirnov goodness-of-fit was used
for testing the data sets normality. The M and P data sets showed quite skewed distributions (rows 1
and 2 in Figure 7). Their logarithm proved to fit close-to-normal distributions (rows 3 and 4 in Figure 7).
The logarithm M and P data pairs were plotted and the results proved to fit close to the theoretical
linear 1:1 ratio (row 5 in Figure 7). After this analysis, normal M and P data sets were lognormal
converted, the performance statistics and error expressions were applied to these lognormal data sets,
and results were reverted to the original magnitude of variables.

For VS and ER models efficiency criteria, Nash–Sutcliffe efficiency coefficient (NSE), logarithmic
form of NSE (lnNSE), coefficient of determination (R2), percent bias (PBIAS), root-mean-square error
(RMSE), RMSE relative to standard deviation of the measured data (RSR), mean absolute error (MAE),
and mean relative error (MRE) were used (Table 7). Description of statistics is detailed in [66,68–70].

Normalizing the statistics facilitates the comparison of VS and ER models having different
exploration scales, e.g., MASW and ERT surveys having equal spacing grid but different number of
nodes determining different exploration length and depth. Though there is no consistent means of
normalization in the literature, common choices are the mean, the range (the difference in maximum
and minimum values), and the interquartile range (the difference in 0.75 and 0.25 quartiles) of the M
data set. Here, the mean was selected as quotient despite that the interquartile range is less responsive
to outliers in [68]. The term coefficient of variation (CV) refers to a normalization using the mean value,
and may be used to avoid ambiguity regarding other normalizing procedures. This is analogous to the
coefficient of variation with a given absolute error statistics, taking the place of the standard deviation
of the measured data (STD), which is the most used statistics for normalizing errors [67]. CV facilitates
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comparable quotas of the relative error between models having different number of data. For this
purpose, CV must be additionally corrected by applying the factor n/n’, where n is the total number
of data of a given model and n’ is the total number of data of the biggest explored model: MASW3
for VS models (Figure 5) and ERT3 for ER models (Figure 6); n values are in Figure 7 and in Table 7.
Normalized MAE (CVMAE), RMSE (CVRMSE), and STD (CVSTD) were used (Table 7).Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 29 
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Table 7. Equations, ranges, optimal values, and results for VS and ER models performance statistics and normalized errors at sites 1 to 3, after [66,68–70]. For ER,
the time-lapse ERT from September 2014 was selected.

Statistics and Equation 1 Definition, Range, and Match
Site 1 Site 2 Site 3

VS ER ER VS ER

NSE: Nash–Sutcliffe efficiency coefficient

= 1−
∑n

i=1(Dm i−Dp i)
2∑n

i=1(Dm i−Dm)
2

NSE indicates a perfect match between measured (M) and predicted (P)
data. NSE ranges from −∞ to 1. Match is satisfactory from >0.7. 0.90 0.98 0.84 0.90 0.98

lnNSE: logarithmic form of NSE

= 1−
∑n

i=1(ln(Dm i)−ln(Dp i))
2∑n

i=1(ln(Dm i)−ln(Dm))
2

lnNSE emphasizes low values, and NSE the high ones. Match is
satisfactory from >0.7. 0.88 0.97 0.84 0.88 0.98

R2: coefficient of determination

=

 ∑n
i=1(Dm i−Dm)(Dp i−Dp)√∑n

i=1(Dm i−Dm)
2
√∑n

i=1(Dp i−Dp)
2

2 R2 indicates the degree of linear relationship between M and P data. R2

ranges from 0 to 1. Match is satisfactory from >0.7.
0.90 0.98 0.90 0.91 0.98

PBIAS: percent bias

=
∑n

i=1(Dm i−Dp i)∑n
i=1(Dm i)

× 100

PBIAS calculates the average tendency of the P data to be higher or lower
than their M counterparts. The optimal value is 0. Perfect match is 0.

Acceptable match is in the ±25% range.
−0.07 0.24 0.73 0.24 0.20

RMSE: root-mean-square error

=

√∑n
i=1

(
Dm i −Dp i

)2
RMSE calculates the precision of the P data. Perfect match is 0. Increasing

RMSE values indicate that matching worse, typically due to outliers. 11.99 1.61 1.49 12.89 2.14

RSR: RMSE relative to standard deviation of the measured
data

= RMSE
STDm

=

√∑n
i=1(Dm i−Dp i)

2√∑n
i=1(Dm i−Dp)

2

RSR ranges from 0 to∞. The lower the RSR, the lower the RMSE and the
better the model performance. Acceptable match is <0.5. 0.01 0.07 0.54 0.00 0.01

MAE: mean absolute error
= 1

n
∑n

i=1

∣∣∣Dp i −Dm i
∣∣∣ MAE is the absolute difference in the P and M data. Perfect match is 0. 1.13 1.04 1.04 1.11 1.07

MRE: mean relative error
= 1

n
∑n

i=1
|Dp i−Dm i|

Dm i

MRE is the relative difference in the P and M data. Perfect match is 0. 0.02 0.01 0.01 0.02 0.02
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Table 7. Cont.

Statistics and Equation 1 Definition, Range, and Match
Site 1 Site 2 Site 3

VS ER ER VS ER

CVMAE: normalized MAE
= MAE

Dm

Perfect match is 0. Acceptable match is <0.3. 0.01 0.04 0.04 0.01 0.04

CVRMSE: normalized RMSE
= RMSE

Dm

Perfect match is 0. Acceptable match is <0.3. 0.07 0.06 0.06 0.07 0.09

CVSTD: normalized STD
= STDm

Dm

Perfect match is 0. Acceptable match is <0.3. 0.01 0.06 0.05 0.01 0.08

n 240 63 51 320 81

MINm 102.00 15.28 29.04 113 6.33

MINp 79.25 15.85 30.12 80.01 75.90

MAXm 948.00 98.17 51.93 831.00 6.48

MAXp 1015.61 96.88 49.48 867.02 72.24

Dm 236.67 33.11 37.61 192.46 24.73

Dp 237.60 32.82 36.64 190.03 24.57
1 Over the exploration space (a given geophysical profile), n is total number of data, MINm and MAXm are minimum and maximum measured (M) values, MINp and MAXp are minimum
and maximum predicted (P) values, and Dm and Dp are mean of the M and P data sets. Dm i and Dp i are M and P value at observation point i. RMSE, MAE, MINm, MINp, MAXm,
MAXp, Dm, and Dp are in Ω m for ER models, and in m s−1 for VS models. NSE, lnNSE, R2, RSR, and MRE are dimensionless. PBIAS, CVMAE, CVRMSE, and CVSTD are dimensionless,
as a fraction.



Appl. Sci. 2020, 10, 5905 20 of 27

Performance of VS and ER models for geological model conceptualization, aimed at supporting
groundwater flow modeling, departs from our initial ability to identify and segregate the influence of
possible outliers caused by natural heterogeneity of variables VS and ER. As described in Section 4.2,
VS is site-specific steady, whereas ER is site-specific transient, the latter varying over time and requiring
periodic monitoring. For this reason, frequency of time-lapse ERT surveying and groundwater
monitoring was adapted to the particular groundwater quantity (flow) and quality (EC) temporal
dynamics of aquifer H; see Section 4.1. The evaluation of this optimal surveying frequency is crucial
for the production of accurate geological models. Performance statistics of VS and ER models show
satisfactory or very satisfactory matches between M and P data sets (Table 7), i.e., P data are less biased
than their M counterparts, the relative difference being in the positive 0.01–0.02 range. Performance of
the VS models is somewhat greater than of the ER models (Table 7).

This performance analysis provides two important remarks: (1) theoretical fitting functions do
not introduce noticeable mismatching between M and P data, i.e., do not generate spurious values,
because the number and magnitude of original outliers is low to negligible; and (2) computation
and fitting processes reproduce well the homogeneity of this alluvial medium, in which a general
predictable behavior of variables VS and ER in non-surveyed sites can be anticipated from the results
obtained in the surveyed ones, as show in next Section 5.2. Performance of the VS and ER models was
better to that reported in similar experiences using the same methodology for MASW [59,63,64] and
ERT [71–73]. As deduced, the VS and ER models are reliable enough to produce a confident geological
model conceptualization for groundwater modeling purposes.

As introduced in Section 1, errors in data acquisition for aquifer conceptualization are
rarely segregated from the overall uncertainty appraisal of groundwater modeling tools. Aquifer
conceptualization includes three stages subjected to error: (1) geometry definition, (2) acquisition
of hydraulic data, and (3) evaluation of water balance components [15–17]. These errors combine
to generate a background error from which the groundwater model simulations add uncertainty
associated to the inherent natural variability of environmental variables, the possible smoothing and
bias introduced using fitting functions, and the mapping errors due to adopted spatial functions. In the
case of aquifer geometry definition, the use of geophysical techniques does not cancel nor reduce its
input error, but it generates a numerical data base (M and P data sets) that enables to deduce the
error produced during data inversion. This error can be measured when M and P data are compared,
and becomes an advantage comparatively to the sole use of raw geological data and qualitative,
large-scale geological mapping for the purpose of segregating the error of aquifer geometry.

Normalized errors (CVMAE, CVRMSE, CVSTD) of VS and ER models are in the 0.01–0.09 range
(Table 7). In particular, CVSTD is 0.01 for VS models and varies in the 0.05–0.08 range for ER models.
These magnitudes are lower than those that can be deduced from the VS data sets reported in similar
MASW experiences [59,63,64] and the normalized errors of ER models in diverse ERT surveys [68–70]
experiences. These values can be used as manageable quotas of the error that can be segregated from
overall groundwater models uncertainty without substantially affecting its simulations accuracy.

5.2. The Geological Model of the Cascalheira Stream Alluvial Aquifer

MASW and ERT geophysical techniques were integrated to define the geological model of aquifer
H. The VS models were intended to this purpose exclusively, whereas the ER models were used to
disambiguate geological structures having similar VS and different ER, and to complete geological
information in areas not covered by MASW.

As described in Section 2.3, local faulting narrowly reproduces the regional structural setting
determined by the conjugate NW–SE and NE–SW strike-slip fault systems (Figure 8a) [44,45].
These fault systems affect the Upper Miocene—Quaternary sedimentary record, thus determining
the accommodation space for Holocene sedimentation in valleys and plains in the southwest coast
of Portugal [43,47,48]. As shown in VS (Figure 5) and ER (Figure 6) models, the NW–SE strike-slip
fault system generates small horsts and grabens perpendicular to the coast (Figure 8b). From north to
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south, the VS and ER models identified three small NW–SE faults called F6, F7, and F8; F8 was also
inferred from regional geological mapping [43,47,48]. Out the area covered by MASW and ERT surveys,
another small NW–SE fault called F9 was inferred after regional geological mapping and direct field
observation. F6 and F8 are SW-vergent, whereas F7 and F9 are NE-vergent. The NE–SW strike-slip fault
system is NW-vergent, is younger than the NW–SE system, and determines the progressive deepening
of the geological formations toward the coast (Figure 8b). From East to West, two small NE–SW faults
called F1 and F2 were inferred from regional geological mapping [43,47,48], two others called F3 and F5
were deduced after direct field observation, and a fifth called F4 was inferred after analyzing time-lapse
ERT at site 2. The conjugation of NW–SE and NE–SW fault systems compartmentalizes the area into
small NW-vergent blocks. The Cascalheira Stream valley is the result of these conjugate strike-slip
fault systems; first, the NW–SE system generates a small graben, and later, the NE–SW system deepens
and widens the aquifer H toward the coast. This structural scheme is described in Figure 8b.

In detail, the NW–SE faults F6 and F7 at site 1 (MASW1) were identified (Figure 8c). At site 3,
the traces of NW–SE faults F6, F7, and F8 (MASW3) were also identified (Figure 8c). At sites 1 and 3,
no NE–SW fault was identified because the MASW and ERT surveys were almost parallel to these faults
(Figure 8c). However, at site 2, the ER model enabled us to deduce the NE–SW fault F4 as a preferential
path for low-salinity water transference from Pleistocene formations to aquifer H (Figure 6b). At site 3,
the ER model enabled us to infer geology after VS model gap in MASW3 at distances 130–220 m and to
disambiguate the geological structure of this profile sector, which is infilled by Holocene sediments
and Pleistocene sand dunes having similar VS (MASW3, Figure 5b) but different ER (ERT3, Figure 6c).
After the ER models, some sedimentological features of hydrological interest have been deduced.
At site 1, the current stream channel appears migrated towards the southern valley boundary, probably
as the central valley was progressively infilled since early Holocene. This feature is also observed at
site 3, determining that freshwater discharge from aquifer H over the saltwater lens in Pleistocene
formations flow through what seems to be two incisive paleochannels (Figure 6c).

Figure 8c presents the geological model of aquifer H. As shown, the Cascalheira Stream valley
is encased into a small graben structure contoured by small NW–SE and NE–SW strike-slip fault
systems. In detail, aquifer H occupies one small graben bounded by faults F6 and F7 upstream and
two small grabens (bounded by faults F6–F7 and F8–F9) separated by a small horst (bounded by faults
F7–F8) downstream. The increasing accommodation space for Holocene sedimentation is attributed to
the distensive motion of (i) faults F6 to F9 which progressively deepen the Pliocene and Pleistocene
materials enclosed into the two small grabens, and (ii) faults F1 to F5 which progressively deepen
the geological structures toward the coast. The consequence of this faulting is a typical estuarine
morphology infilled by Upper Miocene to Quaternary sediments whose thickness and width increase
downstream. The aquifer H thickness passes from 3–10 m at site 1, 5–10 m at site 2, to 8–12 m at site 3,
with some VS increase (Figure 5) and ER decrease (Figure 6) in this bearing as expected in a coastal
alluvial where clay-rich materials (higher VS) can be dragged bigger distances than coarse ones and
salinity of marine aerosol decreases inland (higher GER), respectively. Width passes from 140 m at site
1 to 240 m at site 3.

Despite that, the described NW–SE and NE–SW faults are too small to be included into the Official
Geological Mapping of Portugal at scale 1:50,000 [43]—only the NW–SE F6 and F9 and the NE–SW
F1 and F2 appear in this official mapping—its strike-slip motions are long enough to produce the
accommodation space for aquifer H (Figure 8c). This unconfined alluvial aquifer sustains the SAL,
a protected GDE space.
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Figure 8. (a) Regional tectonic setting of CSB area, after [43–45], showing rose diagrams of faults
orientation clustered by age of geological domains as in Figure 1b. (b) Local tectonic setting of aquifer
H after [40,43,47], direct field observations, aerial photographs, and MASW and ERT surveys, showing
theoretical structural and deformation schemes, and the conjugate NW–SE and NE–SW strike-slip fault
systems. (c) Geological model of aquifer H, showing geological cross-sections 01 (site 1), 02 (site 2),
and 03 (site 3) from integrated MASW (Figure 5) and time-lapse ERT (Figure 6) surveys at sites 1 to
3 and direct field observations, and a new geological cross-section called 00 and the southern end of
the geological cross-section 03 inferred from geological mapping and direct field observation only;
the vertical-to-horizontal scale ratio being 1:2.

6. Conclusions

Integrated MASW and time-lapse ERT geophysical techniques enabled building a predictive
geological model and deducing some transient groundwater features of the CSB Holocene alluvial
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aquifer (aquifer H) in the southwest coast of Portugal. Findings from 2D VS and ER models were
completed with official regional geological information, geological and geophysical data compiled from
the scientific literature, and direct field observations. The conjugate NW–SE and NE–SW strike-slip
fault systems determine compartmentalization of underlying geological structures and the subsequent
accommodation space for Holocene sedimentation. The NW–SE system deepens the geological
structures toward the coast, whereas the NE–SW system generates small horsts and grabens, the aquifer
H being encased into one of these small grabens. From upstream to downstream, aquifer H thickness
and width increase from 10 m to 12 m and from 140 m to 240 m, respectively.

The two 2D VS models in sites 1 (upstream) and 3 (downstream) were addressed at defining the
near-surface geological structure of aquifer H and underlying Pleistocene and Pliocene formations.
Since VS is a site-specific steady variable which does not depend on ambient changes, the VS models can
be used to interpret geological structures without the groundwater component influence. In interpreting
VS models, some reference VS values compiled from scientific literature for equivalent lithologies
were used. The ER models were aimed at inferring some shallowest geological structures after some
VS gaps and disambiguating geological structures having different age, similar VS, and different ER.
Unlike VS, ER is a site-specific variable which is subjected to ambient changes. In coastal porous media,
ER is primarily governed by GER, which in turn depends on the recharge water salinity resulting
from the variable combination of atmospheric bulk deposition salinity and actual evapotranspiration
rates, which are predictable variables over space and time. These predictive variations allowed us
to disambiguate inland recharged Holocene alluvial from locally recharged coastal Pleistocene sand
dunes at the aquifer H outlet. For proper disambiguating, the time-lapse ERT from September 2014,
in which GEC mass flow and aquifer storage variations are minimal, was selected.

Groundwater predictions from numerical models can be quite inaccurate when inherent uncertainty
of data used for aquifer conceptualization is neither appraised nor considered. In contrast to the
sole use of qualitative raw geological data and mapping to prepare a geological model, normalized
errors of the VS and ER models mean a quantitative quota of uncertainty from which groundwater
models will add other types of uncertainty. The performance analysis of the VS and ER models shows
satisfactory to very satisfactory matches between measured and predicted data. This means that
the Pliocene to Holocene geological structures were well-conceptualized and they are homogeneous
enough to predict the magnitude of VR and ER in non-surveyed areas from the results obtained in the
surveyed ones. Normalized errors of the VR and ER models are in the 0.01–0.09 range, which means
a manageable quota of error that can be segregated from overall groundwater models uncertainty
without substantially affecting its simulations accuracy. The geological model of aquifer H is aimed at
supporting the CSB—SAL groundwater numerical model, which is in progress for ecological purposes.
This multidisciplinary methodology seeks to improve the design of shallow groundwater research in
GDE preservation policies.
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