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1 VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade,
11351 Belgrade, Serbia; davidovic@vin.bg.ac.rs (M.D.); virrast@vin.bg.ac.rs (R.J.);
mjovst@vin.bg.ac.rs (M.J.-S.)

2 Faculty of Civil Engineering, University of Belgrade, 11120 Belgrade, Serbia; milena@grf.bg.ac.rs
3 Institute of Physics, University of Belgrade, 11080 Belgrade, Serbia; kolarz@ipb.ac.rs
4 School of Earth and Atmospheric Sciences, Queensland University of Technology, 4000 Brisbane, Australia
* Correspondence: z.ristovski@qut.edu.au

Received: 17 July 2020; Accepted: 24 August 2020; Published: 27 August 2020
����������
�������

Featured Application: An ANN model successfully helped in harmonizing inputs from several
instruments of different grade (low cost radon and lab grade particulate matter monitors) and
enabled predictions of small ions concentration of comparable quality to the lab grade Gerdien
type instrument.

Abstract: In this work we explore the relationship between particulate matter (PM) and small ion
(SI) concentration in a typical indoor elementary school environment. A range of important air
quality parameters (radon, PM, SI, temperature, humidity) were measured in two elementary schools
located in urban background and suburban area in Belgrade city, Serbia. We focus on an interplay
between concentrations of radon, small ions (SI) and particulate matter (PM) and for this purpose,
we utilize two approaches. The first approach is based on a balance equation which is used to derive
approximate relation between concentration of small ions and particulate matter. The form of the
obtained relation suggests physics based linear regression modelling. The second approach is more
data driven and utilizes machine learning techniques, and in this approach, we develop a more
complex statistical model. This paper attempts to put together these two methods into a practical
statistical modelling approach that would be more useful than either approach alone. The artificial
neural network model enabled prediction of small ion concentration based on radon and particulate
matter measurements. Models achieved median absolute error of about 40 ions/cm3 and explained
variance of about 0.7. This could potentially enable more simple measurement campaigns, where a
smaller number of parameters would be measured, but still allowing for similar insights.

Keywords: indoor air quality; small ions; radon; particulate matter; linear regression; artificial
neural networks

1. Introduction

Our health and wellbeing is a complex and multifaceted phenomenon, but clean air can be with
certainty regarded as one of its most critical components. Not surprisingly, it has been shown that air
pollution is the single largest environmental health risk in Europe [1]. While level of concentration of
air pollutants can widely vary even locally, the reactions people may have in response to exposure even
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to the same level of air pollutants concentration can additionally vary due to the breathing volume
(e.g., because of different age and levels of physical fitness and activity) and duration of exposure
(e.g., large amount of time spent indoors, as a commuter, etc.). Furthermore, some age groups have
behavioral patterns that may affect their exposure in a negative manner, such as elderly or young
children, and result in various negative health effects including asthma, allergies, and other [2,3].

Monitoring of outdoor ambient air quality is usually done via networks at national and local
level. However, despite having high quality of instrumentation these kinds of networks are usually
very sparse, may not monitor all parameters of interest, and give little insight into personal exposure,
for which indoor air quality may be of greater importance. This makes additional measuring campaigns
necessary, especially for indoor places where sensitive age groups may spend considerable amount of
time. The level and composition of air pollutant differs indoors and outdoors, and some air pollutants
can be more prominent outdoors (e.g., gaseous pollutants sulfur dioxide or ozone), while others
are usually more dominant in the indoor environment (e.g., formaldehyde, carbon monoxide or
nitrogen oxides and radon) [4,5]. Even more so than the gas phase pollutants, PM concentration
along with its size distribution and chemical composition is also a significant problem. It is well
documented that serious health effects may result from long-term exposure to an elevated concentration
of particulate matter [6]. Short term air pollution levels were found to correlate with reduced lung
function, and remained visible up to 24 h after exposure [7]. In many European cities [6], particulate
matter concentration is two to three times higher outdoors than that recommended by the World
Health Organization (WHO). Outdoor air also contributes to indoor air quality, since it can diffuse
easily into indoor environment. Air quality indoors can be further worsened by non-satisfactory
ventilation quality.

In this paper we focus on a smaller subset of indoor air pollution phenomena with a focus on
an interplay between primary pollutants radon and particulate matter (PM) [8] and small ions (SI)
concentrations. Reasoning and arguments found in scientific literature behind the question why small
air ions may have an impact on human health are the following. Small ions can be considered as
natural air cleaners and sterilizers, and also biologically active constituents of the environmental air.
Additionally, process of ion to aerosol attachment is leading to aggregation of ultrafine particles (UFP)
in environmental air and thus reduces their number concentration (at the account of mass gain) and
deposition on electrostatic surfaces. Recent scientific research shows that the health hazard possibly
increases with the decrease of diameter of the inhaled particles. Peters et al. [9] demonstrated that
the number concentration of nanoparticles is more strongly associated with health effects than the
mass concentration. Other health impacts of air ions include psychological effects that have been
reported in many studies and summarized in Perez et al. [10] and Pino and Ragione [11]. Most of
the studies claimed that ionization was significantly associated with lower depression ratings. It is
important to note that most of research refers to high levels of ion concentration exposure. Studies
of background ion concentration relative to the ion-free state studies were not found but health
benefits of rich ion background could be expected. Jiang et al. [12] claim that the reports where the
presence of negative ions is credited for increasing psychological health are without reliable evidence
in therapeutic practice. The studies showing that negative ions could help people with symptoms
of allergies to dust, mold spores, and other allergens need additional confirmations. However, it is
encouraging that there are no known negative effects of negative ions, so positive effect should be
studied further. On the other hand, adverse health effects of radon [13] and particulate matter [14]
are long well known. Since all three quantities (radon, SI and PM concentration) are linked via a
balance equation, even though the health effects are only firmly established for radon and PM [8],
it is useful to consider all three simultaneously. Understanding the way in which various air quality
variables interact can be beneficial for developing predictive models, and also enable obtaining more
knowledge about air quality based only on several key predictor measurements. Children spend a
large part of their time at school microenvironment. In the last decade several large studies conducted
within the framework of European projects BREATHE and SINPHONIE addressed the topics of level
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and chemical composition of particulate matter fractions including ultrafine particulate matter and
gaseous air pollutants, also addressing differences during teaching and non-teaching hours and periods
when there are no occupants in schools [15,16]. In the framework of numerous studies at national
and international level radon concentration was measured in school classrooms, usually by utilizing
passive samplers.

The objectives of this paper are the following. The first objective was to bring additional insight
into indoor air quality by measuring a number of important air quality variables including quantities
that are somewhat more rarely measured with higher temporal resolution namely SI concentration
and radon concentration in two elementary schools’ indoor environments. In addition, we have
measured PM concentration and size with high temporal and size resolution. Descriptive statistics
of the measured parameters is presented and discussed. We then proceed to studying association
between SI, radon and PM concentrations, based on a balance equation. Parameters of the balance
equation are estimated from the data in two schools. We investigate the hypothesis that small ion
concentration can be predicted based on radon and particulate matter measurements predictors,
by using artificial neural network model. If successful, this kind of modelling effort could enable
obtaining more knowledge about air quality based only on several key predictor measurements.
This could potentially enable more simple measurement campaigns, where a smaller number of
parameters would be measured, but still allowing for similar insights. The outline of this paper is
as follows. First, we provide a brief explanation of the physical processes involved in creation of
small ions, and then utilize balance equation to describe it quantitatively. We then discuss the link
between small ion concentration, volumetric production rate and particulate matter concentration.
Following this discussion, we describe the method that was used in the indoor measuring campaign,
in which a number of relevant parameters appearing in the balance equation are measured either
directly or via an important proxy. We study an interplay between concentrations of radon, SI and
PM. For this purpose, we utilize two approaches. The first approach is based on a balance equation
which is used to derive approximate relation between concentration of small ions and particulate
matter. The form of the obtained relation is transformed via Taylor expansion to enable meaningful
linear regression modelling with several predictors. The second approach is data driven and utilizes
machine learning techniques, namely shallow feed forward neural networks, and in this approach,
we develop a more complex statistical model, but utilize predictors that were used in physics based
linear regression modelling. Performance and trade-offs of the two approaches are then discussed.

2. Materials and Methods

2.1. Form of the Balance Equation Suitable for Statistical Modelling

The small air ion concentration (n± ) is determined by the following balance equation:

dn±
dt

= q− αn±n∓ − n±βZ (1)

where q is the volumetric production rate, Z is the aerosol number concentration, α coefficient accounts
for the losses of ion-to-ion recombination and β represents an effective ion-aerosol attachment coefficient,
which is the integral over the size distribution of aerosol particles. The balance equation can include
additional terms. If electrostatic deposition (occurring mainly in indoor air) is included in a model,
there is an additional right-hand side term −δ±n±, where δ± is an electrostatic deposition rate coefficient
of the air ions. Additional details about physics behind changes in SI concentration and relevant terms
in balance equations are given in Appendix A.

While Equation (1) seems very intuitive, it is worth noting that it was discovered rather
painstakingly, and some terms were added to increase its scope of validity. Namely, in the first
half of last century Schweidler [17] showed that the quadratic law of recombination previously held
valid (quadratic law is Equation (1) without the last (linear) term on the right-hand side. Since n+ ≈ n− ,
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equality being only approximate due to the different mobility of positive and negative small ions,
the middle term in Equation (1) is a quadratic term) is not valid in ordinary air, but only for clean air
(Equation (1) when Z ≈ 0). As another interesting historical note ion-aerosol attachment coefficient
was previously referred to as “diminution coefficient of small ions in the presence of nuclei and large
ions” [18].

If we neglect the quadratic term present in (1) we can obtain the following (under the assumption
of a quasi-steady state):

dn−

dt
≈ 0 ≈ q− n−(βZ + δ−) (2)

(since our campaign was situated indoors, the electrostatic deposition rate coefficient δ− was also
included). After expanding βZ term we obtain:

n− ≈
q∑

βiZi + δ−
(3)

or more conveniently ∑
βiZi + δ− ≈

q
n−

(4)

The form of the above equation suggests linear regression is a justified modelling approach if we
want to model the interdependence between the concentration of larger aerosol particles of various
diameter and small ion concentration. The physical meaning of the coefficients in linear regression
(βi) are an ion-aerosol attachment coefficient and the intercept term corresponds to the electrostatic
deposition rate coefficient of the air ions (δ−). Note, however, that in a non-laboratory type of campaign,
one cannot precisely control the aerosol distribution and there may be a significant correlation
between individual channels corresponding to different particle sizes, which makes calculation
(and interpretation) of the regression coefficients as attachment coefficients largely approximate.

Taking one more look into (4) brings up an important issue, that is taking a quotient of two noisy
variables on the right-hand side of the Equation (4), that may also have values close to zero. The right
hand side of (4) therefore may produce a quotient not suitable for further statistical modelling. Instead
of using Equation (4) directly, we will do the following. By Taylor expanding expression (3) around
some value of volumetric production rate q0 and some value of particle concentrations Zi0 we obtain

n− ≈ q∑
βiZi+δ−

= f (q, Zi) ≈

≈ f (q0, Zi0) +
∂ f (q,Zi)
∂q

∣∣∣q0,Zi0(q− q0) +
∂ f (q,Zi)
∂Zi

∣∣∣q0,Zi0(Zi −Zi0)
(5)

The derivatives in (5) are given by

∂ f (q,Zi)
∂q = 1∑

βiZi+δ−

∣∣∣q0,Zi0 = 1∑
βiZi0+δ−

= n0
q0

∂ f (q,Zi)
∂Zi

=
−q

(
∑
βiZi+δ−)

2 βi
∣∣∣q0,Zi0 =

−q0

(
∑
βiZi0+δ−)

2 βi =
−n0

2

q0
βi

And finally, we arrive at:

n− ≈ n0 +
n0

q0
(q− q0) −

∑ n0
2

q0
βi(Zi −Zi0) (6)

This equation is more suitable for developing linear regression model, since it doesn’t include
quotients of the noisy occasionally close-to-zero random variables as does Equation (4). If a linear
regression model is developed based on (6) it would allow us to model and predict concentration
of small ions based on the knowledge of rate of volumetric production rate (in this paper we use
radon concentration as a proxy for volumetric production rate) and knowledge of particulate matter
concentration. Additionally, it will allow us to estimate attachment coefficients.
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2.2. Description of the Statistical Modeling Methodology

The first modelling approach that we will utilize is linear regression, with several input predictors
(radon and aggregated particle channels) and one target variable (small ion concentration). General form
of linear regression equation with several input predictors and one target is given by

yi = a0 + a1 · xi1 + . . .+ ap · xip + zi (7)

where p is number of predictors, i is number of points we use for fitting model parameters a0, a1, . . . ap,
yi is sample of target, xi1, xi2 . . . xip are samples of predictors and zi represents noise in i-th sample.
Model parameters are determined by ordinary least squares i.e., by minimizing

∑
zi

2(summed over all
samples). Input was transformed by subtracting median, since it is a more robust statistical measure
than mean. Thus, the linear model built around Equation (6) can be considered as Taylor expansion
around median. Note that particular linear scaling of input has no effect on R2 score of the linear
model, but serves to aid interpretation of coefficients in Equation (6).

Second approach we utilize for statistical modeling is a simple feed-forward artificial neural
network (ANN) with one hidden layer. Such shallow feed-forward ANNs were previously used
successfully in a number of contexts, and recently for calibration of low-cost sensors [19]. Input was
scaled using standard normalization scaling (transforming it to zero mean and unit standard deviation).
The hidden layer uses rectified linear unit (ReLU) activation function, which is known to have certain
benefits such as non-vanishing gradient compared to commonly used, sigmoid transfer function.
Implementation of the network was done via software library scikit-learn [20]. Network optimization
procedure is the default ‘adam’ solver used in multi-layer perceptron (MLP)-regressor in scikit-learn,
and further details can be found in [21]. Class MLPregressor implements a multi-layer perceptron
(MLP) with no activation function in the output layer. It uses the squared error as the loss function,
and the output is a set of continuous values. Model selection criterion was based on R2 score, and two
requirements: to have as high as possible R2 score, and also a balanced result on training and test
set. These criterions were examined via parametric sweep of number of input PCA components and
neurons in the hidden layer. Since it is not generally possible to prescribe physical meaning to model
parameters in the ANN models we will only compare the predictive power of the models.

2.3. Description of the Experimental Setup

A wide range of relevant air quality parameters were measured in indoor environments of
two elementary schools located far apart 20 km, namely: an elementary School “Aleksa Šantić” in
Belgrade suburb Kalud̄erica, and in an elementary school “20. oktobar” in a residential background
of the New Belgrade municipality, referred to as School 1 and School 2 in further text, respectively.
The measurement campaigns in both schools, that have natural ventilation, were conducted during
March 2017. Measuring spots in both schools were in classrooms on the ground floor, occupied on
workdays. Instruments were arranged rather densely, and we can assume that the sampled air was
well-mixed. Area surrounding location of School 1 and 2 is depicted in Figure 1. School 1 is in the
near vicinity of a major local road, and also in the neighborhood where there is a significant amount of
domestic heating sources. School 1 itself has a coal-based heating system. School 2 on the other hand
is located further apart from the major roads, and is situated in a block of buildings connected to the
district heating system.
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Figure 1. Larger area surrounding location of (a) School 1 (WGS84 20.556337261, 44.764855909) and 
(b) School 2 (WGS84 20.395445055, 44.799510267). Approximate location of indoor school space is 
marked as blue dot. 
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concentrations for diameter of particles going from 0.3 µm to 10 µm in 16 channels were recorded using 
TSI Optical particle sizer 3330. In addition, the radon concentration level was measured hourly using 
a Radon Scout, along with the local temperature, pressure and humidity. The Radon Scout consists 
of a measurement chamber with high voltage collection and Si detector, and samples air by diffusion. 
Remaining instruments sample air actively, either via a pump (particle sizers) or a fan (air ion detector). 
Accuracy, traceability and manufacturer info of the used instruments if further described in Appendix 
B and Table A1. 

The collected data describes all relevant processes quantified by a balance equation: 2-minute SI 
concentration measurements describe steady state; radon concentration gives insight into the rate of 
volumetric ion pair generation and 1-minute PM measurements give insight into main loss mechanism 
for SI. 

3. Results 
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mean and median SI concentration were more than twice as large as in School 2. On the other hand, 
radon median concentration was similar in two schools, although the mean was higher in School 2. 
Looking at the particle concentration, we can observe that while 0.3–10 µm diameter particles were 
similar in concentration in both schools, this is not the case for 10–420 nm particles. This could explain 
lower SI concentration in School 2, since increased concentration of nanometer sized particles could 
explain main loss mechanism. While it is desirable to have sensitive indoor environments properly 
ventilated, this was not the case in the two schools where the experiments were conducted, which have 
natural ventilation. Due to this, radon and particulate matter concentration exhibited strong diurnal 
variations in both schools. Temperature had somewhat extreme values for indoor space (min and max 
values in Table 1), however, the standard deviation was less than 2 °C. Relative humidity had similar 
values of mean and median (suggesting no significant outliers) at both schools of about 30%, and 
standard deviation of about 6%. Particulate matter sizers flag data points that are not accurate due to 
some problem (e.g., low level of working fluid, or out of range inlet flow) and these data points were 
not taken into consideration. Table 1 also serves as a reminder on what is the scope of the validity of the 
predictive models and associated model quality estimates that will be developed and discussed in 
further text. 

Figure 1. Larger area surrounding location of (a) School 1 (WGS84 20.556337261, 44.764855909) and (b)
School 2 (WGS84 20.395445055, 44.799510267). Approximate location of indoor school space is marked
as blue dot.

The measurement instrumentation setup included the following. SI concentration was measured
using a Gerdien-type air ion detector [22]. PM concentrations for diameter of particles going from
10 nm to 420 nm in 13 size channels were detected using TSI NanoScan SMPS Model 3910, and PM
concentrations for diameter of particles going from 0.3 µm to 10 µm in 16 channels were recorded
using TSI Optical particle sizer 3330. In addition, the radon concentration level was measured hourly
using a Radon Scout, along with the local temperature, pressure and humidity. The Radon Scout
consists of a measurement chamber with high voltage collection and Si detector, and samples air by
diffusion. Remaining instruments sample air actively, either via a pump (particle sizers) or a fan (air
ion detector). Accuracy, traceability and manufacturer info of the used instruments if further described
in Appendix B and Table A1.

The collected data describes all relevant processes quantified by a balance equation: 2-minute SI
concentration measurements describe steady state; radon concentration gives insight into the rate of
volumetric ion pair generation and 1-minute PM measurements give insight into main loss mechanism
for SI.

3. Results

Based on the descriptive statistics given in Table 1, some remarks can be made. In School 1,
both mean and median SI concentration were more than twice as large as in School 2. On the other
hand, radon median concentration was similar in two schools, although the mean was higher in School
2. Looking at the particle concentration, we can observe that while 0.3–10 µm diameter particles were
similar in concentration in both schools, this is not the case for 10–420 nm particles. This could explain
lower SI concentration in School 2, since increased concentration of nanometer sized particles could
explain main loss mechanism. While it is desirable to have sensitive indoor environments properly
ventilated, this was not the case in the two schools where the experiments were conducted, which have
natural ventilation. Due to this, radon and particulate matter concentration exhibited strong diurnal
variations in both schools. Temperature had somewhat extreme values for indoor space (min and
max values in Table 1), however, the standard deviation was less than 2 ◦C. Relative humidity had
similar values of mean and median (suggesting no significant outliers) at both schools of about 30%,
and standard deviation of about 6%. Particulate matter sizers flag data points that are not accurate due
to some problem (e.g., low level of working fluid, or out of range inlet flow) and these data points
were not taken into consideration. Table 1 also serves as a reminder on what is the scope of the validity
of the predictive models and associated model quality estimates that will be developed and discussed
in further text.
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Table 1. Summary statistics (minimum, maximum, mean, median and standard deviation) of air quality
variables for the campaign conducted in Schools 1 (S1) and 2 (S2).

Negative
Small Ions

[#/cm3]

Radon
[Bq/m3]

Particle conc.
10–420 nm

[#/cm3]

Particle conc.
0.3–10 um

[#/cm3]

Pressure
(atm)

t
[◦C]

RH
[%]

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2
Min 0.0 0.0 0.0 0.0 0.0 776.5 53.2 30.4 0.97 0.98 19.60 20.12 18.97 18.87
Max 871.0 643.0 118.0 234.0 95,023.6 116,127.2 541.9 572.6 1.00 1.01 28.81 32.62 46.14 49.18

Mean 239.9 104.8 36.8 56.5 2512.7 15,198.2 161.1 151.1 0.98 1.00 24.24 26.64 29.77 31.20
Med. 212.0 63.0 39.0 41.0 1577.5 3724.6 142.7 132.8 0.98 1.00 24.27 26.78 29.40 30.81

Std. dev 143.8 113.9 22.2 41.6 4283.2 31,759.4 82.3 81.3 0.01 0.01 1.80 2.00 6.23 5.37

Initial exploratory data analysis shows that there is a correspondence between radon concentration
and small ion concentration, shown in Figure 2 for both schools. Note that radon measurements appear
to be more noisy compared to the small ion measurements, despite having much larger sampling
time of 1h. This could be attributed to sampling mechanism of Radon Scout, since it samples air via
diffusion. It also appears that for some periods of time variation in radon and small ions is “matched”,
e.g., School 2, last week of March, where there is low concentration of radon and ions during workdays,
and a sudden increase during weekend (25 and 26 March 2017). Similar, but less pronounced effect is
seen in School 1 in the same week. This is probably due to different regimes of window opening and
general use of indoor space during weekends. However, there are also periods where a “mismatch”
between radon and SI concentrations seems to happen, probably due to loss mechanisms of attachment
of small ions to particulate matter (see for example 9th of March in School 1, with a large spike in radon
concentration not matched by ion concentration). In the following text we will see whether simple
linear regression suggested by (6) could explain these and similar situations, and to what extent.

But before doing that, let us consider a correlation matrix of the wide array of quantities that we
have measured simultaneously in two schools. Correlation plots are given in Figure 3, and include TSI
Nanoscan channels (denoted in Figure 3 by channel size 11.5, 15.4, . . . , 273.8 nm, concluding with
total concentration), followed by TSI OPS channels (denoted in Figure 2 by 0.337, 0.419, . . . , 9.015 µm,
concluding with total concentration), followed by meteorological parameters, and finally small ions
and radon. Notice that in both schools SI concentration negatively correlates with all particle channels
(Pearson correlation coefficient is −0.36 for total particle concentration measured by TSI Nanoscan
and −0.39 for total particle concentration measured by TSI OPS in School 1, and −0.09 and −0.37 in
School 2), and that it positively correlates with radon (Pearson correlation coefficient is 0.33 and 0.59
in Schools 1 and Schools 2 respectively). This coincides with the conclusions that can be made from
Equations (3), (4) and (6), and therefore it is justified to use these equations as a starting point for
development of statistical models.

It is clear looking at TSI Nanoscan and OPS channels in the correlation matrix, that larger
groups of channels correlate and thus it wouldn’t be useful to consider all channels as independent
predictors (signals) in the framework of regression modelling due to multicollinearity effects. We have,
therefore, reduced the number of predictors for particulate matter we use in the modelling to the most
significant ones.

This can be done in a number of ways, and in statistical modelling this technique is known as
feature selection [25]. However, at this stage, in order to keep physical interpretation of predictors
possible, we have opted not to use principal component analysis and similar methods for feature
selection, and aggregated particle channels into larger size bins, approximately corresponding to
groups of correlated channels depicted in Figure 3. Aggregations that were used are shown in Table 2.
Aggregations only include consecutive channels, and for that reason in School 2, 11.5 nm channel
was excluded from Aggr2, despite the high correlation evident from Figure 3. Note that this kind of
aggregation somewhat lacks in terms of desirable properties of predictors (such as low cross correlation)
that could be achieved via use of principal component analysis (PCA) [25], however, it still preserves
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possibility for relatively simple interpretation of model parameters in linear regression. Later we
will also explore the possible benefits of PCA for aggregation of particle channels in the context of
predictive modeling.
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Table 2. Aggregation of particle channels into larger bins based on correlation matrix in Figure 2.

(a)

Nanoscan
ch. [nm] 11.5 15.4–20.5 27.4–64.9 86.6–154 205–273.8

S1 Aggr1 Aggr2
S2 Aggr1 Aggr2 Aggr3

(b)

OPS ch.
[um] 0.337–0.997 1.244–9.015

S1 Aggr3 Aggr4

S2 Aggr4 Aggr5

As mentioned earlier we will test the predictive power of the two statistical modeling approaches,
which will be inspired, in part, by Equation (6). Let us first consider linear regression model,
with predictors being radon concentration and aggregated particle channels showed in Table 2.
Since we are using radon concentration as a proxy for volumetric production rate we will also need
a way of converting radon concentration to volumetric production rate. Since activity of 1 Bq/m3

produces alpha particle of 5.49 MeV in cubic meter every second, and mean energy to create an ion
pair in air is around 35.6 eV [26], one decay per second producing alpha particle will produce on
average A0 ≈

5.49 MeV
35.6 eV·106cm3 = 0.15 i.p

cm3s . Using this approximate conversion constant, we can notice
using data from Table 1, that in School 1 volumetric production rate has a median of around 6 i.p/cm3s
and maximum of 19 i.p/cm3s, while in School 2 median is similar and maximum is about 37 i.p/cm3s.
Going back to linear regression model, which was implemented using software library [20], using whole
data sets in Schools 1 and 2 we obtained coefficients given in Table 3. Explained variance of the model
is 0.49 in School 1, and 0.52 in School 2. Note that this explained variance should not be interpreted as
predictive power of the model, since it was calculated on the whole data set. We will further discuss
the issue of data set splitting a bit later.
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Looking at the results listed in Table 3, several conclusions can be made. In both schools, the linear
model had a similar value of explained variance, despite School 2 having one additional predictor.
The intercept (corresponding to n0 in Equation (6)) of the linear model is larger in School 1, which
is in accordance with relative value of descriptive statistics for ions for two schools listed in Table 1.
Note that n0 in Equation (6) is not the median of n−, but rather a value corresponding to the medians of
radon and particle concentrations. The radon term is very similar in both schools, indicating similar
increase in ion concentration with radon concentration.

In the linear model for both schools, the sign of attachment coefficients is physically justified
(positive), despite the fact that we have used ordinary least squares, and did not enforce the sign of
predictors a priori. Attachment coefficients become larger for aggregations corresponding to larger
particle diameters, in accordance to theoretical expectations [26]. However, the magnitude of the
attachment coefficients is larger compared to theoretical expectation, and this effect could be due to
non-controlled PM size distribution which is to be expected in non-laboratory conditions, and also
differences in number of particles in different size channels that were aggregated.

So as an intermediate conclusion, we can note that the balance equation provided valuable
guidance for choice of predictors, and also that due to understanding of underlying physics we could
inspect and verify the sign of predictors. On the other hand, despite all these advantages, the explained
variance seems low, which makes physical interpretation of model parameters rather approximate.
Furthermore, the relatively low explained variance would negatively influence predictive ability of
the model. Let us now examine possible predictive power of the statistical models developed around
balance equation.

In the further text we will focus on School 1, since during this particular campaign we have
collected more data, and furthermore data gaps in particulate predictors were smaller compared to
School 2. Having sufficient data for training and testing is paramount for developing models and
also for testing them in a meaningful way. Under optimal conditions, stages of model validation,
selection, and predictive errors should be calculated using independent i.e., previously unseen data,
however this is often not possible. For smaller datasets it can easily happen that data is incomplete,
and there could be different ratios of incompleteness for the test and training sets. Best way for doing
cross validation is when it resembles and mimics the way in which model is to be practically used.
This brings issues of optimal training test split, both in terms of amount of data and also temporal
position of the data. Similar issues are encountered in low cost sensor calibration [19,27]. Additionally,
since we are dealing with time series analysis test data will always need to be temporally separated
and have timestamp later in time compared to training data. Thus, to satisfy these requirements of
complete data sets and optimal timestamps of training and test data we opted to use 50-50 training test
split. One additional requirement for the predictive models of small ion concentration is that they
must produce positive output. A way to ensure positive prediction of the statistical model, is to take
logarithm of the concentration when training the model and then to exponentiate the prediction of the
model [25], and this was applied here.

Figure 4 shows comparison of a linear model based on radon and particle aggregates for School 1
and a measurement of small ions. The score metric (R2) on the training set is 0.44 and on test set, it is
0.49. While the model shows similar trend as the measurements it is also evident that it significantly
under predicts small ions concentration. Gaps in the figure correspond to periods where data for
particles was missing.
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Table 3. Linear model based on Equation (6), with radon as a proxy for volumetric rate and aggregated particle channels.

Parameters of The Linear Model Intercept Radon Term Aggr1 Aggr2 Aggr3 Aggr4

School 1 parameters 291.6 1.61 −5.08 × 10−3
−8.24 × 10−3

−5.08 × 10−1
−4.88 × 101

School 1 attachment
βi
[
cm3/s

] 2.87 × 10−7 4.65 × 10−7 2.87 × 10−5 2.75 × 10−3

Parameters of The Linear Model Intercept Radon Term Aggr1 Aggr2 Aggr3 Aggr4 Aggr5

School 2 parameters 111.8 1.52 −2.00 × 10−3
−6.88 × 10−3

−2.08 × 10−2
−3.75 × 10−1

−2.29 × 100

School 2 attachment
βi
[
cm3/s

] 1.05 × 10−6 3.61 × 10−6 1.09 × 10−5 1.97 × 10−4 1.20 × 10−3
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Let us now examine if ANNs can improve the situation compared to the linear model. If we move
away from a requirement that parameters of the statistical models have simple and precisely defined
physical interpretation, we can bring several improvements to our modeling methodology. Choice of
predictor variables can now become less stringent compared to the linear model that was based on a
balance equation, so we can actually make statistically more justified aggregations of particle channels,
e.g., by using PCA. Since for the linear model aggregation was based on correlation matrices derived
from complete dataset, this could introduce so called “knowledge leak” from training to test data,
and is thus best to avoid it, e.g., by using PCA. Furthermore, when using PCA it is more clear what
amount of variance is left out of the model predictors when reducing the number of particulate matter
related features. For example, first two PCA components explain 62% of the particle channels variance.
The number of neurons in the hidden layer, and the optimal number of input PCA components was
determined in optimization procedure. The most optimal training/test ratio was observed for ANN
that has 4 neurons with ReLU activation function in the hidden layer and uses 2 PCA components
and radon concentration, a total of 3 signals, as input. The optimal ANN model achieved median
absolute error of about 40 ions/cm3 and explained variance of about 0.70. Some additional details
about network architecture, hyperparameters and tuning procedures are given in Appendix C.

Predictive power of the optimized ANN model is illustrated in Figure 5. It seems that the model
now doesn’t significantly under predict small ion concentration, and it improves on the linear model,
despite having smaller number of input predictors. Furthermore, the score on test set is significantly
improved. It also appears that some of the noise introduced by radon measurements is now less
pronounced compared to the linear model output shown in Figure 4. However, it seems that while
the overall trend in small ions concentration is well modelled, the shape of the peaks is not always
preserved. Since final ANN has rather simple architecture and there are no discrepancies between
training and test scores it can be concluded that the model is not overly complex to introduce overfit,
and additionally, training and test datasets are sufficiently complete.
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4. Conclusions

In this work, we have studied indoor air quality related to important, but more rarely continuously
measured parameters: small ion concentration and its association with radon and PM concentration in
two elementary schools’ indoor environments. We have analyzed the association using two approaches:
descriptive statistical analysis coupled with linear modelling and artificial neural network predictive
modelling. The following conclusions can be made.

- Descriptive statistics showed that for similar median radon concentrations larger number of
nanosized particles corresponds to smaller number of small ions. This observation is coherent
with the balance equation.

- The linear model derived directly from balance equation allowed estimation of balance equation
parameters. The parameters corresponding to the radon term were similar in both schools,
indicating similar increase in small ion concentration with radon concentration in both schools.
Regarding particulate matter parameters, it was observed that attachment coefficients become
larger for particle aggregations corresponding to larger particle diameters, in accordance to
theoretical expectations. However, these parameters were different in two schools, possibly due
to different air pollution composition.

- The hypothesis that small ion concentration, which may have certain impact on human health
and wellbeing, can be predicted based on radon and particulate matter measurements predictors
was successfully tested.

- Explained variance for the linear predictive model was under 0.5, and for the artificial neural
network (ANN) predictive model with similar predictors was around 0.7. ANN predictive model
has achieved median absolute error of about 40 ions/cm3 on test data.

These modelling efforts enable several future work directions and applications that may be of
wider interest for indoor air quality monitoring. Since small ions can be an important part of air
quality consideration, their concentration could be to a certain extent modelled based on several more
easily obtained/measured predictors. We have showed that the ANN model successfully helped
in harmonizing inputs from several instruments of different grade (low cost radon and lab grade
particulate matter monitors) and enabled predictions of small ions concentration of comparable quality
to the lab grade Gerdien type instrument. Furthermore, since the particulate matter concentration
was one of the important predictors, and having in mind recent uptake of low-cost PM monitors, data
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driven solution for estimating small ions concentration based on these sensors as supporting predictors
is an interesting future research topic.
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resources, P.K. and M.J.-S.; software, M.D. (Miloš Davidović); supervision, M.J.-S. and Z.R.; validation, M.D. (Miloš
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Appendix A

There are several main physical processes that are involved in changes in SI concentration.
Firstly, SI are constantly created, in pairs, by ionizing radiation that exists in the environment. SI are
continuously created when neutral air molecules are irradiated by cosmic rays or radiations from
natural radioactive materials in soil and air. Neutral air molecules may be ionized into positive ions
and free electrons that are attached to other hydrous or oxygen molecules in air, and in order to become
stable these ions are adsorbed to neutral molecules forming cluster ions.

UV radiation is mainly responsible for ionization of molecules and atoms in high atmosphere, but
it is exhausted at higher levels and doesn’t arrive to lower troposphere [28]. Several natural sources of
ionizing radiation are responsible for air-ion production in the lower troposphere, namely radioactive
gases (particularly 222Rn and its progenies), radioactive substances at ground level (e.g., natural α and
β emitters in the air and soil) and cosmic rays. These three contributions are comparable, approximately
20% of the total surface ionization rate is due to ionization from cosmic rays, and remaining 80% arises
from natural α and β emitters in the air and soil.

Air-ion pair generation near the ground varies mostly with the concentration of 222Rn and
its progenies. The half-life of 222Rn is approximately 3.8 days and the decay product is an alpha
particle with energy 5.49 MeV. The decay of 222Rn generates a large number of nitrogen and oxygen
molecular ions (order of magnitude ~105) per each α-particle. As a consequence, the near-ground
ionization rate caused by background ionization, is about 10 ion pairs/cm3s in continental areas [28].
Within microseconds of the ionization process, primary ions evolve through the process of hydration to
form small cluster ions, also known as small air ions or nano-air ions. This class of air ions can survive
much longer, up to 100 s, depending predominantly on air pollution and air density [22].

While small air ions technically are particulate matter belonging to ultrafine particulate fraction
(albeit only a few nanometers in diameter), it is worth pointing out the following. Small air ions are
electrically charged clusters consisting of several molecules in which ordinarily neutral atmospheric
molecules/atoms have gained or lost electrons. While particulate matter can also be charged, it is
composed of a much larger number of molecules and is thus up to several orders of magnitude larger
in diameter compared to the small ion clusters. Since cluster ions readily attach to particles, it is know
that their concentration decreases sharply within few tens of meters from the road [29], this making
indoor ion sources most significant, which is important to keep in mind for indoor air monitoring.

SI are also continually being destroyed in a process of recombination, producing neutral molecular
clusters. In addition to the process of recombination, SI can attach to PM. Because of this, a change in
PM concentration directly results in a change in SI concentration. A significant portion of PM in the
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urban environment is a result of human activities, where smaller particles are typically associated with
the process of combustion occurring in vehicles, industrial activities, biomass burning, and similar,
while larger particles are typically due to construction and demolition activities, entrainment of
outdoor dust and similar. The SI balance equation can be used to quantitatively describe the
above-mentioned processes.

Appendix B

Table A1. Description of the instruments used in data gathering campaigns conducted in this study.

Instrument Specification Based on Datasheets, Application Notes and Calibration
Certificates Type of Calibration

TSI NanoScan
SMPS Model

3910

Relative standard deviations in total concentration 2.7%
Sizing of the particles: standard deviations in median particle diameter 1.1%
Discrepancy relative to certified size ranges of 20, 60, 80, 200 and 300 nm
less than 8%.

NIST traceable using TSI
calibration system,
conducted in test atmosphere
of polystyrene latex particles

TSI Optical
particle sizer

3330

Counting efficiency at 0.5 µm (90–110%)
Inlet flow: 0.95–1.05 L/min
Sizing of 1 um particles: 90–100%
Allowable range is given in parenthesis, calibration certificate includes traceably
measured single value.

NIST traceable using TSI
calibration system,
conducted in test atmosphere
of polystyrene latex particles

Radon Scout

Sampling type: Diffusion
Sensitivity: 1.8 count per minute/kBq/m3 (4 cph/pCi/L)
Measurement range: 0. . . 2 MBq/m3

Error: ±5% within the whole range or smaller

Factory calibration,
instrument class certified by
the US-EPA/NRSB

Gerdien-type
air ion

detector

Sensitivity of the current measurement is limited by AD converter
resolution and amounts 1.6 fA. Using Equation (1) in [22], this value equals
to 2 ions/cm3. Measuring sensitivity is limited by noise induced by various
sources (uncertainties of air-flow, calibration, temperature drift, gain error,
etc.) and is experimentally obtained to be ±5 ions/cm3.

Calibrated using Equation (1)
in [22] and Keithley 261
small current generator
(output signal ~10 fA).
Flow tuning was done via
hot-wire anemometer.

Particle sizers were manufactured by TSI Incorporated, 500 Cardigan Road, Shoreview,
Minnesota 55126 USA. Radon Scout was manufactured by SARAD GmbH, Wiesbadener Straße
10, DE-01159 Dresden, Germany. Gerdien-type air ion detector was developed by Institute of Physics,
University of Belgrade, Belgrade, Serbia. The divide between low-cost and lab grade instruments is not
strict, and does not always refer to price of the sensor itself. The line is further blurred by the fact that
low cost sensors may require extensive, i.e., costly (re)calibration efforts. While operating principles of
both type of instruments can be very similar, lab grade instruments are typically characterized by better
implementation of these principles, for example better sampling method, higher quality of the sensors
that allow better temporal resolution etc. and consequently better accuracy. In this paper, all of the
instruments used, except for the Radon Scout (due to instruments sampling method, time resolution,
cost and lack of traceability) could be considered to be lab grade instruments.

Appendix C

There are two classes of parameters of neural networks that can be tuned in order to improve the
predictions. The first class consists of model parameters that are calculated during the process of neural
network training. This is done by optimizing a loss function, which in our case was squared error
(MSE). The second class of parameters are hyperparameters. These parameters define the structure
of the model and need to be defined a priori. Hyperparameters used in this study are shown in
Table A2. Parameter tuning can easily become an exhaustive task, and it is desirable to use simple
models if they can achieve similar accuracy to the more complex ones, in order to keep solution space
more manageable.
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Table A2. Hyperparameters of the artificial neural network model used in this study.

Hyperparameters Minimum Maximum Step Size

Hidden layers 1 2 1

Neurons per hidden layer 1 15 1

Neurons in input layers (Radon + PCA components) 2 5 1

Early stopping Not used

Activation function ’relu’

Cost function MSE

Solver ‘adam’

Figure A1a shows what happens with the R2 score on training and test data sets when number of
neurons is increased in the hidden layer. It can be observed that only a small network, with 3–4 neurons
results in a balanced training/test score, and that further increase of number of neurons results in
increased test set discrepancy, due to an overfit. This was the reason why no additional layers were
introduced, since this would certainly lead to an overfit, i.e., an ANN model that behaves excellently
on the training data, and very poorly on the test data. Furthermore, similar conclusion can be made by
observing MSE observed on a test set, shown in Figure A1b. The network with two hidden layers had
a greater MSE compared to the simpler one hidden layer network. The simplest models that have
optimal statistics are ANN models with three and four hidden neurons (network architecture and
activation function is shown in Figure A2), with more complex model being slightly better in terms
of R2 score and MSE. MSE is susceptible to outliers, and a more robust statistical measure of model
performance is a median absolute error, which turned out to be around 40 ions/cm3 for optimal ANN
models. The explained variance of around 0.70 was from the test set for the optimal ANN models.
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Figure A1. Statistics for different ANN models where several hyperparameters are changed (number
of hidden layers and number of neurons per hidden layer). (a) R2 score training test ratio (b) MSE on a
test set. All models have radon and 2 particulate matter related PCA components as inputs. Figure A1b
uses log10 scale.
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search of an optimal in-field calibration method of low-cost gas sensors for ambient air pollutants: Comparison
of linear, multilinear and artificial neural network approaches. Atmos. Environ. 2019, 213, 640–658. [CrossRef]

20. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

21. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
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