Strain Response Characteristics of RC Beams Strengthened with CFRP Sheet Using BOTDR
Abstract
:1. Introduction
2. Experiment
2.1. Experimental Variable and Manufacturing
2.2. Loading and Data Acquisition
3. Finite Element Modeling
3.1. Analysis
3.2. Material Modeling
3.3. Interface Modeling
4. Experimental and Numerical Results
4.1. Failure Behavior
4.2. Failure Load and Load-Deflection Response
4.3. Strain Behavior of CFRP Sheet
5. Conclusions
- (1)
- The de-bonding behavior between the concrete substrate and CFRP sheets affected the initial crack in the structure, while the ultimate load, which was related to the structural failure, was unaffected. Nonetheless, it is necessary to cautiously monitor the failures in RC beam structures because any failure could lead to a reduction in structural performance over a long period of time.
- (2)
- The strain distribution for the CFRP sheets can be visualized using the strain results through the BOTDR sensor, and it allows for a decent investigation of the de-bonding behavior of the CFRP sheets on the concrete substrate.
- (3)
- The numerical simulation correlated well with the experimental results in terms of the failure mode, failure pattern and the position where the de-bonding occurred. Therefore, it is possible to utilize the numerical simulation to study the de-bonding behavior of RC structures that are strengthened with CFRP sheets.
- (4)
- The strain results from the BOTDR fiber sensor and numerical simulation are considered to be stable and well matched, while the strain result from the strain gauge is relatively unstable because the strain gauge affected the surface condition where the gauge was placed. Therefore, it is thought that the BOTDR fiber sensor is more reliable when monitoring the RC structure than the conventional strain gauge.
Author Contributions
Funding
Conflicts of Interest
References
- Lim, D.H. An Experimental Study of Flexural Strengthening Method of Reinforced Concrete Beams with Near Surface Mounted CFRP Strips. J. Korean Soc. Civ. Eng. 2013, 33, 131–136. (In Korean) [Google Scholar] [CrossRef]
- Park, J.-S.; Kim, B.-C.; Park, K.-T.; Jung, K.-S. Analytical Study on the Bond Performance of Fiber Optic Sensor Embedded Carbon Fiber Sheets for Strengthening Concrete Structures. J. Korean Soc. Adv. Compos. Struct. 2018, 9, 31–36. (In Korean) [Google Scholar] [CrossRef]
- Toutanji, H.; Zhao, L.; Zhang, Y. Flexural behavior of reinforced concrete beams externally strengthened with CFRP sheets bonded with an inorganic matrix. Eng. Struct. 2006, 28, 557–566. [Google Scholar] [CrossRef]
- Li, Y.-F.; Xie, Y.-M.; Tsai, M.-J. Enhancement of the flexural performance of retrofitted wood beams using CFRP composite sheets. Constr. Build. Mater. 2009, 23, 411–422. [Google Scholar] [CrossRef]
- Khan, A.U.R.; Fareed, S. Behaviour of Reinforced Concrete Beams Strengthened by CFRP Wraps with and without End Anchorages. Procedia Eng. 2014, 77, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.G.; Mitrovic, M.; Friedman, A.; Carman, G.P.; Richards, L. Characterization of Fiber Optic Sensors for Structural Health Monitoring. J. Compos. Mater. 2002, 36, 1349–1366. [Google Scholar] [CrossRef]
- Todd, M.D.; Nichols, J.M.; Trickey, S.T.; Seaver, M.; Nichols, C.J.; Virgin, L.N. Bragg grating-based fiber optic sensors in structural health monitoring. Philos. Trans. R. Soc. A 2007, 365, 317–343. [Google Scholar] [CrossRef]
- Ansari, F. Practical Implementation of Optical Fiber Sensors in Civil Structural Health Monitoring. J. Intell. Mater. Syst. Struct. 2007, 18, 879–889. [Google Scholar] [CrossRef]
- Deng, L.; Cai, C.S. Applications of fiber optic sensors in civil engineering. Struct. Eng. Mech. 2007, 25, 577–596. [Google Scholar] [CrossRef] [Green Version]
- Casas, J.; Cruz, P.J.S. Fiber Optic Sensors for Bridge Monitoring. J. Bridg. Eng. 2003, 8, 362–373. [Google Scholar] [CrossRef] [Green Version]
- Betz, D.C.; Staudigel, L.; Trutzel, M.N.; Kehlenbach, M. Structural Monitoring Using Fiber-Optic Bragg Grating Sensors. Struct. Health Monit. 2003, 2, 145–152. [Google Scholar] [CrossRef]
- Zhan-Feng, G.; Yan-Liang, D.; Bao-Chen, S.; Xiu-Mei, J. Strain monitoring of railway bridges using optic fiber sensors. J. Qual. Maint. Eng. 2007, 13, 186–197. [Google Scholar] [CrossRef]
- Doyle, C.; Staveley, C.; Henderson, P. Structural health monitoring using optical fiber strain sensing systems. In Proceedings of the 4th International Workshop on Structural Health Monitoring, Stanford, CA, USA, 1 July 2003; Volume 1, pp. 1–8. [Google Scholar]
- Maalej, M.; Rizkalla, S.H. Fiber optic sensing and intelligent processing of sensor data for structural health monitoring. In Proceedings of the 14th International Conference on Optical Fiber Sensors, Island of San Giorgio Maggiore, Venice, Italy, 11–13 October 2000; Volume 4185, pp. 238–241. [Google Scholar]
- Li, S.; Wu, Z. Development of Distributed Long-gage Fiber Optic Sensing System for Structural Health Monitoring. Struct. Health Monit. 2007, 6, 133–143. [Google Scholar] [CrossRef]
- Woods, J.; Lau, D.; Bao, X.; Li, W. Measuring strain fields in FRP strengthened RC shear walls using a distributed fiber optic sensor. Eng. Struct. 2017, 152, 359–369. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, B.; Hayashi, K.; Machida, A. Distributed optic fiber sensing for a full-scale PC girder strengthened with prestressed PBO sheets. Eng. Struct. 2006, 28, 1049–1059. [Google Scholar] [CrossRef]
- Kim, B.-C.; Jung, K.-S.; Park, J.-S.; Park, K.-T. Brillouin-OTDR Strain Response Analysis of Optical Fiber-embedded Carbon Fiber Sheet. J. Korean Soc. Adv. Compos. Struct. 2018, 9, 1–8. [Google Scholar] [CrossRef]
- Hussein, M.E.; Tarek, H.A.; Saleh, H.A.; Yousef, A.A. Experimental and FE study on RC one-way slabs upgraded with FRP composites. J. Korean Soc. Civil. Eng. 2011, 31, 399–408. [Google Scholar]
- Yoo, D.-Y.; Min, K.-H.; Lee, J.-Y.; Yoon, Y.-S. Evaluating Impact Resistance of Externally Strengthened Steel Fiber Reinforced Concrete Slab with Fiber Reinforced Polymers. J. Korea Concr. Inst. 2012, 24, 293–303. [Google Scholar] [CrossRef]
- Li, L.; Lee, J.Y.; Min, K.H.; Yoon, Y.-S. Evaluating Local Damages and Blast Resistance of RC Slabs Subjected to Contact Detonation. J. Korea Inst. Struct. Maint. Insp. 2013, 17, 37–45. [Google Scholar] [CrossRef]
- Jiang, H.; Zhao, J. Calibration of the continuous surface cap model for concrete. Finite Elem. Anal. Des. 2015, 97, 1–19. [Google Scholar] [CrossRef]
- Lu, X.; Teng, J.; Ye, L.; Jiang, J. Bond-slip models for FRP sheets/plates bonded to concrete. Eng. Struct. 2005, 27, 920–937. [Google Scholar] [CrossRef]
- Lu, X.; Teng, J.; Ye, L.P.; Jiang, J.J. Intermediate Crack Debonding in FRP-Strengthened RC Beams: FE Analysis and Strength Model. J. Compos. Constr. 2007, 11, 161–174. [Google Scholar] [CrossRef]
Specimen | CFRP Bonded Level (%) | Unbonded Position |
---|---|---|
C-0 | 0 | |
A-100 | 100 | |
M-50 | 50 | |
M-30 | 30 | |
E-50 | 50 | |
E-30 | 30 | |
LE-50 | 50 | |
LH-50 | 50 |
Material | Parameter | Magnitude |
---|---|---|
Concrete | Material model | MAT_145_SCHWER_MURRAY_CAP_MODEL |
Density () | 2320 | |
Compressive strength () | 26.0 | |
Max aggregate size () | 25 | |
Steel bar | Material model | MAT_024_PIECEWISE_LINEAR_PLASTICITY |
Density () | 7850 | |
Young’s modulus () | 200,000 | |
Poisson’s ratio | 0.3 | |
Yield stress () | 460 | |
Tangent modulus () | 2094 | |
CFRP Sheet | Material model | MAT_002_ORTHOTROPIC_ELASTIC |
Thickness per layer () | 0.1 | |
Density () | 2400 | |
Longitudinal modulus () | 138,000 | |
Transverse modulus () | 9650 | |
In-plane shear modulus () | 5240 | |
Out of plane shear modulus () | 2240 | |
Poisson’s ratio | 0.4 | |
Minor Poisson’s ratio | 0.021 |
Specimen | Failure Mode | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
C-0 | 14.46 | 0.0 | 101.62 | 100.52 | 1.01 | 0.0 | 50.02 | 43.51 | 0.87 | Flexural |
A-100 | 35.43 | 145.02 | 145.74 | 150.62 | 0.97 | 43.42 | 45.78 | 35.75 | 0.78 | Interface De-bonding |
M-50 | 19.74 | 36.51 | 128.98 | 134.42 | 0.96 | 26.92 | 44.43 | 44.95 | 1.01 | Interface De-bonding |
M-30 | 14.17 | −2.01 | 129.9 | 133.35 | 0.97 | 27.83 | 41.87 | 32.99 | 0.79 | Interface De-bonding |
E-50 | 27.66 | 91.29 | 122.54 | 125.41 | 0.98 | 20.59 | 50.70 | 51.87 | 1.02 | Cover Delamination |
E-30 | 20.00 | 38.31 | 102.92 | 106.67 | 0.96 | 1.28 | 50.06 | 47.72 | 0.95 | Cover Delamination |
LE-50 | 16.69 | 15.42 | 123.54 | 127.82 | 0.97 | 21.57 | 43.19 | 33.35 | 0.77 | Interface Debonding |
LH-50 | Front: 32.12 Back: 12.24 | Front: 122.13 Back: −15.35 | 114.08 | 128.40 | 0.89 | 12.26 | 34.21 | 36.21 | 1.06 | Interface Debonding |
Specimen | CFRP Strain (μϵ) | Gauge/FEM | Gauge/BOTDR | ||
---|---|---|---|---|---|
Gauge | FEM | BOTDR | |||
A-100 | 6035.70 | 6114.95 | 4261.06 | 0.99 | 1.42 |
M-50 | 2867.61 | 4113.02 | 3190.17 | 0.70 | 0.90 |
M-30 | 1896.72 | 2810.13 | 459.20 | 0.67 | 4.13 |
E-50 | 2407.52 | 2952.68 | 2106.83 | 0.82 | 1.14 |
E-30 | 3405.64 | 2998.07 | 2482.14 | 1.14 | 1.37 |
LE-50 | 4594.38 | 5347.05 | 3056.74 | 0.86 | 1.50 |
LH-50 | 2877.01 | 3908.65 | 3967.69 | 0.74 | 0.73 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, K.-N.; Shim, W.-B.; Yeon, Y.-M.; Jeong, K.-S. Strain Response Characteristics of RC Beams Strengthened with CFRP Sheet Using BOTDR. Appl. Sci. 2020, 10, 6005. https://doi.org/10.3390/app10176005
Hong K-N, Shim W-B, Yeon Y-M, Jeong K-S. Strain Response Characteristics of RC Beams Strengthened with CFRP Sheet Using BOTDR. Applied Sciences. 2020; 10(17):6005. https://doi.org/10.3390/app10176005
Chicago/Turabian StyleHong, Ki-Nam, Won-Bo Shim, Yeong-Mo Yeon, and Kyu-San Jeong. 2020. "Strain Response Characteristics of RC Beams Strengthened with CFRP Sheet Using BOTDR" Applied Sciences 10, no. 17: 6005. https://doi.org/10.3390/app10176005
APA StyleHong, K. -N., Shim, W. -B., Yeon, Y. -M., & Jeong, K. -S. (2020). Strain Response Characteristics of RC Beams Strengthened with CFRP Sheet Using BOTDR. Applied Sciences, 10(17), 6005. https://doi.org/10.3390/app10176005