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Abstract: The application of conventional artificial ground freezing (AGF) has two disadvantages:
low freezing rate and small frozen range. In this study, a new method with natural cold gas injection
was proposed, whereby the shallow soils and water can be frozen rapidly due to the effect of the heat
convection. Cold gas from −15 ◦C to −10 ◦C, in the winter of northeast China, was injected into the
laboratory-scale sand pipe; evolution of the induced frozen front and water migration were studied,
and then, the feasibility of the new method was analyzed. According to the evolution of the induced
frozen front, the freezing process was divided into an initial cooling stage, phase transition stage,
and subcooled stage. The results showed that the increase of initial water content at the beginning of
the experiments had little effect on the time required for completing the initial cooling stage, while the
time required for the phase transition would increase in nearly the same proportion. In addition,
the increase of the cold gas flow rate could not only strengthen the cooling rate of the initial cooling
stage but also shorten the phase transition time; thereby, the freezing rate was increased. The freezing
rate could reach 0.18–0.61 cm/min in the direction of cold gas flow, and compared to the conventional
AGF (months are required for approximately 1 m), the freezing efficiency was greatly improved.
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1. Introduction

Artificial ground freezing (AGF) is used to temporarily freeze the formation matrix and water
together, which can improve the strength of soil and redirect the flow paths of groundwater. This method
is widely used for deep excavation, tunnels construction, and strengthening building foundations,
especially in soft rocks and shallow soils [1,2]. In general, AGF is realized by circulating refrigerant
(generally low-temperature brine or liquid nitrogen) in a closed-loop system, where a double-walled
pipe is used [3,4].

In 1880, German engineer F.H. Poetch first proposed the artificial freezing method [5]. Recently,
this method was generally accepted and applied. The construction of Nanjing Metro Line 2 in China
used AGF to treat the inrush of water during excavation, in which brine at −20 ◦C, circulating in
double-walled vertical pipes with well spacing of 1 m, was used to freeze formations, and construction
conditions were realized successfully after 40 days [6]. The Fürth subway and undercrossing of the
Limmat River in Zurich were constructed using brine at −40 ◦C, circulating in horizontal pipes.
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The comprehensive frozen wall could be formed after 40 days, and the frozen radius of a single well
was approximately 1 m [2]. In addition, for the first time, the combination of AGF and pipe-roofing
was applied in the Gongbei tunnel that connects the Hong Kong-Zhuhai-Macao Bridge in order to
obtain a safer construction environment [7].

In order to profoundly promote the development of AGF, scholars have conducted in-depth
research by means of experiments and numerical analysis. Research on AGF mainly focused on
the evolution of the induced frozen front and the frozen range. Many workers have studied
freezing characteristics under different conditions, which have enriched the database available
for application [8–11]. According to their results, the frozen radius of a single well was usually
0.5–1 m, but several months were required, which meant that the freezing rate was low, with a
limited frozen range. Innovatively, Zhao et al. used the natural cold source in the cold region to
cool the cycle medium [12], which effectively reduced the cost of the freezing process, but the frozen
range and freezing rate were not improved. Marwan et al. studied the law of artificial ground
freezing with groundwater flow, and water flow would undoubtedly weaken the freezing effect and
reduce the frozen range on the windward side, but the optimal layout of the freezing pipes was
obtained through a numerical analysis [13,14]. Some mathematical models that consider hydro-thermal
coupling characteristics have also been proposed to simulate the underground temperature field [15–18].
In addition, the frozen top layer of soil by cold air had been tried for mine pit construction during the
wintertime in Siberia; then, the next layer of soil was frozen and excavated [19]. In addition, the effect
of the water-ice phase transition on water migration in pores has been a research hotspot domestically
and abroad [20–22], and the results show that moisture will move from the hot end to the cold end
under a temperature gradient [23]. Meanwhile, the gravity and attraction of porous media should be
taken into consideration.

In several studies, the way of circulating refrigerant in double-walled pipes was used to freeze
formation by heat conduction, as shown in Figure 1a. It is well known that heat conduction is a
slow and inefficient heat transfer mode compared to heat convection; so, this will result in a longer
freezing time (months are required) and a limited frozen radius (approximately 1 m). Meanwhile,
the use of a large amount of refrigerant and a long freezing period has also increased construction
costs, which deviates from the energy-efficient track promoted by the international community.Appl. Sci. 2020, 10, x FOR PEER REVIEW  3  of  13 
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Figure 1. Schematic diagram of conventional artificial ground freezing (AGF) (a) compared to the
proposed method (b), the blue area represents the frozen range.

Accordingly, in this study, as shown in Figure 1b, we consider directly injecting natural cold gas
into the subsurface and then strengthening the freezing rate by heat convection. Cold gas injection
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into the ground is the primary technical process; in order to achieve this, a series of processes will
be required. Firstly, a group of wells with a certain distance shall be arranged in the construction
area. Secondly, it is necessary to adopt a gas compressor, heat exchanger, and other equipment to
provide cold gas. According to previous research [12], natural heat exchange can reach the required
low temperature in winter. After cold gas enters the formation under pressure, gas will not only flow
laterally forward, but it will also move upward due to buoyancy. Finally, the surrounding soil is frozen
by gold gas flow.

Natural cold gas in cold regions is a kind of abundantly available cold source; if fully utilized,
the energy consumption during artificial ground freezing could be greatly reduced. In this study,
the cold gas, from −15 ◦C to −10 ◦C, in the winter of northeast China was injected into the water-bearing
sand pipe. The solid-fluid thermal coupling characteristics and water migration were studied. Then,
the effects of initial water content by weight and cold gas flow rate were also investigated. Meanwhile,
the evolution of the induced frozen front was obtained during natural cold gas injection. As we
know, the formation of ice will block pores, so the difficulty of cold gas injection (injectability) is also
important. Therefore, the feasibility of the new method was discussed in terms of cold gas injectability
and freezing efficiency.

2. Experiment and Method

2.1. Experiment Setup

In order to investigate the new method proposed in this study, laboratory experiments were
conducted. As we all know, due to the buoyancy, gas tends to flow upward underground as shown in
Figure 1b, so a vertical one-dimensional cylindrical freezing model was adopted. The freezing model is
made of a stainless-steel pipe with an inner diameter of 80 mm, an outer diameter of 89 mm, and a
length of 1 m. A sufficient vertical dimension could ensure sufficient heat exchange and be conducive
to the development of a larger frozen range. As shown in Figure 2, the bottom of the model acts as
the inlet of cold gas with a surge chamber to homogenize cold gas flow, and the top acts as the outlet;
two thermocouple temperature sensors (T1 and T6) were set accordingly. The freezing model was
equipped with thermocouple temperature sensors (T2–T5) every 20 cm between two ends along the
vertical direction (z coordinate), the thermocouple temperature sensors used ranged from −50 to 50 ◦C,
with a calibration accuracy of 0.5%; meanwhile, another thermocouple temperature sensor (T7) was set
beside the nitrogen cylinder, outdoors, to monitor the ambient temperature in real time. The pressure
sensors with an accuracy of 2.5% were arranged at the inlet and outlet to monitor pressure difference.
Therefore, seven thermocouple temperature sensors and two pressure sensors were organized in
total. A glass rotameter (LZB-10WB) was used to measure the gas flow rate with an accuracy of 2.5%,
which was installed at the entrance of the experimental model. The gas flow rate can also be adjusted
through the glass rotameter [24,25]. The outer side of the stainless-steel pipe was wrapped with a
heating cable; the initial temperature of the freezing model could be effectively controlled jointly
by the heating cable and cold gas. The freezing model and injection pipes were tightly wrapped
with insulating cotton; the thermal conductivity of the insulating cotton was 0.032 W/(m·K) so as to
minimize the heat exchange between the freezing model and the external environment during the
experiments. A KNOWELL paperless recorder was used for data acquisition in the experiments, and it
can be accurate to two decimal places. Since a group of experiments took a long time, the temperature
and pressure data fluctuated a little during the experiment; we set the data acquisition interval of
temperature and pressure at 15 s.
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Figure 2. Principle diagram of freezing model and experimental device.

2.2. Freezing Experiment

This study mainly investigated the proposed new method; therefore, the main variables were
the flow rate of cold gas and initial water content in the sand; other factors involved in the freezing
process were not taken into account, such as frost heave and groundwater flow. The sand selected
for the experiments is not sensitive to frost heave and has high strength; the specific parameters are
shown in Table 1. The freezing pipe was filled with water-bearing sand and compacted. According
to the initial water contents (0.2 and 0.4), water was mixed with sands and then loaded into the
model and compacted. The experimental site is located in Fuyu City, Jilin Province, China, one of the
cold regions in China, where winter can last 4–5 months, and the outdoor temperature is from −25
to −10 ◦C for most of the winter. Such an abundant natural cold source is convenient for artificial
freezing construction. Considering that the underground temperature is generally about 3–10 ◦C,
the initial temperature of the freezing pipe was controlled at approximately 5 ◦C, and then, the heat
cable was stopped. In the experiments, cold gas was continuously supplied by a nitrogen cylinder
with a pre-pressurized pressure of 10 MPa, which was placed outdoors in order to ensure that the gas
temperature was equivalent to the outdoor temperature, and then the experiments started.

Table 1. Physical properties of sand.

Sand
Type Mesh Size Packed Porosity Density

(Kg/m3)

Thermal
Conductivity

(W/(m·K))

Specific Heat
Capacity

(KJ/(Kg·◦C))

Ceramsite sand 40–70 0.39 1100 1.15 0.961

After each experiment, the sand samples were collected at the point of the inlet, T2, T3, T4, and T5,
and the outlet to calculate the total water content by weight; the specific calculation method was as
follows. The wet and dry weights of the samples prior to experiments are Mow and Mod, respectively,
and the initial water content of the freezing model is θ0. After the experiments, the same values are
weighed as Mw and Md. The water content θ of the samples after the experiment can be calculated by
the following formula:

θ = θ0 ×
(Mw −Md) ×Mod

(Mow −Mod) ×Md
. (1)
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In order to preliminarily study the evolution of temperature in the freezing model during natural
cold gas injection and to verify the feasibility of the new method, four groups of experiments were
carried out. The initial water content was 0.2 and 0.4; in addition, we optimized and used the two gas
flow rates, 15 L/min and 25 L/min. We also tested the gas flow rate intermittently by the dewatering
method in each experiment [18], and it was verified that the flow fluctuation was not more than
0.2 L/min. The specific experimental conditions were as shown in Table 2.

Table 2. Experimental design a.

Experiment
Number

Initial Water
Content

Gas Flow Rate
(L/min)

1 0.2 15 ± 0.2
2 0.2 25 ± 0.2
3 0.4 15 ± 0.2
4 0.4 25 ± 0.2

a The initial temperature of the freezing pipe is 5 ◦C.

3. Results

3.1. Thermal Characteristic

The evolution of temperature in the freezing model is the main thermal characteristic during
natural cold gas injection, which reflects the development of the frozen range. Figure 3 depicts
the change of temperature at each monitoring point. Obviously, the natural cold gas used in the
experiments was in the range of −15 to −10 ◦C, and the temperature of each point experienced a
slow decrease, and then a sharp drop in temperature occurred at approximately 0 ◦C. Before the
temperature in the freezing model dropped below 0 ◦C, the water had not been frozen yet, and the
thermal conductivity of the water, 0.613 W/(m·K), is much lower than that of ice, which is 2.31 W/(m·K).
Therefore, the temperature reduction rate at each point was slower, and the farther away it was from
the inlet, the slower it would be. This stage can be regarded as the initial cooling stage. When the
temperature decreased to about 0 ◦C, the sand pores were in the state of water-ice two-phase coexistence.
The phase transition of water into ice released a lot of latent heat [26], which was absorbed by cold gas,
and the temperature was almost unchanged; this is the phase transition stage. As the temperature
continued to decrease, water in the pores gradually turned into ice and latent heat was released
completely. The surface of sand changed from water-encapsulated to ice-encapsulated, accordingly,
and the thermal conductivity was greatly increased. Therefore, it can be seen from Figure 3 that the
temperature dropped sharply below 0 ◦C, and rapidly to the same level as the cold gas. This area
can be regarded as completely frozen, and this stage is the subcooled stage. It is noteworthy that the
throttling effect may occur at the outlet of the cylinder due to the sudden drop of pressure, which made
the gas temperature lower than the measured ambient temperature. Therefore, it can be seen from
Figure 3b,d that the temperature (T1) at some points would be lower than the ambient temperature
(T7), which was not obvious in the low gas flow rate.

In order to compare the differences between the three stages more intuitively under different
flow rates and initial water contents, we took the temperature at the T2 position (20 cm away from
the inlet) as an example to analyze the freezing characteristics. Figure 4 depicts the comparison of
temperatures at the T2 position in each experiment. In the initial cooling stage, it can be seen from
Figure 4c,d that the initial water content changed from 0.2 to 0.4, and there was little difference in the
time needed to reduce the temperature to 0 ◦C. It means that the cooling rate was the same under
different water contents. However, that could be greatly improved by increasing the flow rate of the
cold gas (Figure 4a,b), because the increase in water content in the pores did not increase the internal
energy per unit volume significantly, while the increase in the flow rate could directly enhance the
convective heat transfer intensity; thus, the flow rate of cold gas played a leading role in the initial
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cooling rate. In the phase transition stage, it can be seen from Figure 4c,d that the time required for the
phase transition increased by, essentially, the same proportion as the initial water content as it doubled,
while it could also be reduced by increasing the flow rate of the cold gas. The evolution characteristics
of temperature in the initial cooling stage and phase transition stage directly affected the freezing rate.
From the above, increasing the initial water content would delay it completely freezing, and increasing
the flow rate of cold gas could quickly make the soil completely frozen.Appl. Sci. 2020, 10, x FOR PEER REVIEW  6  of  13 
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Figure 3. Evolution of the temperature in the freezing model during natural cold gas injection
((a) Experiment 1, (b) Experiment 2, (c) Experiment 3, (d) Experiment 4; and T7 represents
ambient temperature).

The freezing rate can be regarded as an important index to evaluate the new method. According to
the evolution of the temperature in Figure 3, the freezing rates in the experiments were summarized,
as shown in Table 3. During the calculation of the freezing rate, the end point of the phase transition
in Figure 3 at each monitoring point acted as completely frozen. Therefore, the freezing rate can be
regarded as the ratio of each segment length to the time required for completely frozen from its front to
end. In addition, because of the high initial water content, experiments 3 and 4 did not proceed to
being completely frozen in the T3–T4 section. As the method proposed in this study converts the heat
conduction into heat convection, it was shown that that the freezing rates were almost all in the range
of 0.18–0.6 cm/min, which was a significant improvement, in comparison to the conventional AGF
(months are required for approximately 1 m) [5–7,18]. Therefore, the measure of direct injection of
natural cold gas could obtain a better strengthening effect. It is noteworthy that under the same initial
water content conditions, the increase of the cold gas flow rate could increase the freezing rate of each
section, while increasing the water content would increase the water-ice phase transition time and then
reduce the freezing rate. The reason why there were no significant differences in the freezing rates
between experiments 2 and 4 may be that the ambient temperature of experiment 2 was lower than
that of experiment 4. In addition, fluctuation of the cold gas temperature will have some influence
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on the results; as shown in Figure 3c, the temperature during experiment 3 continuously decreases,
which may result in a higher freezing rate.Appl. Sci. 2020, 10, x FOR PEER REVIEW  7  of  13 
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Table 3. Freezing rate of each section.

Experiment Number Freezing Rate of T1–T2
(cm/min)

Freezing Rate of T2–T3
(cm/min)

Freezing Rate of T3–T4
(cm/min)

1 0.46 0.33 0.18
2 0.60 0.52 0.47
3 0.37 0.44 —
4 0.61 0.52 —

3.2. Flow Field Characteristics

Natural cold gas injection can not only cause the water-ice phase transition but also displace pore
water. Therefore, in these experiments, a coupling physical field of two-phase flow and water-ice phase
transition existed in the freezing model. The pressure difference between the inlet and outlet of the
freezing model could indirectly reflect the change of the gas-water two-phase flow field and reflect the
redistribution of water.

Figure 5 depicts the pressure differences between the inlet and outlet of the freezing model in the
experiments. As the flow valve needed to be adjusted irregularly in order to maintain the stability
of the flow rate, the flow rate would fluctuate, which was also the reason for the fluctuation of the
pressure differences measured in real time. According to the fitting curves of the pressure differences
shown in Figure 5, it showed that in the early stages of cold gas injection, the reduction rates of pressure
differences was relatively large, and after about 50 minutes, the reduction rates slowed down. In the
process of gas injection, water in the pores would redistribute under the displacement of gas flow,
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where numerous smooth and stable gas flow channels gradually formed. Before the formation of the
gas channels, part of the pores was filled with water and the path of the gas flow was blocked, resulting
in a large pressure difference in the early stage. After a certain period of gas flooding, some pore
throats were opened, and water redistributed. Numerous gas channels (Figure 6a,b) were formed in
the pores between sand grains, which reduced the gas flow resistance. Therefore, the reduction of
pressure differences slowed down later.
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However, the water-ice phase transition also occurred in the pores, because of the expansion of the
water volume during freezing, and the pore spacing between sand grains was enlarged, which would
undoubtedly reduce the flow resistance of gas. The coupling of the water-ice phase transition and
displacement reduced the pressure differences gradually. This reduction phenomenon of pressure
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difference can decrease the difficulty of natural cold gas injection, which is beneficial to the actual
artificial freezing construction.

AGF can not only improve the strength of soil, but also block groundwater flow. Freezing of the
water-bearing sand will undoubtedly increase the strength of soil; however, when groundwater outside
the frozen area flows in, water will change into ice under the effect of the subcooled environment,
and then the flow passage will be blocked [27]. Meanwhile, after displacement by the gas flow,
the gas phase saturation in the pores would increase, and the block effect on groundwater flow will be
improved with the aid of the gas resistance [28,29].

3.3. Water Migration during Cold Gas Injection

As mentioned above, water redistribution under the coupling effect of displacement and phase
transition will affect the temperature field. Water in the vertical freezing model was not only adsorbed by
sand but also affected by gravity; meanwhile, the upward force was exerted by the gas flow. Therefore,
the combination of these three forces determines the direction of water migration. Figure 7a,b depicts
the redistribution of water after experiments with initial water content of 0.2 and 0.4, respectively.
From Figure 7a, it can be seen that except for the significant reduction at the inlet, the other parts
decreased slightly—roughly in the range of 0.16–0.2. Obviously, the gas humidity was small at the
entrance; a part of the water in the pores would be carried away by the gas flow (drying effect),
which reduced the water content. Due to the low initial water content, most of the water was
encapsulated on the sand surface and adsorbed, even under the displacement of gas flow and gravity,
and it was difficult to migrate to a greater extent: it only evaporated under the drying effect of the gas
flow. Increasing the flow rate of cold gas would also increase the volatilization of water. Therefore,
when the flow rate was 25 L/min, the overall moisture content was relatively low after the experiment.
From Figure 7b, it showed that water migration at high initial water contents presented the opposite
law. The moisture content near the inlet was greatly increased, reaching between 0.6 and 0.75, and the
further it was from the inlet, the lower the saturation of water. As only a part of the water was adsorbed
on the surface of the sand particles, which was difficult to move, the rest could migrate under the
action of gravity and gas flooding. According to the foregoing analysis, after stable gas flow channels
formed, the gas flow rate outside the channels was low, which made the water migrate downward
under the dominated action of gravity. It was noteworthy that when the initial water content was 0.4,
increasing the flow rate would increase the upward force of water migration, thus making the water
content at the lower end of the freezing model less than 15 L/min, while the upper end of the model
was the opposite. However, freezing of the water started from the bottom; the frozen water in the
pores also attracted water in the upper part to move toward the frozen front. Therefore, the attraction
of the frozen front to water would also redistribute water in the pores.
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4. Discussion

4.1. Solid-Fluid Thermal Coupling Characteristics

As opposed to conventional AGF, natural cold gas was injected directly to freeze the formation in
a heat convection manner. Therefore, during the freezing process of sand and water, there was not only
a water-ice phase transition, but also the redistribution of water driven by gas flooding, the attraction
of the frozen front, and gravity, and the two characteristics interacted with each other. Heat in the
freezing model was carried away by the cold gas flow, which led to the gradual freezing. The state of
water in the pores was changed from a liquid to an ice-water mixtur, and then to solid ice; meanwhile,
the expansion effect caused by freezing will change the pore characteristics. The enlargement of
sand spacing caused by phase transition would affect the redistribution of water; then, the gas-water
two-phase flow affected it. Cold gas injection enhances the freezing rate by the heat convection transfer;
therefore, the change of the two-phase flow field is bound to affect the evolution of the induced frozen
front. As mentioned before, there are many external causes that will lead to the redistribution of water,
which is the main factor for the change in the formation of the thermodynamic properties. Therefore,
the process of cold gas injection involved the coupling effects of water migration and heat transfer.
Consequently, the solid-fluid thermal coupling characteristics determined the freezing effect of cold
gas injection proposed in this paper.

4.2. Analysis of Feasibility

There are two main factors affecting the feasibility of the method proposed in this study—
the freezing rate and the injectability of cold gas. According to the above results, there is no doubt that
cold gas injection can ensure a high freezing rate. At the same time, the decrease in the pressure drop is
also conducive to the injection of cold gas; therefore, the injectability of cold gas can also be guaranteed.

In this study, the influences of soil type and gas injection direction were ignored, but the influences
of these two factors can be roughly inferred based on the above results. First of all, the frost-heaving
characteristics and particle size distribution of soil primarily affect the flow of fluids, and then they
affect the injectability of cold gas. The injectability mainly depends on the opening of gas flow channels;
based on the above results, gas flooding can quickly open the gas flow channels before the pore water is
frozen. Therefore, we can infer that for homogeneous soils, the existence of gas flooding can ensure the
opening of gas flow channels, so as to guarantee the injectability of cold gas. For heterogeneous soil,
the permeability difference is the main characteristic. In general, cold gas will flow along the direction
of high permeability; this area will be frozen first. Then, cold gas flow turns to the low permeability
matrix. In addition, existence of the firstly frozen area will freeze the surrounding low-permeability
area by heat conduction. Therefore, cold gas flow has the potential to freeze heterogeneous media
successively. However, there are several application limitations of this new method on the fractured
formation; for example, cold gas may flow away from the fractures. In addition, the injection direction
of gas was set as upward in this study, under the action of buoyancy, the flow of gas will undoubtedly
speed up, and then, the cooling rates were improved. However, compared to the driving force of
gas injection, the effect of buoyancy appears very small. It should be noted that the cold gas will
gather to the upper part of the formation due to buoyancy in the actual construction process, but in
the near source area, gas will tend to flow laterally under the driving force of injection. Therefore,
the “cylindrical” frozen range around the injection well can be achieved. In conclusion, the method
proposed in this study has a high freezing rate with strong applicability. However, considering the
low heat capacity of gas, the further away from the gas injection point, the lower the freezing rate.
Therefore, in the actual construction process, the frozen range of a single well should be designed
reasonably. Perhaps a range of approximately 3 m is appropriate.

In addition, the impacts of gas injection and displacement of water on structural instabilities
need to be considered. Gas injection, performing various roles in porous media, is involved in several
domains; in this work, we adopt cold gas injection to freeze the soil. Without a doubt, local variations
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of underground pressure and structural disturbance will be brought about by cold gas injection,
but according to the previous research of gas injection (e.g., air sparging, new Austrian Method of
tunnel construction), no obvious negative effect will be caused [30–32]. In addition, the flow rate can
also be controlled to reduce the impact on the formation. Therefore, the impact of gas injection and
displacement of water can be controlled to ensure safe construction.

5. Conclusions

In this study, a new method of artificial ground freezing by natural cold gas injection was proposed.
The measure was studied and verified through laboratory experiments, and the solid-fluid thermal
coupling characteristics during cold gas injection were obtained. According to the research results,
the specific conclusions are as follows:

1. A new method of natural cold gas injection was proposed to construct an artificial ground freezing
structure, which uses the manner of heat convection to enhance the freezing rate. According to
the experiments, the freezing rates could reach 0.18–0.61 cm/min.

2. According to the characteristics of the temperature curves, the freezing process was divided into
the initial cooling stage, phase transition stage, and subcooled stage. The duration of the initial
cooling stage and phase transition stage will directly affect the freezing rate. Increasing the initial
water content had less effect on the initial cooling stage, and the time required for the phase
transition would increase in nearly the same proportion. Increasing the cold gas flow rate could
not only increase the cooling rate in the initial cooling stage but also shorten the phase transition
time, thereby increasing the freezing rate.

3. The law of water migration during cold gas injection was obtained. Driven by gas flooding,
attraction of the frozen front, sand adsorption and gravity, and water in the pores would
redistribute. When the water content was low, except for the significant reduction at the inlet,
the other parts decreased slightly—roughly in the range of 0.16–0.2. When the water content was
high, the moisture content near the inlet was greatly increased, reaching between 0.6 and 0.75,
and the further it was from the inlet, the lower the water content.

4. The feasibility of the method was analyzed. The method proposed in this study has a high
freezing rate and can be well applied in homogeneous soils. However, considering the low heat
capacity of gas, the frozen range of a single well should be designed reasonably in the actual
construction process; a range of approximately 3 m may be appropriate.
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