Characteristics and Effects of Laminar Separation Bubbles on NREL S809 Airfoil Using the
γ
-
R
e
θ
Transition Model
Abstract
:1. Introduction
2. Transition Modeling
2.1. Transport Equations for the Transition SST Model
2.2. Separation-Induced Transition Correlation
2.3. Coupling the Transition Model and SST Transport Equations
3. Numerical Simulation
3.1. Governing Equation
3.2. S809 Airfoil Specifications
3.3. Computational Mesh
3.4. Analysis Conditions and Far-Field Boundary Condition
3.5. Grid Independence Study
4. Results and Discussion
4.1. Validation of the Simulation
4.1.1. Comparison of Pressure Coefficients
4.1.2. Comparison of Aerodynamic Coefficients
4.2. Laminar Separation-Induced Transition
4.2.1. Laminar Separation-Induced Transition
4.2.2. Effects of the Separation Bubble
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pires, O.; Munduate, X.; Ceyhan, O.; Jacobs, M.; Snel, H. Analysis of high Reynolds numbers effects on a wind turbine airfoil using 2D wind tunnel test data. J. Phys. Conf. Ser. 2016, 753, 022047. [Google Scholar] [CrossRef]
- Meyers, J.F.; Dagenhart, J.R.; Harvey, W.D. A study of laminar separation bubble in the concave region of an airfoil using laser velocimetry. In Symposium on Laser Anemometry ASME, Proceedings of the 1985 Winter Annual Meeting, Miami, FL, USA, 17 November 1985; NASA Langley Research Center: Hampton, VA, USA, 1985. [Google Scholar]
- Lissaman, P.B.S. Low Reynolds number airfoil. Annu. Rev. Fluid Mech. 1983, 15, 223–239. [Google Scholar] [CrossRef]
- Almutairi, J.H.; Jones, L.E.; Sandham, N.D. Intermittent bursting of a laminar separation bubble on an airfoil. AIAA J. 2010, 48, 414–426. [Google Scholar] [CrossRef]
- Zhang, W.; Hain, R.; Kähler, C.J. Scanning PIV investigation of the laminar separation bubble on a SD7003 airfoil. Exp. Fluids 2008, 45, 725–743. [Google Scholar] [CrossRef]
- Jahanmiri, M. Laminar Separation Bubble: Its Structure, Dynamics and Control; Research Report; Chalmers University of Technology: Gothenburg, Sweden, 2011. [Google Scholar]
- Kim, B.S.; Kim, W.J.; Lee, S.L.; Bae, S.Y.; Lee, Y.H. Developement and verification of a performance based optimal design software for wind turbine blades. Renew. Energy 2013, 54, 166–172. [Google Scholar] [CrossRef]
- Mahmuddin, M. Rotor blade performance analysis with blade element momentum theory. In Proceedings of the 8th International Conference on Applied Energy—ICAE2016, Beijing, China, 8–10 October 2016; pp. 1123–1129. [Google Scholar]
- Tani, I. Boundary-layer transition. Annu. Rev. Fluid Mech. 1968, 1, 169–196. [Google Scholar] [CrossRef]
- Swift, K.M. An Experimental Analysis of the Laminar Separation Bubble at Low Reynolds Numbers. Master’s Thesis, University of Tennessee, Knoxville, TN, USA, 2009. [Google Scholar]
- Menter, F.R.; Langtry, R.B.; Likki, S.R.; Suzen, Y.B.; Huang, P.G.; Volker, S. A Correlation-Based Transition Model Using Local Variables: Part I—Model Formulation. Available online: https://doi.org/10.1115/GT2004-53452 (accessed on 2 September 2020).
- Menter, F.R.; Langtry, R.B.; Volker, S. Transition modelling for general purpose CFD codes. Flow Turbul. Combust. 2006, 77, 277–303. [Google Scholar] [CrossRef]
- Alam, M.; Sandham, N.D. Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 2000, 41010, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Horton, H. Laminar Separation Bubbles in Two and Three Dimensional Incompressible Flows. Ph.D Thesis, Queen Mary University of London, London, UK, 1968. [Google Scholar]
- Mayle, R.E. The role of laminar-turbulent transiton in gas turbine engines. J. Turbomach. 1991, 113, 509–537. [Google Scholar] [CrossRef]
- Choudry, A.; Arjouandi, M.; Kelso, R. A study of long separation bubble on thick airfoil and its consequent effects. Int. J. Heat Fluid Flow 2015, 52, 84–96. [Google Scholar] [CrossRef]
- Hoefener, L.; Nitsche, W. Experimental investigations of controlled transition of a laminar separation bubble in an axisymmetric diffuser. Exp. Fluids 2008, 44, 89–103. [Google Scholar] [CrossRef]
- Kirk, T.M.; Yarusevych, S. Vortex shedding within laminar separation bubbles forming over an airfoil. Exp. Fluids 2017, 58. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; Wang, K.; Li, X. Aerodynamic characteristics of different airfoils under varied turbulence intensities at low reynolds numbers. Appl. Sci. 2020, 10, 1706. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Jin, J.; Lu, Z.; Zhou, D.; Wang, T. Aerodynamic sensitivity analysis for a wind turbine airfoil in an air-particle two-phase flow. Appl. Sci. 2019, 9, 3909. [Google Scholar] [CrossRef] [Green Version]
- Douvi, D.C.; Margaris, D.P.; Davaris, A.E. Aerodynamic performance of a NREL S809 airfoil in an air-sand particle two-phase flow. Computation 2017, 5, 13. [Google Scholar] [CrossRef]
- Zauner, M.; Tullio, N.D.; Sandham, N.D. Direct Numerical Simulations of Transonic Flow around an Airfoil at Moderate Reynolds Numbers. AIAAJ 2019, 57. [Google Scholar] [CrossRef]
- Asada, K.; Kawai, S. Large-eddy simulation of airfoil flow near stall condition at Reynolds number 2.1 × 106. Phys. Fluids 2018, 30, 085103. [Google Scholar] [CrossRef]
- Pasquale, D.D.; Rona, A.; Garrett, S. A selective review of transition modelling for CFD. In Proceedings of the 39th AIAA Fluid Dynamics Conference, San Antonio, TX, USA, 22–25 June 2009; Available online: https://repairpal.com/radiator-fan-assembly (accessed on 15 June 2020).
- Menter, F.R.; Esch, T.; Kubacki, S. Transition modelling based on local variables. In Proceedings of the 5th International symposium on Engineering Turbulence Modelling and Measurements, Mallorca, Spain, 16–18 September 2002; pp. 555–564. [Google Scholar]
- Van Ingen, J.L.; Boermans, L.M.M.; Blom, J.J.H. Low-Speed airfoil section research at Delft University of Technology. In Proceedings of the 12th Congress of the International Council of the Aeronautical Sciences, Munich, Germany, 12–17 October 1980. [Google Scholar]
- Eppler, R.; Somers, D.M. A computer program for the design and analysis of low-speed airfoils. NASA 1980, 152, TM80210. [Google Scholar]
- Eppler, R.; Somers, D.M. Supplement to: A computer program for the design and analysis of low-speed airfoils. NASA 1980, 36, TM81862. [Google Scholar]
- Wolfe, W.P.; Ochs, S.S. CFD calculations of S809 aerodynamic characteristics. In Proceedings of the 35th Aerospace Sciences Meeting and Exhibit, AIAA. Reno, NV, USA, 6–9 January 1997. [Google Scholar]
- Launder, B.E.; Spalding, D.B. Lectures in Mathematical Models of Turbulence; Academic Press: London, UK, 1972. [Google Scholar]
- Bastedo, W.G.; Mueller, T.J. Spanwise variation of laminar separation bubbles on wings at low Reynolds number. J. Aircr. 1986, 23, 687–694. [Google Scholar] [CrossRef]
- Hand, M.M.; Simms, D.A.; Fingersh, L.J.; Jager, D.W.; Cotrell, J.R.; Schreck, S.; Larwood, S.M. Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns; NREL/TP-500-29955; NREL: Golden, CO, USA, 2001. [Google Scholar]
- Burton, T.; Sharpe, D.; Jenkins, N.; Bossanyi, E. Wind Energy Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Baker, J.P.; Van Dam, C.P. Drag reduction of blunt trailing-edge airfoils. In Proceedings of the BBAA VI International Colloquium on Bluff Bodies Aerodynamics & Applications, Milano, Italy, 20–24 July 2008. [Google Scholar]
Grid Name | Wall Normal Expansion Ratio | Number of Grid Elements | Total Cells | |||||
---|---|---|---|---|---|---|---|---|
Pressure Side(Lower Side) | Suction Side(Upper Side) | Orthogonal Direction | Wake Direction | |||||
Grid 1 | <1 | 1.1 | 95 | 95 | 150 | 35 | 33,750 | |
Grid 2 | <1 | 1.1 | 190 | 190 | 150 | 70 | 67,500 | |
Grid 3 | <1 | 1.1 | 380 | 380 | 150 | 140 | 135,500 | |
Grid 4 | <1 | 1.1 | 1000 | 1000 | 150 | 400 | 360,000 |
AoA | Drag Coefficient (Cd) | ||||||
---|---|---|---|---|---|---|---|
Simulation Results | Exp. | % Error | |||||
Model | Transition Model | Mixed Laminar/ Turbulent | Model | Transition Model | Mixed Laminar/ Turbulent | ||
0° | 0.0303 | 0.00646 | 0.0062 | 0.007 | 333 | −8 | −11 |
1.02° | 0.0125 | 0.00653 | 0.0062 | 0.0072 | 74 | −9 | −14 |
5.13° | 0.0342 | 0.0073 | 0.0069 | 0.007 | 389 | 5 | −1 |
9.22° | 0.0259 | 0.0186 | 0.0416 | 0.0214 | 21 | −13 | 94 |
14.24° | 0.0589 | 0.0605 | 0.0675 | 0.09 | −35 | −33 | −25 |
20.15° | 0.119 | 0.114 | 0.1784 | 0.1851 | −36 | −38 | −4 |
AoA | Lift Coefficient (Cl) | ||||||
---|---|---|---|---|---|---|---|
Simulation Results | Exp. | % Error | |||||
Model | Transition Model | Mixed Laminar/ Turbulent | Model | Transition Model | Mixed Laminar/ Turbulent | ||
0° | 0.07822 | 0.1495 | 0.1558 | 0.1469 | −46.8 | 1.8 | 6 |
1.02° | 0.13455 | 0.2718 | 0.2755 | 0.2716 | −50.5 | 0.1 | 1 |
5.13° | 0.5898 | 0.7595 | 0.7542 | 0.7609 | −22.5 | −0.2 | −1 |
9.22° | 1.1069 | 1.1144 | 1.0575 | 1.0385 | 6.6 | 7.3 | 2 |
14.24° | 1.3629 | 1.2600 | 1.3932 | 1.1104 | 22.7 | 13.5 | 25 |
20.15° | 1.2018 | 1.1040 | 1.2507 | 0.9113 | 31.9 | 21.1 | 37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, J.-o.; Rho, B.-s.
Characteristics and Effects of Laminar Separation Bubbles on NREL S809 Airfoil Using the
Mo J-o, Rho B-s.
Characteristics and Effects of Laminar Separation Bubbles on NREL S809 Airfoil Using the
Mo, Jang-oh, and Beom-seok Rho.
2020. "Characteristics and Effects of Laminar Separation Bubbles on NREL S809 Airfoil Using the
Mo, J. -o., & Rho, B. -s.
(2020). Characteristics and Effects of Laminar Separation Bubbles on NREL S809 Airfoil Using the