Regeneration Performance of Activated Carbon for Desulfurization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. SO2 Adsorption Experiment
2.3. Recycle of AC
2.4. Characterization of AC
3. Results and Discussion
3.1. Characterization of AC
3.1.1. SEM Analysis
3.1.2. BET Analysis
3.2. SO2 Adsorption
3.2.1. Effect of AC Dosage on SO2 Adsorption
3.2.2. Effect of Flue Gas Flow Rate on SO2 Adsorption
3.2.3. Effect of Oxygen Content on SO2 Adsorption
3.3. AC Regeneration
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Braghiroli, F.L.; Bouafif, H.; Koubaa, A. Enhanced SO2 adsorption and desorption on chemically and physically activated biochar made from wood residues. Ind. Crop. Prod. 2019, 138, 111456. [Google Scholar] [CrossRef]
- Rosas, J.M.; Ramiro, R.R.; José, R.M.; Tomás, C. Kinetic study of SO2 removal over lignin-based activated carbon. Chem. Eng. J. 2017, 307, 707–721. [Google Scholar] [CrossRef]
- Khaniabadi, Y.O.; Daryanoosh, S.M.; Hopke, P.K.; Ferrante, M.; De Marco, A.; Sicard, P.; Oliveri Conti, G.; Goudarzi, G.; Basiri, H.; Mohammadi, M.J.; et al. Acute myocardial infarction and COPD attributed to ambient SO2 in Iran. Environ. Res. 2017, 156, 683–687. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Dou, J.X.; Duan, X.X.; Chai, H.N.; Oliveira, J.S.; Yu, J.L. Adverse effects of inherent CaO in coconut shell-derived activated carbon on its performance during flue gas desulfurization. Environ. Sci. Technol. 2020, 54, 1973–1981. [Google Scholar] [CrossRef]
- Martinez, I.; Santos, V.E.; Alcon, A.; Garcia, O.F. Enhancement of the biodesulfurization capacity of pseudomonas putida CECT5279 by co-substrate addition. Process Biochem. Chem. 2015, 50, 119–124. [Google Scholar] [CrossRef]
- Tawfik, A.S.; Gaddafi, I.D. Influence of acidic and basic treatments of activated carbon derived from waste rubber tires on adsorptive desulfurization of thiophenes. J. Taiwan Inst. Chem. Eng. 2016, 60, 460–468. [Google Scholar]
- Shi, R.H.; Zhang, Z.R.; Zhen, T.; Shang, G.J.; Mi, J. Cu-based metal−organic framework/activated carbon composites for sulfur compounds removal. Appl. Surf. Sci. 2017, 394, 394–402. [Google Scholar] [CrossRef]
- Jia, F.R.; Li, Z.; Wang, E.G.; He, J.C.; Dong, H.; Liu, G.X.; Jian, W.W. Preparation and SO2 adsorption behavior of coconut shell-based activated carbon via microwave-assisted oxidant activation. China Pet. Process PE 2018, 20, 67–74. [Google Scholar]
- Rezaei, F.; Rownaghi, A.A.; Monjezi, S. SOx/NOx removal from flue gas streams by solid adsorbents: A review of current challenges and future directions. Energy Fuels 2015, 29, 5467–5486. [Google Scholar] [CrossRef]
- Li, Z.Y.; Liu, Y.S.; Wang, H.H.; Tsai, C.J.; Yang, X.; Xing, Y.; Zhang, C.Z.; Xiao, P.N.; Webley, P.A. A numerical modelling study of SO2 adsorption on activated carbons with new rate equations. Chem. Eng. J. 2018, 353, 858–866. [Google Scholar] [CrossRef]
- Spessato, L.; Bedin, K.C.; Cazetta, A.L.; Souza, I.P.; Duarte, V.A.; Crespo, L.H.; Silva, M.C.; Pontes, R.M.; Almeida, V.C. KOH-super activated carbon from biomass waste: Insights into the paracetamol adsorption mechanism and thermal regeneration cycles. J. Hazard. Mater. 2019, 371, 499–505. [Google Scholar] [CrossRef]
- Li, S.; Han, K.; Li, J.; Li, M.; Lu, C. Preparation and Characterization of super activated carbon produced from gulfweed by KOH activation. Microporous Mesoporous Mater. 2017, 243, 291–300. [Google Scholar] [CrossRef]
- Marques, S.C.; Marcuzzo, J.M.; Baldan, M.R.; Mestre, A.S.; Carvalho, A.P. Pharmaceuticals removal by activated carbons: Role of morphology on cyclic thermal regeneration. Chem. Eng. J. 2017, 321, 233–244. [Google Scholar]
- Yang, C.; Florent, M.; Falco, G.D.; Fan, H.L.; Bandosz, T.J. ZnFe2O4/activated carbon as a regenerable adsorbent for catalytic removal of H2S from air at room temperature. Chem. Eng. J. 2020, 394, 124906. [Google Scholar] [CrossRef]
- Do, M.H.; Phan, N.H.; Nguyen, T.D.; Pham, T.S.; Nguyen, V.K.; Trangvu, T.T.; Nguyen, T.K.P. Activated carbon/Fe3O4 nanoparticle composite: Fabrication, methyl orange removal and regeneration by hydrogen peroxide. Chemosphere 2011, 85, 1269–1276. [Google Scholar] [CrossRef]
- Wang, Z.; Jin, H.; Wang, K.; Xie, Y.H.; Ning, J.; Tu, Y.J.; Chen, Y.M.; Liu, H.; Zeng, H.Z. A two-step method for the integrated removal of HCl, SO2 and NO at low temperature using viscose-based activated carbon fibers modified by nitric acid. Fuel 2019, 239, 272–281. [Google Scholar]
- Saleh, T.A. Simultaneous adsorptive desulfurization of diesel fuel over bimetallic nanoparticles loaded on activated carbon. J. Clean. Prod. 2017, 172, 2123–2132. [Google Scholar] [CrossRef]
- Zhu, J.; Li, Y.H.; Xu, L.; Liu, Z.Y. Removal of toluene from waste gas by adsorption-desorption process using corncob-based activated carbons as adsorbents. Ecotoxicol. Environ. Saf. 2018, 165, 115–125. [Google Scholar] [CrossRef]
- Li, Y.R.; Lin, Y.T.; Wang, B.; Ding, S.; Qi, F.; Zhu, T.Y. Carbon consumption of activated coke in the thermal regeneration process for flue gas desulfurization and denitrification. J. Clean. Prod. 2019, 228, 1391–1400. [Google Scholar] [CrossRef]
- Gadipelli, S.; Howard, C.A.; Guo, J.; Skipper, N.T.; Zhang, H.; Shearing, P.R.; Brett, D.L. Superior Multifunctional Activity of Nanoporous Carbons with Widely Tunable Porosity: Enhanced Storage Capacities for Carbon-Dioxide, Hydrogen, Water, and Electric Charge. Adv. Energy Mater. 2020, 10, 1903649. [Google Scholar] [CrossRef]
- Hu, L. Monolithic bamboo-based activated carbons for dynamic adsorption of toluene. J. Porous Mater. 2016, 24, 541–549. [Google Scholar] [CrossRef]
- Sui, H. Removal and recovery of oxylene by silica gel using vacuum swing adsorption. Chem. Eng. J. 2017, 316, 232–242. [Google Scholar] [CrossRef]
- IUPAC Recommendations. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Srinivas, G.; Krungleviciute, V.; Guo, Z.X.; Yildirim, T. Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy Environ. Sci. 2014, 7, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Diez, N.; Alvarez, P.; Granda, M.; Blanco, C.; Gryglewicz, G.; Wróbel-Iwaniec, I.; Sliwak, A.; Machnikowski, J.; Menendez, R. Tailoring micro-mesoporosity in activated carbon fibers to enhance SO2 catalytic oxidation. J. Colloid Interface Sci. 2014, 428, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Maldonado, A.J.; Yang, R.T. Desulfurization of transportation fuels by adsorption. Catal. Rev. 2004, 46, 111–150. [Google Scholar] [CrossRef]
- Nahma, S.W.; Shim, W.G.; Park, Y.K.; Kim, S.C. Thermal and chemical regeneration of spent activated carbon and its adsorption property for toluene. Chem. Eng. J. 2012, 210, 500–509. [Google Scholar] [CrossRef]
- Li, B.; Ma, C.Y. Study on the mechanism of SO2 removal by activated carbon. Energy Procedia 2018, 153, 471–477. [Google Scholar] [CrossRef]
- Ye, L.; Ping, N.; Kai, L. Simultaneous Removal of NOx and SO2 by Low-temperature selective catalytic reduction over modified activated carbon catalysts. Chem. Kinet. Catal. 2017, 91, 490–499. [Google Scholar]
- Wang, X.; Song, Y.H. Mesoporous carbons: Recent advances in synthesis and typical applications. RSC Adv. 2015, 5, 83239–83285. [Google Scholar]
- Pi, X.; Sun, F.; Gao, J.; Zhu, Y.; Wang, L.; Qu, Z.; Liu, H.; Zhao, G. Microwave irradiation induced high-efficiency regeneration for desulfurized activated coke: A comparative study with conventional thermal regeneration. Energy Fuels 2017, 31, 9693–9702. [Google Scholar] [CrossRef]
- Li, Q.Y.; Hou, Y.Q.; Han, X.J.; Wang, J.C.; Liu, Y.J.; Xiang, N.; Huang, Z.J. Promotional effect of cyclic desulfurization and regeneration for selective catalytic reduction of NO by NH3 over activated carbon. J. Clean. Prod. 2020, 249, 119392. [Google Scholar] [CrossRef]
- Xu, X.; Huang, D.; Zhao, L.; Kan, Y.; Cao, X. Role of inherent inorganic constituents in SO2 sorption ability of biochars derived from three biomass wastes. Environ. Sci. Technol. 2016, 50, 12957–12965. [Google Scholar] [CrossRef] [PubMed]
AC Dosage/g | Flue Gas Rate/L·min−1 | Oxygen Content/% |
---|---|---|
2 | 1.65 | 5 |
4 | 1.65 | 5 |
6 | 1.65 | 5 |
8 | 1.65 | 5 |
10 | 1.65 | 5 |
4 | 1 | 5 |
4 | 2 | 5 |
4 | 3 | 5 |
4 | 4 | 5 |
4 | 1.65 | 0 |
4 | 1.65 | 2.5 |
4 | 1.65 | 5 |
4 | 1.65 | 7.5 |
Cycles | Micropore Area(m2/g) | BET Surface(m2/g) | Total Pore Volume(cm3/g) | Average Pore Size(nm) |
---|---|---|---|---|
0 | 356.449 | 463.601 | 0.246 | 2.594 |
2 | 387.726 | 498.530 | 0.273 | 3.074 |
4 | 395.423 | 518.272 | 0.291 | 3.299 |
6 | 435.656 | 563.622 | 0.321 | 3.229 |
8 | 463.761 | 589.350 | 0.319 | 5.027 |
10 | 443.978 | 664.601 | 0.373 | 2.793 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Wang, M.; Fan, J.; Zhou, Y.; Zhang, L. Regeneration Performance of Activated Carbon for Desulfurization. Appl. Sci. 2020, 10, 6107. https://doi.org/10.3390/app10176107
Sun Z, Wang M, Fan J, Zhou Y, Zhang L. Regeneration Performance of Activated Carbon for Desulfurization. Applied Sciences. 2020; 10(17):6107. https://doi.org/10.3390/app10176107
Chicago/Turabian StyleSun, Zhiguo, Menglu Wang, Jiaming Fan, Yue Zhou, and Li Zhang. 2020. "Regeneration Performance of Activated Carbon for Desulfurization" Applied Sciences 10, no. 17: 6107. https://doi.org/10.3390/app10176107
APA StyleSun, Z., Wang, M., Fan, J., Zhou, Y., & Zhang, L. (2020). Regeneration Performance of Activated Carbon for Desulfurization. Applied Sciences, 10(17), 6107. https://doi.org/10.3390/app10176107