Performance of Full-Duplex Wireless Back-Haul Link under Rain Effects Using E-Band 73 GHz and 83 GHz in Tropical Area
Abstract
:1. Introduction
2. Measurement Setup
3. Rain Attenuation
4. Performance Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, L.; Cheng, Y.J.; Ma, D.; Weng, C.X. Wideband and dual-band high-gain substrate integrated antenna array for E-band multi-gigahertz capacity wireless communication systems. IEEE Trans. Antennas Propag. 2014, 62, 4602–4611. [Google Scholar] [CrossRef]
- Series, R.P. Propagation data and prediction methods required for the design of terrestrial line-of-sight systems. In Recommendation ITU-R P. 530–12; ITU: Geneva, Switzerland, 2006; pp. 1–47. [Google Scholar]
- Series, R.P. Propagation data and prediction methods required for the design of terrestrial line-of-sight systems. In Recommendation ITU-R P. 530–14; ITU: Geneva, Switzerland, 2012; pp. 1–51. [Google Scholar]
- Series, R.P. Propagation data and prediction methods required for the design of terrestrial line-of-sight systems. In Recommendation ITU-R P. 530–15; ITU: Geneva, Switzerland, 2013; pp. 1–51. [Google Scholar]
- Series, R.P. Propagation data and prediction methods required for the design of terrestrial line-of-sight systems. In Recommendation ITU-R P. 530–16; ITU: Geneva, Switzerland, 2015; pp. 1–56. [Google Scholar]
- Mello, L.D.S.; Pontes, M.; De Souza, R.; Garcia, N.P. Prediction of rain attenuation in terrestrial links using full rainfall rate distribution. Electron. Lett. 2007, 43, 1442–1443. [Google Scholar] [CrossRef]
- Islam, R.M.; Abdulrahman, Y.A.; Rahman, T.A. An improved ITU-R rain attenuation prediction model over terrestrial microwave links in tropical region. EURASIP J. Wirel. Commun. Netw. 2012, 2012, 189. [Google Scholar] [CrossRef] [Green Version]
- Thorvaldsen, P.; Henne, I. Outdoor transmission measurement at 26 GHz: Results of a 4 year trial in Prague. Radio Sci. 2016, 51, 402–410. [Google Scholar] [CrossRef]
- Shrestha, S.; Choi, D.Y. Rain attenuation over terrestrial microwave links in South Korea. IET Microw. Antennas Propag. 2017, 11, 1031–1039. [Google Scholar] [CrossRef]
- Huang, J.; Cao, Y.; Raimundo, X.; Cheema, A.; Salous, S. Rain Statistics Investigation and Rain Attenuation Modeling for Millimeter Wave Short-Range Fixed Links. IEEE Access 2019, 7, 156110–156120. [Google Scholar] [CrossRef]
- Norouzian, F.; Marchetti, E.; Gashinova, M.; Hoare, E.; Constantinou, C.; Gardner, P.; Cherniakov, M. Rain attenuation at millimetre wave and low-THz frequencies. IEEE Trans. Antennas Propag. 2019, 68, 421–431. [Google Scholar] [CrossRef]
- Lewark, U.J.; Mahler, T.; Antes, J.; Boes, F.; Tessmann, A.; Henneberger, R.; Kallfass, I.; Zwick, T. Experimental validation of heavy rain attenuation in E-band based on climate wind tunnel measurements at 77 GHz. CEAS Space J. 2015, 7, 475–481. [Google Scholar] [CrossRef]
- Hansryd, J.; Li, Y.; Chen, J.; Ligander, P. Long term path attenuation measurement of the 71–76 GHz band in a 70/80 GHz microwave link. In Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, Spain, 12–16 April 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–4. [Google Scholar]
- García-Rubia, J.M.; Riera, J.M.; Garcia-del Pino, P.; Benarroch, A. Attenuation measurements and propagation modeling in the W-band. IEEE Trans. Antennas Propag. 2012, 61, 1860–1867. [Google Scholar] [CrossRef]
- Shrestha, S.; Choi, D.Y. Rain attenuation statistics over millimeter wave bands in South Korea. J. Atmos. Solar-Terr. Phys. 2017, 152, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hong, E.S.; Lane, S.; Murrell, D.; Tarasenko, N.; Christodoulou, C.; Keeley, J. Estimating Rain Attenuation at 72 and 84 GHz From Raindrop Size Distribution Measurements in Albuquerque, NM, USA. IEEE Geosci. Remote Sens. Lett. 2019. [Google Scholar] [CrossRef]
- Al-Saman, A.M.; Cheffena, M.; Mohamed, M.; Azmi, M.H.; Ai, Y. Statistical Analysis of Rain at Millimeter Waves in Tropical Area. IEEE Access 2020, 8, 51044–51061. [Google Scholar] [CrossRef]
- Al-Saman, A.; Mohamed, M.; Ai, Y.; Cheffena, M.; Azmi, M.H.; Rahman, T.A. Rain Attenuation Measurements and Analysis at 73 GHz E-Band Link in Tropical Region. IEEE Commun. Lett. 2020. [Google Scholar] [CrossRef]
- ERICSSON. Link Specifications. 2015. Available online: https://tele-a.ru/wp-content/uploads/2015/09/6352-DS.pdf (accessed on 28 August 2020).
- ERICSSON. Microwave Antennas. 2019. Available online: http://storage.mtender.gov.md/get/f7291f5a-ceb2-4ed0-a95d-d47694abcbe0-1570511924257 (accessed on 28 August 2020).
- Gauge, H.R. Rainfall Data Logging System. 2018. Available online: https://www.onsetcomp.com/files/data-sheet/Onset%20HOBO%20RG3%20Rain%20Gauge.pdf (accessed on 28 August 2020).
- Chen, F.W.; Liu, C.W. Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environ. 2012, 10, 209–222. [Google Scholar] [CrossRef]
- Longley, P.; Goodchild, M.; Maguire, D.; Rhind, D. Geographic Information Systems and Science; John Wiley & Sons: New York, NY, USA, 2001; pp. 150–151. [Google Scholar]
- Burrough, P.A.; McDonnell, R.; McDonnell, R.A.; Lloyd, C.D. Principles of Geographical Information Systems; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Zhu, H.; Jia, S. Uncertainty in the spatial interpolation of rainfall data. Prog. Geogr. 2004, 23, 34–42. [Google Scholar]
- Lin, X.; Yu, Q. Study on the spatial interpolation of agroclimatic resources in Chongqing. J. Anhui Agric. Sci. 2008, 36, 13431–13463. [Google Scholar]
- Series, R.P. Characteristics of precipitation for propagation modelling. In RECOMMENDATION ITU-R PN.837-1; ITU: Geneva, Switzerland, 1994; pp. 1–4. [Google Scholar]
- Chebil, J.; Rahman, T. Rain rate statistical conversion for the prediction of rain attenuation in Malaysia. Electron. Lett. 1999, 35, 1019–1021. [Google Scholar] [CrossRef]
- Hilt, A. Availability and Fade Margin Calculations for 5G Microwave and Millimeter-Wave Anyhaul Links. Appl. Sci. 2019, 9, 5240. [Google Scholar] [CrossRef] [Green Version]
- Coldrey, M.; Allasia, A.; Bao, L.; Boch, E.; Ferrari, G.; Gentina, D.; Putkonen, J.; Sutton, A.; Yigal, L.; Zein, N. Maturity and field proven experience of millimetre wave transmission. In ETSI White Paper; ETSI: Sophia Antipolis, France, 2015; Volume 10. [Google Scholar]
Descriptions | Transceiver Site A | Transceiver Site B | Transceiver Site C |
---|---|---|---|
Station Name | KSJ-UTM | MENARA RAZAQ | UTM-RESIDENSI |
Station Latitude (N) | 311′7″ | 310′21″ | 310′20″ |
Station Longitude (E) | 10143′46″ | 10143′10″ | 10143′19″ |
Site height (ASL) | 49 m | 43 m | 41 m |
Frequency Tx/Rx | 73.5/83.5 GHz | 83.5/73.5 GHz | 73.5/83.5 GHz |
Tx-Rx LOS distance | 1.8 km (B-A link) | 1.8 km (A-B link) 300 m (C-B link) | 300 m (B-C link) |
Antenna Type | 0.3 m (ANT2 0.3 80 HP) | 0.3 m (ANT2 0.3 80 HP) 0.2 m (ANT2 0.2 80 HP) | 0.2m(ANT2 0.2 80 HP) |
Antenna Height (AGL) | 20 m | 50 m | 70 m |
Polarization | Vertical | Vertical | Vertical |
Antenna Gain | 46.5 dBi | 46.5 dBi 43.5 dBi | 43.5 dBi |
Antenna HPBW | |||
Max Tx Power | 15 dBm | 15 dBm | 15 dBm |
Receiver Sensitivity | −75 dBm | −75 dBm | −75 dBm |
Free space path loss | 135.9 dB | 134.9 dB at 1.8 km 119.3 dB at 300 m | 120.4 dB |
Other losses | 6 dB | 7 dB | 7 dB |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Saman, A.; Mohamed, M.; Cheffena, M.; H. Azmi, M.; A. Rahman, T. Performance of Full-Duplex Wireless Back-Haul Link under Rain Effects Using E-Band 73 GHz and 83 GHz in Tropical Area. Appl. Sci. 2020, 10, 6138. https://doi.org/10.3390/app10176138
Al-Saman A, Mohamed M, Cheffena M, H. Azmi M, A. Rahman T. Performance of Full-Duplex Wireless Back-Haul Link under Rain Effects Using E-Band 73 GHz and 83 GHz in Tropical Area. Applied Sciences. 2020; 10(17):6138. https://doi.org/10.3390/app10176138
Chicago/Turabian StyleAl-Saman, Ahmed, Marshed Mohamed, Michael Cheffena, Marwan H. Azmi, and Tharek A. Rahman. 2020. "Performance of Full-Duplex Wireless Back-Haul Link under Rain Effects Using E-Band 73 GHz and 83 GHz in Tropical Area" Applied Sciences 10, no. 17: 6138. https://doi.org/10.3390/app10176138
APA StyleAl-Saman, A., Mohamed, M., Cheffena, M., H. Azmi, M., & A. Rahman, T. (2020). Performance of Full-Duplex Wireless Back-Haul Link under Rain Effects Using E-Band 73 GHz and 83 GHz in Tropical Area. Applied Sciences, 10(17), 6138. https://doi.org/10.3390/app10176138