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Abstract: Triple-negative breast cancer (TNBC), which is a type of invasive breast cancer,
is characterized by severe disease progression, poor prognosis, high recurrence rate, and short
survival. We sought to gain new insight into TNBC by applying computed tomography (CT)
and magnetic resonance (MR) quantitative imaging (radiomics) approaches to predict the outcome
of radio-immunotherapy treatments in a syngeneic subcutaneous murine breast tumor model.
Five Athymic Nude mice were implanted with breast cancer cell lines (4T1) tumors on the right
flank. The animals were CT- and MRI-imaged, tumors were contoured, and radiomics features were
extracted. All animals were treated with radiotherapy (RT), followed by the administration of PD1
inhibitor. Approximately 10 days later, the animals were sacrificed, tumor volumes were measured,
and histopathology evaluation was performed through Ki-67 staining. Linear regression modeling
between radiomics and Ki-67 results was performed to establish a correlation between quantitative
imaging and post-treatment histochemistry. There was no correlation between tumor volumes and
Ki-67 values. Multiple CT- and MRI-derived features, however, correlated with histopathology
with correlation coefficients greater than 0.8. MRI imaging helps in tumor delineation as well as
an additional orthogonal imaging modality for quantitative imaging purposes. This is the first
investigation correlating simultaneously CT- and MRI-derived radiomics to histopathology outcomes
of combined radio-immunotherapy treatments in a preclinical setting applied to treatment naïve
tumors. The findings indicate that imaging can guide discrimination between responding and
non-responding tumors for the combined RT and ImT treatment regimen in TNBC.
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1. Introduction

Triple-negative breast cancer (TNBC) represents approximately 15–20% of all newly-diagnosed
breast cancers, and it remains the most aggressive subtype with the poorest outcome [1]. No molecular
targets exist for TNBC, and alternative treatment strategies are required. Radiotherapy (RT) is a
standard-of-care treatment and RT-induced DNA damage causes direct tumor cell death. However,
RT also induces immune responses through the release of tumor antigens and the generation of a
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favorable inflammatory cytokine [2]. Immune-checkpoint inhibitors (immunotherapy, or ImT) can
augment RT effects by increasing tumor-specific T-cell proliferation, thereby improving outcomes over
RT or ImT alone [3,4]. In preclinical studies the combination of RT and anti-PD-1/PD-L1 therapies
activated CD8 T-cells, reduced inhibitory mechanisms, and induced abscopal effect [4–8].

Quantitative imaging (radiomics) comprises both semantic (volume, shape, etc.) and agnostic
(texture and others) tumor features. Texture in particular, is a property commonly used for image
classification in the field of pattern recognition. There are three different approaches used in image
processing to find the textural feature of a region of interest in an image: first-order features,
second-order features, and higher-order features. The first order features use statistical moments of
the intensity histogram of the image and do not contain information about the relative position of
pixels with respect to each other. Second order features employ the angular nearest-neighbor gray tone
spatial-dependence matrices, also known as gray level co-occurrence matrices. Higher order features
can be obtained by more complex manipulations of the image gray levels.

Textures have been used to define tumor response to treatment [9,10]. Recently, radiomics have
been applied to patient cohorts treated with immunotherapy alone for metastatic non-small cell lung
cancer and they were found helpful in prediction of response to therapy [11,12]. It has furthermore been
demonstrated that when RT is incorporated in the predictive models as a covariate, it adds additional
value to radiomics and ImT outcome correlations [13,14]. Other investigators have argued that the
combination of ImT and RT has a synergistic effect on tumor response, surpassing the responses to
ImT or RT alone [15,16], which further supports the abovementioned findings.

The purpose of this work is to apply CT and MRI radiomics to combined radio-immunotherapy
(RImT) treatments, when applied to treatment naïve tumors, and determine if imaging better
discriminates between responding and non-responding tumors. To our knowledge, this is the
first work where tumor response to RImT regimen is assessed through histopathology evaluation.

2. Materials and Methods

2.1. Preparation of Cell Suspension

The 4T1 breast cancer cell lines were cultured in RPMI-1640 medium (Gibco®; Thermo Fisher
Scientific, Inc., Waltham, MA, USA), supplemented with 10% fetal bovine serum (Gibco®; Thermo
Fisher Scientific Inc.) and 1% penicillin-streptomycin (HyClone; GE Healthcare Life Sciences, Logan,
UT, USA). For subcutaneous implantation, a cell suspension of a density of 1 × 104 cells/25 µL was
prepared for each animal.

2.2. Animal Model

Female BALB/c mice (n = 5; 8 weeks old; 18–20 g) were purchased from Jackson Laboratory
(Bar Harbor, ME, USA) and were housed at 22 ± 5 ◦C in a 12 h light/dark cycle and fed rodent chow
and water freely. Mice were subcutaneously inoculated with 25 µL 4T1 cell suspension (1 × 104) under
2% isoflurane. The skin was tented up, and the 4T1 cells were implanted under the skin in the dorsal
right flank regions. Tumor length (L) and width (W) were measured every week using digital calipers.
Tumor volume (V) was calculated as [V = (L × W2)/2]. After tumor volumes reached ~200 mm3,
animals were CT- and MRI-imaged, and tumors were outlined as depicted in Figure 1.
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Figure 1. (A–C) T1 3T MRI image and (D–F) CT image of subcutaneously implanted breast tumors on 
mice right flanks. 

2.3. Imaging 

For the CT imaging studies, the image resolution was 0.4 × 0.4 × 0.6 mm3 (slice thickness 0.6 mm), 
while for the T1-weighted MRI imaging studies, the resolution was 0.5 × 0.5 × 0.5 mm3 (slice thickness 
0.5 mm). The CT and MRI images of all five animals were acquired in a single scan (as depicted in 
Figure 1), thereby eliminating any inter-session scanner variability as well as voxel size variability. 
The flank tumors were contoured for each animal, and quantitative imaging features were extracted. 

2.4. Radiomics 

The radiomics features for both CT and MRI were extracted with our in-house software 
[13,14,17], following published mathematical description [18]. The MRI radiomics in particular, were 
extracted after image intensity normalization [19–21], incorporated in the in-house software 
following a published procedure. Briefly, the intensity normalization followed a two-step approach: 
intensity scaling, followed by histogram normalization [21]. In the intensity scaling step, the 
histogram encompasses the entire range from low-intensity (LI) to high-intensity (HI) regions. The 
image intensities are mapped to the values between LI and HI domains according to: 𝑓ᇱሺ𝑥, 𝑦, 𝑧ሻ = ௙ሺ௫,௬,௭ሻି௅ூுூି௅ூ ’ 

where f(x,y,z) is gray value of original image at (x,y,z), and f’(x,y,z,) is the transformed gray-scale 
value. The LI and HI regions are defined as minimum and maximum deciles. During the histogram 
normalization step, the reference image histogram is stretched and shifted to cover gray levels from 
the input image according to: 𝑔௜ሺ𝑥, 𝑦, 𝑧ሻ = 𝐻𝐼 − 𝐿𝐼𝑆௠௔௫ − 𝑆௠௜௡ ሾ𝑔ሺ𝑥, 𝑦, 𝑧ሻ − 𝑆௠௜௡ሿ + 𝐿𝐼 

Where the histogram of the input image g(x,y,z) starts at Smin and extends to Smax grayscale levels 
in the region of interest such that the normalized image g’(x,y,z) will lie between LI and HI values. 
Ninety-two (per imaging modality) geometric-, first-, second-, and third-order radiomics features for 
each tumor were obtained. For the first-, second-, and third-order radiomics, the imaging data was 
binned in 128 equally spaced bins, covering the entire gray-value range. The radiomics features were 
based on one dimensional (1D) histograms, 2D co-occurrence matrices (Matrix hereafter), 3D, and co-
occurrence cubes (Cube hereafter). The Cube features are an extension of the Matrix features, where 
third-order joined probability is calculated, and the texture feature equations [18] are extended to 3D. 
The 3D features are derived from the tumor itself, where the gray values of the tumor voxels are 
normalized such that they are converted into probabilities. In turn, the Cube-type mathematical 

Figure 1. (A–C) T1 3T MRI image and (D–F) CT image of subcutaneously implanted breast tumors on
mice right flanks.

All animal experiments were approved by the Institution of Animal Care and Use Committee of
University of Miami.

2.3. Imaging

For the CT imaging studies, the image resolution was 0.4 × 0.4 × 0.6 mm3 (slice thickness 0.6 mm),
while for the T1-weighted MRI imaging studies, the resolution was 0.5 × 0.5 × 0.5 mm3 (slice thickness
0.5 mm). The CT and MRI images of all five animals were acquired in a single scan (as depicted in
Figure 1), thereby eliminating any inter-session scanner variability as well as voxel size variability. The
flank tumors were contoured for each animal, and quantitative imaging features were extracted.

2.4. Radiomics

The radiomics features for both CT and MRI were extracted with our in-house software [13,14,17],
following published mathematical description [18]. The MRI radiomics in particular, were extracted
after image intensity normalization [19–21], incorporated in the in-house software following a published
procedure. Briefly, the intensity normalization followed a two-step approach: intensity scaling,
followed by histogram normalization [21]. In the intensity scaling step, the histogram encompasses the
entire range from low-intensity (LI) to high-intensity (HI) regions. The image intensities are mapped to
the values between LI and HI domains according to:

f ′(x, y, z) =
f (x, y, z) − LI

HI − LI

′

where f(x,y,z) is gray value of original image at (x,y,z), and f’(x,y,z,) is the transformed gray-scale
value. The LI and HI regions are defined as minimum and maximum deciles. During the histogram
normalization step, the reference image histogram is stretched and shifted to cover gray levels from
the input image according to:

gi(x, y, z) =
HI − LI

Smax − Smin
[g(x, y, z) − Smin] + LI

Where the histogram of the input image g(x,y,z) starts at Smin and extends to Smax grayscale levels
in the region of interest such that the normalized image g’(x,y,z) will lie between LI and HI values.
Ninety-two (per imaging modality) geometric-, first-, second-, and third-order radiomics features
for each tumor were obtained. For the first-, second-, and third-order radiomics, the imaging data
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was binned in 128 equally spaced bins, covering the entire gray-value range. The radiomics features
were based on one dimensional (1D) histograms, 2D co-occurrence matrices (Matrix hereafter), 3D,
and co-occurrence cubes (Cube hereafter). The Cube features are an extension of the Matrix features,
where third-order joined probability is calculated, and the texture feature equations [18] are extended
to 3D. The 3D features are derived from the tumor itself, where the gray values of the tumor voxels
are normalized such that they are converted into probabilities. In turn, the Cube-type mathematical
manipulations are applied to those probabilities, and 3D features are derived. The details of the used
imaging features are described in detail in the Supplementary Materials. The 3D features refer to the
extension of texture equations [18] to three dimensions, rather than the use of 3D (volumetric) imaging.
All radiomics features were obtained from 3D imaging studies.

2.5. Treatment

After imaging, the animals were irradiated using a RadSource 2000 X-Ray Irradiator cabinet and
organ-specific irradiation jigs (160 kVp, 25 mA, 0.5 mM Cu, 1.8 Gy min−1) under 2% isoflurane in three
equal-sized fractions to a total dose of 24 Gy over 3 consecutive days [15]. Following the irradiation,
on 2 consecutive days, a single dose of PD-1 inhibitor was administered through intraperitoneal injection.
When the apparent tumor volumes reached approximately ~800 mm3, the animals were sacrificed.

2.6. Histology

Selected tumor tissues were dissected, paraffin-embedded, and sectioned (6 µm thick) for
histological examination. Sections were stained with Ki-67 staining according to the standard protocol
at the histopathology core facility, University of Miami. Ki-67 staining images were visualized using a
light microscope (VS120, Olympus, Tokyo, Japan) at 10×magnification. For the quantification of Ki-67
staining, images were analyzed using Image J software.

2.7. Imaging Feature Selection

The relations among the CT, MRI-derived radiomics and the Ki-67 values were established through
linear regression modeling on a feature-by-feature basis. Furthermore, multiple regression analysis
was also performed with the IBM SPSS Statistics V.25 (IBM Corp., Armonk, NY, USA) software package.
Pearson’s correlation coefficient was calculated to quantify the correlation between the radiomics
features and the outcome as inferred based on the histopathology findings.

3. Results

3.1. Describing the Correlation between the Tumor Volume and Ki-67

The tumor volumes were measured by caliper and compared with Ki67 score (Figure 2).
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Figure 2. Comparison between tumor volume and Ki67 score.

These data indicate that there is no obvious correlation between tumor volumes and measured
proliferating tumor cells. The estimated value for the Pearson correlation coefficient is 0.047,
confirming the lack of linear dependence between tumor volume and Ki-67. At the same time,
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tumor volumes are surrogates for a response to treatment. The Ki67 staining score is strongly associated
with cell proliferation, and it is used very commonly in routine histopathology (Figure 2).

3.2. Correlation between Seven CT, Twenty-Four MRI Features and Ki-67 Score

In the assessment of the correlation between the radiomics features and the Ki-67 values adjusted,
R2 of more than 0.8 was considered as indicative of the linear correlation. Seven CT and 24 MRI features
exhibited a correlation with the post-treatment Ki-67 values according to this criterion (Figure 3).
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Figure 3. Dependence of five CT (A top row) and five MRI (A bottom row) radiomics features on
post-treatment histochemistry proliferation marker Ki-67. The CT features (A top row) are mean
absolute deviation 3D, cube IMC1, matrix IMC1, matrix inverse difference moment, and cube sparsity.
The MRI features (bottom row) are mean absolute deviation 3D, matrix mean, matrix entropy, cube IMC1,
and cube IMC2. Also, (B) the column on the right contains the histology slides with Ki-67 values
denoted in the top left corner of each slide. The Ki-67 increases from top to bottom, as can be observed
from the increasing amount of red-brown stain on the slides.

An example of five CT-derived radiomics features (Figure 3A top row) and five MRI-derived
features (Figure 3A bottom row) as a function of post-treatment Ki-67 marker have been shown in
Figure 3. Besides the imaging features, the figure displays the respective Ki-67 staining pictures with
the denoted average Ki-67 values used in the assessment of post-treatment histopathology (Figure 3B).

The calculated correlation coefficients as well as the significance levels for the CT-derived features
are outlined in Table 1. Figure 1 depicts only five features while the Table 1 presents details for all CT
radiomics with p-value of <0.05. The Pearson correlation coefficients and the significance levels were
calculated for the imaging features derived from the whole tumor. In order to further validate the
presented results we generated two additional subregions in the tumors for both CT and MRI imaging
modalities and we calculated the Pearson correlation coefficients for the radiomics derived from those
subregions. Thereby, we were able to calculate the variance of in the Pearson correlation coefficients on
feature-by-feature basis and they are outlined in the third column of the table.
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Table 1. Pearson correlation coefficients and significance level for CT-derived imaging features, which
exhibit correlation with Ki-67marker.

Feature
Pearson

Correlation
Coefficient

Significance
Variance of Pearson

Correlation
Coefficient

Mean Abs Dev 3D 0.94 0.007 2.4 × 10−3

Matrix IMC1 0.983 0.003 2.6 × 10−3

Matrix IMC2 −0.893 0.041 2.8 × 10−4

Matrix Inverse Difference Moment Normalized −0.926 0.024 9.4 × 10−3

Matrix Inverse Difference Normalized −0.951 0.013 5.7 × 10−2

Cube Sparsity 0.987 0.002 5.2 × 10−2

Cube IMC1 0.988 0.001 4.9 × 10−3

The correlation coefficients for the MRI-based radiomics are presented in Table 2. There are
24 MRI features with p-value of <0.05. Similarly to Table 1 above, the last column in Table 2 outlines
the variance in the Pearson correlation coefficients where the two additional subregions in the tumor
are used for radiomics extraction. The variances of Pearson correlation coefficients in both tables are
very small, indicating that the observed relations are stable within the tumor volumes.

Table 2. Pearson correlation coefficients and significance level for MRI-based imaging features,
which exhibit correlation with Ki-67marker.

Feature
Pearson

Correlation
Coefficient

Significance
Variance of Pearson

Correlation
Coefficient

Mean Abs Dev 2D 0.977 0.004 8.6 × 10−6

Root Min Square 2D 0.964 0.008 8.0 × 10−5

Entropy 2D 0.971 0.006 6.3 × 10−5

Uniformity 2D 0.964 0.008 7.6 × 10−5

Kurtosis 2D 0.900 0.008 8.5 × 10−5

Skewness 2D 0.922 0.026 6.7 × 10−5

Matrix Mean 0.997 0.045 3.7 × 10−4

Matrix Variance 0.932 0.021 4.1 × 10−5

Matrix Entropy −0.960 0.01 4.9 × 10−5

Matrix Energy 0.957 0.011 7.0 × 10−5

Matrix IMC1 0.967 0.007 1.2 × 10−4

Matrix IMC2 −0.984 0.002 1.9 × 10−4

Matrix Cluster Prominence −0.940 0.017 1.3 × 10−4

Matrix Cluster Contrast −0.908 0.033 1.6 × 10−5

Matrix Cluster Tendency −0.961 0.009 7.2 × 10−5

Matrix Cluster Homogeneity1 −0.931 0.022 9.6 × 10−6

Matrix Cluster Homogeneity2 −0.908 0.033 1.6 × 10−5

Cube Variance 0.928 0.023 4.6 × 10−3

Cube Entropy −0.954 0.012 1.8 × 10−2

Cube Energy 0.956 0.011 6.9 × 10−5

Cube IMC1 0.974 0.005 4.8 × 10−3

Cube IMC2 −0.991 0.001 2.5 × 10−4

Cube Cluster Prominence −0.944 0.016 1.8 × 10−3

Cube Cluster Tendency −0.961 0.009 1.7 × 10−3

For both CT and MRI radiomics, numerous imaging features demonstrate clear correlations with
tumor cell proliferation markers derived from post-treatment histology as denoted in Tables 1 and 2.
All of the correlation coefficients are at a significance level of <0.05, 11 out of 24 are at a level of <0.01.
The correlation coefficients in turn, are greater than 0.9 or less than −0.9, indicating that imaging
features can serve as a good method to predict Ki-67 proliferation marker in murine breast tumors.
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In addition to the univariate analyses presented above, multiple regression modeling was also
employed for the CT and the MRI-derived imaging features. The multiple regression analyses
for the CT-derived radiomics utilized all seven features denoted in Table 1. All of the features
were set as independent variables, while the Ki-67 values were designated as a dependent variable.
The regression method was selected to be “stepwise” in SPSS. The multiple regression model converged
to a single variable—Cube IMC1. The resulting equation from the model is (Ki− 67)CT = 0.114 +

0.145 × (Cube IMC1)CT, with a correlation coefficient of 0.988, and p = 0.001. The 95% confidence
interval for the slope and the intercept in the CT equation are 0.104 to 0.186 and 0.093 to 0.134,
respectively. Similarly, the multiple regression model for all MRI features from Table 2 resulted in a single
predictor—Cube IMC2. The predictive linear equation is: (Ki− 67)MRI = 0.221−0.22× (Cube IMC2)MRI
with a model p of 0.001. The 95% confidence interval for the slope and the intercept in the MRI equation
are −0.275 to −0.168 and 0.178 to 0.265, respectively. These results indicate that the third-order joint
probability texture features, represented by the co-occurrence cubes, are best suited as predictors in
the multiple regression analyses among imaging variables and post-therapy histopathology tumor
proliferation markers in both CT and MRI.

4. Discussion

This work is the first demonstration of CT and MRI quantitative imaging application combined
to radio-immunotherapy treatments in the treatment of naïve breast tumors, where the outcome
is evaluated by histopathology. The use of a syngeneic animal model allows correlation with the
actual number of surviving tumor cells rather than a surrogate for treatment response such as tumor
volume. This critical point is illustrated by our findings that tumor volumes do not correlate with Ki-67
proliferation marker.

The superior MRI soft tissue contrast allows better delineation of tumors when fused to CT
imaging studies. MRI results corroborated with the CT results, as opposed to current clinical radiomics
publications on immunotherapy, where only CT-based features were utilized [11–14]. Besides the
improved visualization capabilities, the presented results indicate that more radiomics features from the
MRI studies correlate with the post-treatment immunohistochemistry in comparison to the CT-derived
radiomics features from the same tumors. Therefore, MRI complements CT not only for visualization
purposes, but also for quantitative imaging investigations. The MRI imaging of the five animals was
performed in two consecutive sessions, each of approximately ~30 min. The CT imaging followed
immediately after the MRI image acquisition. The same hardware (scanners) with the same imaging
protocols were used for both MRI and CT imaging of the two batches of animals. Therefore, the
variability of the imaging features due to the acquisition technique and the processing equipment is
very minimal.

Since subcutaneous tumors were derived from the same cell line, the observed variations in the
imaging features cannot be attributed to tumor genotype, which existence affects treatment outcomes
in clinical studies. Instead, the variations in the radiomics features presented herein depict the changes
in the tumor phenotype and in particular the tumor heterogeneity, which are probably due to the
effects of the tumor microenvironment as well as the specific host traits [22].

5. Conclusions

Our study is the first investigation correlating CT and MRI-derived radiomics to histopathology
outcomes of combined radio-immunotherapy treatments of treatment naïve breast tumors in a
preclinical setting. The establishment of a predictive model for the histochemistry response based
on radiomics will open a whole new paradigm in the radio-immunotherapy research and clinical
applications. Arguably, the combination of radiotherapy and immunotherapy is an appealing treatment
paradigm, and it is not unreasonable to hypothesize that in the near future, it will become the primary
treatment modality for cancer.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/18/6493/s1.
Definition of imaging features is shown in Supplementary Materials.
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