Chemometric Strategies for Spectroscopy-Based Food Authentication
Abstract
:Featured Application
Abstract
1. Introduction
2. Data Exploration
3. Calibration
4. Classification
4.1. Discriminant Techniques
- discriminant classification models need to be calibrated on training sets composed by specimens belonging to all the categories under study;
- every analyzed sample is always assigned to one and only one of these categories;
- samples coming from other classes (not considered in the study) will always be (erroneously) recognized as members of one and only one of these categories.
4.2. Modelling Techniques
5. Data Fusion
5.1. Multi-Block Data Exploration
5.2. Multi-Block Regression and Classification
- is regressed onto by PLS;
- is orthogonalized with respect to the -scores calculated in step 1, yielding the array . This ensures the common information shared by and is removed from the latter;
- The PLS residuals resulting from step 1 are regressed onto by PLS;
- The SO-PLS predictive model is expressed by combining the outcomes of steps 1 and 3 as:
6. Other Approaches
6.1. Curve Resolution
- The number of components (mixture constituents) is estimated (e.g., according to a priori knowledge of the systems under study or by SVD/PCA).
- and are iteratively updated using alternating least squares under appropriate constraints (e.g., non-negativity of the values in and/or ) as:
- Step 3 is repeated until a certain convergence criterion is met.
6.2. Analysis of Multivariate Designed Data
7. Additional Fundamental Aspects of Chemometric Modelling: Data Preprocessing and Validation
7.1. Data Pre-Processing
7.2. Validation
8. Software
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brereton, R.; Jansen, J.; Lopes, J.; Marini, F.; Pomerantsev, A.; Rodionova, O.; Roger, J.; Walczak, B.; Tauler, R. Chemometrics in analytical chemistry—Part I: History, experimental design and data analysis tools. Anal. Bioanal. Chem. 2017, 409, 5891–5899. [Google Scholar] [CrossRef] [PubMed]
- Brereton, R.; Jansen, J.; Lopes, J.; Marini, F.; Pomerantsev, A.; Rodionova, O.; Roger, J.; Walczak, B.; Tauler, R. Chemometrics in analytical chemistry—Part II: Modeling, validations and applications. Anal. Bioanal. Chem. 2018, 410, 6691–6704. [Google Scholar] [CrossRef] [PubMed]
- Pearson, K. On lines and planes of closest fit to systems of points in space. Philos. Mag. 1901, 2, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417–441. [Google Scholar] [CrossRef]
- Saccenti, E.; Camacho, J. Determining the number of components in Principal Components Analysis: A comparison of statistical, crossvalidation and approximated methods. Chemometr. Intell. Lab. 2015, 149, 99–116. [Google Scholar] [CrossRef]
- Kaiser, H. The application of electronic computers to Factor Analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Velicer, W. Determining the number of components from the matrix of partial correlations. Psychometrika 1976, 41, 321–327. [Google Scholar] [CrossRef]
- Cattell, R. The scree test for the number of factors. Multivar. Behav. Res. 1966, 1, 245–276. [Google Scholar] [CrossRef]
- Bartlett, M. A note on the multiplying factors for various approximations. J. R. Stat. Soc. B Met. 1954, 16, 296–298. [Google Scholar] [CrossRef]
- Saccenti, E.; Smilde, A.; Westerhuis, J.; Hendriks, M. Tracy-Widom statistic for the largest eigenvalue of autoscaled real matrices. J. Chemometr. 2011, 25, 644–652. [Google Scholar] [CrossRef]
- Bro, R.; Kjeldahl, K.; Smilde, A.; Kiers, H. Cross-validation of component models: A critical look at current methods. Anal. Bioanal. Chem. 2008, 390, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Camacho, J.; Ferrer, A. Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: Theoretical aspects. J. Chemometr. 2012, 26, 361–373. [Google Scholar] [CrossRef]
- Camacho, J.; Ferrer, A. Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: Practical aspects. Chemometr. Intell. Lab. 2014, 131, 37–50. [Google Scholar] [CrossRef]
- Horn, J. A rationale and test for the number of factors in factor analysis. Psychometrika 1965, 30, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Dray, S. On the number of principal components: A test of dimensionality based on measurements of similarity between matrices. Comput. Stat. Data Anal. 2008, 52, 2228–2237. [Google Scholar] [CrossRef]
- Vieira, V. Permutation tests to estimate significances on Principal Components Analysis. Comput. Ecol. Softw. 2012, 2, 103–123. [Google Scholar]
- Peres-Neto, P.; Jackson, D.; Somers, K. How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comput. Stat. Data Anal. 2005, 49, 974–997. [Google Scholar] [CrossRef]
- Endrizzi, I.; Gasperi, F.; Rødbotten, M.; Næs, T. Interpretation, validation and segmentation of preference mapping models. Food Qual. Prefer. 2014, 32, 198–209. [Google Scholar] [CrossRef]
- Saccenti, E.; Timmerman, M. Considering Horn’s parallel analysis from a random matrix theory point of view. Psychometrika 2017, 82, 186–209. [Google Scholar] [CrossRef]
- Vitale, R.; Westerhuis, J.; Næs, T.; Smilde, A.; de Noord, O.; Ferrer, A. Selecting the number of factors in Principal Component Analysis by permutation testing—Numerical and practical aspects. J. Chemometr. 2017, 31, e2937. [Google Scholar] [CrossRef]
- Vitale, R.; Saccenti, E. Comparison of dimensionality assessment methods in Principal Component Analysis based on permutation tests. Chemometr. Intell. Lab. 2018, 181, 79–94. [Google Scholar] [CrossRef]
- Eckart, C.; Young, G. The approximation of one matrix by another of lower rank. Psychometrika 1936, 1, 211–218. [Google Scholar] [CrossRef]
- Comon, P. Independent component analysis, a new concept? Signal Process. 1994, 36, 287–314. [Google Scholar] [CrossRef]
- Hyvärinen, A.; Karhunen, J.; Oja, E. Independent Component Analysis, 1st ed.; John Wiley & Sons Inc.: New York, NY, USA, 2001. [Google Scholar]
- Jouan-Rimbaud Bouveresse, D.; Benabid, H.; Rutledge, D. Independent component analysis as a pretreatment method for parallel factor analysis to eliminate artefacts from multiway data. Anal. Chim. Acta 2007, 589, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Rutledge, D.; Jouan-Rimbaud Bouveresse, D. Independent Component Analysis with the JADE algorithm. TRAC-Trends Anal. Chem. 2013, 50, 22–32. [Google Scholar] [CrossRef]
- Rutledge, D. Comparison of Principal Components Analysis, Independent Components Analysis and Common Components Analysis. J. Anal. Test. 2018, 2, 235–248. [Google Scholar] [CrossRef]
- Monakhova, Y.; Rutledge, D. Independent components analysis (ICA) at the “cocktail-party” in analytical chemistry. Talanta 2020, 208, 120451. [Google Scholar] [CrossRef] [Green Version]
- Bell, A.; Sejnowski, T. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 1995, 7, 1129–1159. [Google Scholar] [CrossRef]
- Hyvärinen, A.; Oja, E. A fast fixed-point algorithm for Independent Component Analysis. Neural Comput. 1997, 9, 1483–1492. [Google Scholar] [CrossRef]
- Cardoso, J.; Souloumiac, A. Blind beamforming for non-Gaussian signals. IEE Proc. F 1993, 140, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Belton, P.; Colquhon, I.; Kemsley, E.; Delgadillo, I.; Roma, P.; Dennis, M.; Sharman, M.; Holmes, E.; Nicholson, J.; Spraul, M. Application of chemometrics to the 1H NMR spectra of apple juices: Discrimination between apple varieties. Food Chem. 1998, 61, 207–213. [Google Scholar] [CrossRef]
- Sikorska, E.; Gorecki, T.; Khmelinskii, I.; Sikorski, M.; De Keukeleire, D. Monitoring beer during storage by fluorescence spectroscopy. Food Chem. 2006, 96, 632–639. [Google Scholar] [CrossRef]
- Wang, L.; Lee, F.; Wang, X.; He, Y. Feasibility study of quantifying and discriminating soybean oil adulteration in Camellia oils by attenuated total reflectance MIR and fiber optic diffuse reflectance NIR. Food Chem. 2006, 95, 529–536. [Google Scholar] [CrossRef]
- Alves, F.; Coqueiro, A.; Março, P.; Valderrama, P. Evaluation of olive oils from the Mediterranean region by UV-Vis spectroscopy and independent component analysis. Food Chem. 2019, 273, 124–129. [Google Scholar] [CrossRef]
- Monakhova, Y.; Tsikin, A.; Kuballa, T.; Lachenmeier, D.; Mushtakova, S. Independent component analysis (ICA) algorithms for improved spectral deconvolution of overlapped signals in 1H NMR analysis: Application to foods and related products. Magn. Reson. Chem. 2014, 52, 231–240. [Google Scholar] [CrossRef]
- Massart, D.; Kaufmann, L. The Interpretation of Analytical Chemical Data by the Use of Cluster Analysis, 1st ed.; John Wiley & Sons Inc.: New York, NY, USA, 1983. [Google Scholar]
- Kaufmann, L.; Rousseeuw, P. Finding Groups in Data: An Introduction to Cluster Analysis, 1st ed.; John Wiley & Sons Inc.: New York, NY, USA, 1990. [Google Scholar]
- Sammut, C.; Webb, G. Encyclopedia of Machine Learning, 1st ed.; Springer: Boston, MA, USA, 2010. [Google Scholar]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1st ed.; Le Cam, L., Neyman, J., Eds.; University of California Press: Berkeley, CA, USA, 1967; Volume 1, pp. 281–297. [Google Scholar]
- Murtagh, F.; Contreras, P. Algorithms for hierarchical clustering: An overview. WIREs Data Min. Knowl. 2012, 2, 86–97. [Google Scholar] [CrossRef]
- Marini, F.; Amigo, J. Unsupervised exploration of hyperspectral and multispectral images. In Hyperspectral Imaging, 1st ed.; Amigo, J., Ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2020; Volume 2, pp. 93–114. [Google Scholar]
- Brown, P. Measurement, Regression, and Calibration, 1st ed.; Clarendon Press/Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Martens, H.; Næs, T. Multivariate Calibration, 1st ed.; John Wiley & Sons Inc.: New York, NY, USA, 1989. [Google Scholar]
- Oliveri, A. Introduction to Multivariate Calibration, 1st ed.; Springer Nature: Cham, Switzerland, 2018. [Google Scholar]
- Kjeldahl, J. Neue Methode zur Bstimmung des Stickstoffs in organischen Körpern. Z. Anal. Chem. 1883, 22, 366–383. [Google Scholar] [CrossRef] [Green Version]
- Dumas, J. Lettre de M. Dumas à M. Gay-Lussac sur les procedes de l’analyse organique. Ann. Chim. Phys. 1831, 2, 198–215. [Google Scholar]
- Draper, N.; Smith, H. Applied Regression Analysis, 1st ed.; John Wiley & Sons Inc.: New York, NY, USA, 1966. [Google Scholar]
- Krzanowski, W. Principles of Multivariate Analysis, 1st ed.; Clarendon Press/Oxford University Press: New York, NY, USA, 1988. [Google Scholar]
- Johnson, R.; Wichern, D. Applied Multivariate Statistical Analysis, 6th ed.; Pearson Education Inc.: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Dodge, Y. The Oxford Dictionary of Statistical Terms, 6th ed.; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Jolliffe, I. A note on the use of principal components in regression. J. R. Stat. Soc. C Appl. 1982, 31, 300–303. [Google Scholar] [CrossRef]
- Halinski, R.; Feldt, L. The selection of variables in multiple regression analysis. J. Educ. Meas. 1970, 7, 151–157. [Google Scholar] [CrossRef]
- Thompson, M. Selection of variables in multiple regression: Part I. A review and evaluation. Int. Stat. Rev. 1978, 46, 1–19. [Google Scholar] [CrossRef]
- Thompson, M. Selection of variables in multiple regression: Part II. Chosen procedures, computations and examples. Int. Stat. Rev. 1978, 46, 129–146. [Google Scholar] [CrossRef]
- Suárez, E.; Pérez, C.; Rivera, R.; Martínez, M. Applications of Regression Models in Epidemiology, 1st ed.; John Wiley & Sons: New York, NY, USA, 2017. [Google Scholar]
- Jackson, J. A User’s Guide to Principal Components, 1st ed.; John Wiley & Sons Inc.: New York, NY, USA, 1991. [Google Scholar]
- Mardia, K.; Kent, J.; Bibby, J. Multivariate Analysis, 1st ed.; Academic Press: London, UK, 1980. [Google Scholar]
- Wold, H. Soft modelling. The basic design and some extensions. In Systems under Indirect Observation, 1st ed.; Jöreskog, K., Wold, H., Eds.; North-Holland Publishing Co.: Amsterdam, The Netherlands, 1982; Volume 2, pp. 1–54. [Google Scholar]
- Kowalski, B.; Gerlach, R.; Wold, H. Chemical Systems under Indirect Observation. In Systems under Indirect Observation, 1st ed.; Jöreskog, K., Wold, H., Eds.; North-Holland Publishing Co.: Amsterdam, The Netherlands, 1982; Volume 2, pp. 191–209. [Google Scholar]
- Wold, S.; Martens, H.; Wold, H. The multivariate calibration problem in chemistry solved by the PLS method. In Matrix Pencils. Lecture Notes in Mathematics, 1st ed.; Kågström, B., Ruhe, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1983; Volume 973, pp. 286–293. [Google Scholar]
- Wold, S.; Ruhe, A.; Wold, H.; Dunn, W., III. The collinearity problem in linear regression. The partial least squares approach to generalized inverses. SIAM J. Sci. Stat. Comput. 1984, 5, 735–743. [Google Scholar] [CrossRef] [Green Version]
- Höskuldsson, A. PLS regression methods. J. Chemometr. 1988, 2, 211–228. [Google Scholar] [CrossRef]
- Höskuldsson, A. Prediction Methods in Science and Technology, 1st ed.; Thor Publishing Co.: Copenhagen, Denmark, 1996. [Google Scholar]
- Wold, S.; Johansson, E.; Cocchi, M. PLS—Partial Least Squares projections to latent structures. In 3D QSAR in Drug Design, Theory, Methods, and Applications, 1st ed.; Kubinyi, H., Ed.; ESCOM Science Publishers B.V.: Leiden, The Netherlands, 1993; pp. 523–550. [Google Scholar]
- Tenenhaus, M. La Regression PLS: Theorie et Pratique, 1st ed.; Editions Technip: Paris, France, 1998. [Google Scholar]
- Myers, R.H. Classical and Modern Regression with Applications, 1st ed.; Duxbury Press: Boston, MA, USA, 1986. [Google Scholar]
- Burnham, A.; MacGregor, J.; Viveros, R. Latent variable multivariate regression modeling. Chemometr. Intell. Lab. 1999, 48, 167–180. [Google Scholar] [CrossRef]
- Allen, D. The relationship between variable selection and data augmentation and a method for prediction. Technometrics 1974, 16, 125–127. [Google Scholar] [CrossRef]
- Stone, M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. B Met. 1974, 36, 111–133. [Google Scholar] [CrossRef]
- Geisser, S. A predictive approach to the random effect model. Biometrika 1974, 61, 101–107. [Google Scholar] [CrossRef]
- Geladi, P.; Kowalski, B. Partial Least Squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemometr. Intell. Lab. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Martens, H.; Næs, T. Multivariate calibration. I. Concepts and distinctions. TRAC-Trends Anal. Chem. 1984, 3, 204–210. [Google Scholar] [CrossRef]
- Centner, V.; Massart, D. Optimization in locally weighted regression. Anal. Chem. 1998, 70, 4206–4211. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, M.; Bucci, R.; Materazzi, S.; Marini, F. Application of near infrared (NIR) spectroscopy coupled to chemometrics for dried egg-pasta characterization and egg content quantification. Food Chem. 2013, 140, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Wold, S.; Kettaneh-Wold, N.; Skagerberg, B. Nonlinear PLS modelling. Chemometr. Intell. Lab. 1989, 7, 53–65. [Google Scholar] [CrossRef]
- Wold, S. Nonlinear partial least squares modelling II. Spline inner relation. Chemometr. Intell. Lab. 1992, 14, 71–84. [Google Scholar] [CrossRef]
- Jaeckle, C.; MacGregor, J. Product design through multivariate statistical analysis of process data. AICHE J. 1998, 44, 1105–1118. [Google Scholar] [CrossRef]
- Walczak, B.; Massart, D. The Radial Basis Functions-Partial Least Squares approach as a flexible non-linear regression technique. Anal. Chim. Acta 1996, 331, 177–185. [Google Scholar] [CrossRef]
- Walczak, B.; Massart, D. Application of Radial Basis Functions-Partial Least Squares to non-linear pattern recognition problems: Diagnosis of process faults. Anal. Chim. Acta 1996, 331, 187–193. [Google Scholar] [CrossRef]
- Vitale, R.; Palací-López, D.; Kerkenaar, H.; Postma, G.; Buydens, L.; Ferrer, A. Kernel-Partial Least Squares regression coupled to pseudo-sample trajectories for the analysis of mixture designs of experiments. Chemometr. Intell. Lab. 2018, 175, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Vapnik, V. The Nature of Statistical Learning Theory, 2nd ed.; Springer: New York, NY, USA, 2000. [Google Scholar]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, 1st ed.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Schölkopf, B.; Smola, A. Leaning with Kernels, 1st ed.; MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Li, H.; Liang, Y.; Xu, Q. Support vector machines and its applications in chemistry. Chemometr. Intell. Lab. 2009, 95, 188–198. [Google Scholar] [CrossRef]
- Gasteiger, J.; Zupan, J. Neural networks in chemistry. Angew. Chem. Int. Ed. Engl. 1993, 32, 503–527. [Google Scholar] [CrossRef]
- Vandeginste, B.; Massart, D.; Buydens, L.; De Jong, S.; Lewi, P.; Smeyers-Verbeke, J. Handbook of Chemometrics and Qualimetrics: Part B, 1st ed.; Elsevier B.V.: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Zupan, J.; Gasteiger, J. Neural Networks in Chemistry and Drug Design, 2nd ed.; Wiley-VCH Verlag: Weinheim, Germany, 1999. [Google Scholar]
- Marini, F.; Bucci, R.; Magrì, A.L.; Magrì, A.D. Artificial neural networks in chemometrics: History, examples and perspectives. Microchem. J. 2008, 88, 178–185. [Google Scholar] [CrossRef]
- Marini, F. Non-linear Modeling: Neural Networks. In Comprehensive Chemometrics, 2nd ed.; Brown, S., Tauler, R., Walczak, B., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2020; Volume 3, pp. 519–541. [Google Scholar]
- Che Man, Y.; Syahariza, Z.; Mirghani, M.; Jinap, S.; Bakar, J. Analysis of potential lard adulteration in chocolate and chocolate products using Fourier transform infrared spectroscopy. Food Chem. 2005, 90, 815–819. [Google Scholar] [CrossRef]
- Biancolillo, A.; Santoro, A.; Firmani, P.; Marini, F. Identification and quantification of turmeric adulteration in egg-pasta by near infrared spectroscopy and chemometrics. Appl. Sci. 2020, 10, 2647. [Google Scholar] [CrossRef] [Green Version]
- Croce, R.; Malegori, C.; Oliveri, P.; Medici, I.; Cavaglioni, A.; Rossi, C. Prediction of quality parameters in straw wine by means of FT-IR spectroscopy combined with multivariate data processing. Food Chem. 2020, 305, 125512. [Google Scholar] [CrossRef]
- Biasoli, F.; Gasperi, F.; Aprea, E.; Endrizzi, I.; Framondino, V.; Marini, F.; Mott, D.; Märk, T. Correlation of PTR-MS spectral fingerprints with sensory characterization of flavour and odour profile of “Trentingrana” cheese. Food Qual. Prefer. 2006, 17, 63–75. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Nescatelli, R.; Bucci, R.; Magrì, A.D.; Magrì, A.L.; Marini, F. Chemometrics classification techniques as a tool for solving problems in analytical chemistry. J. AOAC Int. 2014, 97, 19–28. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Bucci, R.; Magrì, A.D.; Magrì, A.L.; Nescatelli, R.; Marini, F. Classification and class-modelling. In Chemometrics in Food Chemistry, 1st ed.; Marini, F., Ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2013; Volume 28, pp. 171–233. [Google Scholar]
- Brereton, R. Chemometrics for Pattern Recognition, 1st ed.; John Wiley & Sons Inc.: New York, NY, USA, 2009. [Google Scholar]
- Albano, C.; Dunn III, W.; Edlund, U.; Johansson, E.; Nordén, B.; Sjöström, M.; Wold, S. Four levels of pattern recognition. Anal. Chim. Acta 1978, 103, 429–443. [Google Scholar] [CrossRef]
- Fisher, R. The use of multiple measurements in taxonomic problems. Ann. Eugenic. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- McLachlan, G. Discriminant Analysis and Statistical Pattern Recognition, 1st ed.; John Wiley & Sons Inc.: New York, NY, USA, 1992. [Google Scholar]
- Tharwat, A. Linear vs. quadratic discriminant analysis classifier: A tutorial. Int. J. Appl. Pattern Recogn. 2016, 3, 145–180. [Google Scholar] [CrossRef]
- Lavine, B.; Davidson, C.; Rayens, W. Machine learning based pattern recognition applied to microarray data. Comb. Chem. High Throughput Screen. 2004, 7, 115–131. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Rayens, W. PLS and dimension reduction for classification. Comput. Stat. 2007, 22, 189–208. [Google Scholar] [CrossRef]
- Liu, Y.; Rayens, W.; Andersen, A.; Smith, C. Partial least squares discrimination with heterogeneous covariance structures. J. Chemometr. 2011, 25, 109–115. [Google Scholar] [CrossRef]
- Friedman, J. Regularized discriminant analysis. J. Am. Stat. Assoc. 1989, 84, 165–175. [Google Scholar] [CrossRef]
- Greene, T.; Rayens, W. Partially pooled covariance matrix estimation in discriminant analysis. Commun. Stat. 1989, 18, 3679–3702. [Google Scholar] [CrossRef]
- Rayens, W. A role for covariance stabilization in the construction of the classical mixture surface. J. Chemometr. 1990, 4, 159–170. [Google Scholar] [CrossRef]
- Rayens, W.; Greene, T. Covariance pooling and stabilization for classification. Comput. Stat. Data Anal. 1991, 11, 17–42. [Google Scholar] [CrossRef]
- Hastie, T.; Buja, A.; Tibshirani, R. Penalized discriminant analysis. Ann. Stat. 1995, 23, 73–102. [Google Scholar] [CrossRef]
- Ripley, B. Pattern Recognition and Neural Networks, 1st ed.; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemometr. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Wold, S.; Albano, C.; Dunn, W.; Esbensen, K.; Hellberg, S.; Johansson, E.; Sjöström, M. Pattern recognition: Finding and using regularities in multivariate data. In Food Research and Data Analysis, 1st ed.; Martens, H., Russwurm, H., Jr., Eds.; Applied Science Publishers Ltd.: London, UK, 1983; Volume 3, pp. 147–188. [Google Scholar]
- Nocairi, H.; Qannari, E.; Vigneau, E.; Bertrand, D. Discrimination on latent components with respect to patterns. Application to multicollinear data. Comput. Stat. Data Anal. 2005, 48, 139–147. [Google Scholar] [CrossRef]
- Indahl, U.; Martens, H.; Næs, T. From dummy regression to prior probabilities in PLS-DA. J. Chemometr. 2007, 21, 529–536. [Google Scholar] [CrossRef]
- Pérez, N.; Ferré, J.; Boqué, R. Calculation of the reliability of classification in discriminant partial least-squares binary classification. Chemometr. Intell. Lab. 2009, 95, 122–128. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Marini, F. Local classification: Locally-Weighted-Partial Least Squares-Discriminant Analysis (LW-PLS-DA). Anal. Chim. Acta 2014, 838, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Postma, G.; Krooshof, P.; Buydens, L. Opening the kernel of kernel partial least squares and support vector machines. Anal. Chim. Acta 2011, 705, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Smolinska, A.; Blanchet, L.; Coulier, L.; Ampt, K.; Luider, T.; Hintzen, R.; Wijmega, S.; Buydens, L. Interpretation and visualization of non-linear data fusion in kernel space: Study on metabolomic characterization of multiple sclerosis. PLoS ONE 2012, 7, e38163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitale, R.; de Noord, O.; Ferrer, A. A kernel-based approach for fault diagnosis in batch processes. J. Chemometr. 2014, 28, 697–707. [Google Scholar] [CrossRef]
- Lu, B.; Ito, M. Task decomposition and module combination based on class relations: A modular neural network for pattern classification. IEEE Trans. Neural Netw. 1999, 10, 1244–1256. [Google Scholar]
- Cheng, H.; Tang, P.; Jin, R. Efficient algorithm for localized support vector machine. IEEE Trans. Knowl. Data Eng. 2010, 22, 537–549. [Google Scholar] [CrossRef]
- Forina, M.; Oliveri, P.; Bagnasco, L.; Simonetti, R.; Casolino, M.; Nizzi Grifi, F.; Casale, M. Artificial nose, NIR and UV-visible spectroscopy for the characterisation of the PDO Chianti Classico olive oil. Talanta 2015, 144, 1070–1078. [Google Scholar] [CrossRef]
- Vitale, R.; Bevilacqua, M.; Bucci, R.; Magrì, A.D.; Magrì, A.L.; Marini, F. A rapid and non-invasive method for authenticating the origin of pistachio samples by NIR spectroscopy and chemometrics. Chemometr. Intell. Lab. 2013, 121, 90–99. [Google Scholar] [CrossRef]
- Marini, F.; Zupan, J.; Magrì, A.L. On the use of counterpropagation artificial neural networks to characterize Italian rice varieties. Anal. Chim. Acta 2004, 510, 231–240. [Google Scholar] [CrossRef]
- Nasab, S.; Yazd, M.; Marini, F.; Nescatelli, R.; Biancolillo, A. Classification of honey applying high performance liquid chromatography, near-infrared spectroscopy and chemometrics. Chemometr. Intell. Lab. 2020, 202, 104037. [Google Scholar] [CrossRef]
- Grassi, S.; Vitale, R.; Alamprese, C. An exploratory study for the technological classification of egg white powders based on infrared spectroscopy. LWT-Food Sci. Technol. 2018, 96, 469–475. [Google Scholar] [CrossRef]
- Schiavone, S.; Marchionni, B.; Bucci, R.; Marini, F.; Biancolillo, A. Authentication of grappa (Italian grape marc spirit) by mid and near infrared spectroscopies coupled with chemometrics. Vib. Spectrosc. 2020, 107, 103040. [Google Scholar] [CrossRef]
- Xie, L.; Ying, Y.; Ying, T. Classification of tomatoes with different genotypes by visible and short-wave near-infrared spectroscopy with least-squares support vector machines and other chemometrics. J. Food Eng. 2009, 94, 34–39. [Google Scholar] [CrossRef]
- Ayora-Cañada, M.; Muik, B. Fourier-transform near-infrared spectroscopy as a tool for olive fruit classification and quantitative analysis. Spectrosc. Lett. 2005, 38, 769–785. [Google Scholar] [CrossRef]
- Biancolillo, A.; Firmani, P.; Bucci, R.; Magrì, A.D.; Marini, F. Determination of insect infestation on stored rice by near infrared (NIR) spectroscopy. Microchem. J. 2019, 145, 252–258. [Google Scholar] [CrossRef]
- Biancolillo, A.; Bucci, R.; Magrì, A.L.; Magrì, A.D.; Marini, F. Data-fusion for multiplatform characterization of an Italian craft beer aimed at its authentication. Anal. Chim. Acta 2014, 820, 23–31. [Google Scholar] [CrossRef]
- De Luca, S.; Bucci, R.; Magrì, A.D.; Marini, F. Class modeling techniques in chemometrics: Theory and applications. In Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, 1st ed.; Meyers, R., Ed.; John Wiley & Sons Inc.: New York, NY, USA, 2018; pp. 1–24. [Google Scholar]
- Forina, M.; Oliveri, P.; Lanteri, S.; Casale, M. Class-modeling techniques, classic and new, for old and new problems. Chemometr. Intell. Lab. 2008, 93, 132–148. [Google Scholar] [CrossRef]
- Oliveri, P.; Downey, G. Multivariate class modeling for the verification of food-authenticity claims. TRAC-Trends Anal. Chem. 2012, 35, 74–86. [Google Scholar] [CrossRef]
- Marini, F. Classification methods in chemometrics. Curr. Anal. Chem. 2010, 6, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Derde, M.; Massart, D. UNEQ: A disjoint modelling technique for pattern recognition based on normal distribution. Anal. Chim. Acta 1986, 184, 33–51. [Google Scholar] [CrossRef]
- Derde, M.; Massart, D. UNEQ: A class modelling supervised pattern recognition technique. Microchim. Acta 1986, 89, 139–152. [Google Scholar] [CrossRef]
- Wold, S. Pattern recognition by means of disjoint principal component models. Pattern Recogn. 1976, 8, 127–139. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M. SIMCA: A method for analyzing chemical data in terms of similarity and analogy. In Chemometrics: Theory and Application, 1st ed.; Kowalski, B., Ed.; American Chemical Society: Washington, DC, USA, 1977; Volume 52, pp. 243–282. [Google Scholar]
- Defrise-Gussenhoven, E. Ellipses equiprobables et taux d’éloignement en biometric. Bull. Inst. R. Sci. Nat. Belg. 1955, 31, 1–31. [Google Scholar]
- Forina, M.; Lanteri, S.; Sarabia, L. Distance and class space in the UNEQ class-modeling technique. J. Chemometr. 1995, 9, 69–89. [Google Scholar] [CrossRef]
- Pomerantsev, A. Acceptance areas for multivariate classification derived by projection methods. J. Chemometr. 2008, 22, 601–609. [Google Scholar] [CrossRef]
- Rodionova, O.; Oliveri, P.; Pomerantsev, A. Rigorous and compliant approaches to one-class classification. Chemometr. Intell. Lab. 2016, 159, 89–96. [Google Scholar] [CrossRef]
- Pirro, V.; Oliveri, P.; Sciutteri, B.; Salvo, R.; Salomone, A.; Lanteri, S.; Vincenti, M. Multivariate strategies for screening evaluation of harmful drinking. Bioanalysis 2013, 5, 687–699. [Google Scholar] [CrossRef]
- Rodionova, O.; Balyklova, K.; Titova, A.; Pomerantsev, A. Quantitative risk assessment in classification of drugs with identical API content. J. Pharm. Biomed. 2014, 98, 186–192. [Google Scholar] [CrossRef]
- Oliveri, P. Class-modelling in food analytical chemistry: Development, sampling, optimization and validation issues—A tutorial. Anal. Chim. Acta 2017, 982, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Vitale, R.; Marini, F.; Ruckebusch, C. SIMCA modeling for overlapping classes: Fixed or optimized decision threshold? Anal. Chem. 2018, 90, 10738–10747. [Google Scholar] [CrossRef] [PubMed]
- Małyjurek, Z.; Vitale, R.; Walczak, B. Different strategies for class model optimization. A comparative study. Talanta 2020, 215, 120912. [Google Scholar] [CrossRef] [PubMed]
- De Luca, S.; De Filippis, M.; Bucci, R.; Magrì, A.D.; Magrì, A.L.; Marini, F. Characterization of the effects of different roasting conditions on coffee samples of different geographical origins by HPLC-DAD, NIR and chemometrics. Microchem. J. 2016, 129, 348–361. [Google Scholar] [CrossRef]
- Derde, M.; Kaufman, L.; Massart, D. A non-parametric class-modelling technique. J. Chemometr. 1989, 3, 375–395. [Google Scholar] [CrossRef]
- Marini, F.; Zupan, J.; Magrì, A.L. Class-modeling using Kohonen artificial neural networks. Anal. Chim. Acta 2005, 544, 306–314. [Google Scholar] [CrossRef]
- Marini, F.; Magrì, A.L.; Bucci, R. Multilayer feed-forward artificial neural networks for class modeling. Chemometr. Intell. Lab. 2007, 88, 118–124. [Google Scholar] [CrossRef]
- Oliveri, P.; López, M.; Casolino, M.; Ruisánchez, I.; Callao, M.; Medini, L.; Lanteri, S. Partial least squares density modeling (PLS-DM)—A new class-modeling strategy applied to the authentication of olives in brine by near-infrared spectroscopy. Anal. Chim. Acta 2014, 851, 30–36. [Google Scholar] [CrossRef]
- Marini, F.; Bucci, R.; Magrì, A.L.; Magrì, A.D. Authentication of Italian CDO wines by class-modeling techniques. Chemometr. Intell. Lab. 2006, 84, 164–171. [Google Scholar] [CrossRef]
- Forina, M.; Oliveri, P.; Jäger, H.; Römisch, U.; Smeyers-Verbeke, J. Class modeling techniques in the control of the geographical origin of wines. Chemometr. Intell. Lab. 2009, 99, 127–137. [Google Scholar] [CrossRef]
- Di Egidio, V.; Oliveri, P.; Woodcock, T.; Downey, G. Confirmation of brand identity in foods by near infrared transflectance spectroscopy using classification and class-modelling chemometric techniques—The example of a Belgian beer. Food Res. Int. 2011, 44, 544–549. [Google Scholar] [CrossRef]
- Mannina, L.; Marini, F.; Antiochia, R.; Cesa, S.; Magrì, A.L.; Capitani, D.; Sobolev, A. Tracing the origin of beer samples by NMR and chemometrics: Trappist beers as a case study. Electrophoresis 2016, 37, 2710–2719. [Google Scholar] [CrossRef] [PubMed]
- Karunathilaka, S.; Fardin Kia, A.; Srigley, C.; Kyu Chung, J.; Mossoba, M. Nontargeted, rapid screening of extra virgin olive oil products for authenticity using near-infrared spectroscopy in combination with conformity index and multivariate statistical analyses. J. Food Sci. 2016, 81, C2390–C2397. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, M.; Bucci, R.; Magrì, A.D.; Magrì, A.L.; Marini, F. Tracing the origin of extra virgin olive oils by infrared spectroscopy and chemometrics: A case study. Anal. Chim. Acta 2012, 717, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Casale, M.; Zunin, P.; Cosulich, M.; Pistarino, E.; Perego, P.; Lanteri, S. Characterisation of table olive cultivar by NIR spectroscopy. Food Chem. 2010, 122, 1261–1265. [Google Scholar] [CrossRef]
- Esteban-Díez, I.; González-Sáiz, J.; Pizarro, C. An evaluation of orthogonal signal correction methods for the characterization of arabica and robusta coffee varieties by NIRS. Anal. Chim. Acta 2004, 514, 57–67. [Google Scholar] [CrossRef]
- Li, B.; Wang, H.; Zhao, Q.; Ouyang, J.; Wu, Y. Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: A comparative study. Food Chem. 2015, 181, 25–30. [Google Scholar] [CrossRef]
- Firmani, P.; Bucci, R.; Marini, F.; Biancolillo, A. Authentication of “Avola almonds” by near infrared (NIR) spectroscopy and chemometrics. J. Food Compos. Anal. 2019, 82, 103235. [Google Scholar] [CrossRef]
- Firmani, P.; La Piscopia, G.; Bucci, R.; Marini, F.; Biancolillo, A. Authentication of P.G.I. Gragnano pasta by near infrared (NIR) spectroscopy and chemometrics. Microchem. J. 2020, 152, 104339. [Google Scholar] [CrossRef]
- Biancolillo, A.; De Luca, S.; Bassi, S.; Roudier, L.; Bucci, R.; Magrì, A.D.; Marini, F. Authentication of an Italian PDO hazelnut (“nocciola romana”) by NIR spectroscopy. Environ. Sci. Pollut. Res. 2018, 25, 28780–28786. [Google Scholar] [CrossRef]
- Nardecchia, A.; Presutto, R.; Bucci, R.; Marini, F.; Biancolillo, A. Authentication of the geographical origin of “Vallerano” chestnut by near infrared spectroscopy coupled with chemometrics. Food Anal. Method 2020, 13, 1782–1790. [Google Scholar] [CrossRef]
- Loftsgaarden, D.; Queesenberry, C. A nonparametric estimate of a multivariate density function. Ann. Math. Stat. 1965, 36, 1049–1051. [Google Scholar] [CrossRef]
- Coomans, D.; Massart, D.; Broeckaert, I.; Tassin, A. Potential methods in pattern recognition: Part 1. Classification aspects of the supervised method ALLOC. Anal. Chim. Acta 1981, 133, 215–224. [Google Scholar] [CrossRef]
- Forina, M.; Armanino, C.; Leardi, R.; Drava, G. A class-modelling technique based on potential functions. J. Chemometr. 1991, 5, 435–453. [Google Scholar] [CrossRef]
- Juricskay, I.; Veress, G. PRIMA: A new pattern recognition method. Anal. Chim. Acta 1985, 171, 61–76. [Google Scholar] [CrossRef]
- Forina, M.; Oliveri, P.; Casale, M.; Lanteri, S. Multivariate range modeling, a new technique for multivariate class modeling: The uncertainty of the estimates of sensitivity and specificity. Anal. Chim. Acta. 2008, 622, 85–93. [Google Scholar] [CrossRef]
- Tax, D.; Duin, R. Support vector domain description. Pattern Recogn. Lett. 1999, 20, 1191–1199. [Google Scholar] [CrossRef]
- Eröss-Kiss, K.; Kiss, Z.; Wiener, E.; Szakálas, G. New data on the evaluation of the infrared (IR) spectra of substances of complicated structure and their application for identification with PRIMA pattern recognition method. Part I. Period. Polytech. Chem. 1991, 35, 3–22. [Google Scholar]
- Jiang, H.; Liu, G.; Xiao, X.; Mei, C.; Ding, Y.; Yu, S. Monitoring of solid-state fermentation of wheat straw in a pilot scale using FT-NIR spectroscopy and support vector data description. Microchem. J. 2012, 102, 68–74. [Google Scholar] [CrossRef]
- Biancolillo, A.; Boqué, R.; Cocchi, M.; Marini, F. Data fusion strategies in food analysis. In Data Fusion Methodology and Applications, 1st ed.; Cocchi, M., Ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2019; Volume 31, pp. 271–310. [Google Scholar]
- Wold, S.; Hellberg, S.; Lundstedt, T.; Sjostrom, M.; Wold, H. PLS modeling with latent variables in two or more dimensions. In Proceedings of the Symposium on PLS Model Building: Theory and Application, Frankfurt am Main, Germany, 23–25 September 1987. [Google Scholar]
- Wold, S.; Kettaneh, N.; Tjessem, K. Hierarchical multiblock PLS and PC models for easier model interpretation and as an alternative to variable selection. J. Chemometr. 1996, 10, 463–482. [Google Scholar] [CrossRef]
- Westerhuis, J.; Coenegracht, P. Multivariate modelling of the pharmaceutical two-step process of wet granulation and tableting with multiblock partial least squares. J. Chemometr. 1997, 11, 379–392. [Google Scholar] [CrossRef]
- Casin, P. A generalization of principal component analysis to K sets of variables. Comput. Stat. Data Anal. 2001, 35, 417–428. [Google Scholar] [CrossRef]
- Smilde, A.; Westerhuis, J.; De Jong, S. A framework for sequential multiblock component methods. J. Chemometr. 2003, 17, 323–337. [Google Scholar] [CrossRef]
- Qannari, E.; Wakeling, I.; Courcoux, P.; MacFie, H. Defining the underlying sensory dimensions. Food Qual. Prefer. 2000, 11, 151–154. [Google Scholar] [CrossRef]
- Mazerolles, G.; Hanafi, M.; Dufour, E.; Bertrand, D.; Qannari, E. Common components and specific weights analysis: A chemometric method for dealing with complexity of food products. Chemometr. Intell. Lab. 2006, 81, 41–49. [Google Scholar] [CrossRef]
- Van Deun, K.; Smilde, A.; Thorrez, L.; Kiers, H.; Van Mechelen, I. Identifying common and distinctive processes underlying multiset data. Chemometr. Intell. Lab. 2013, 129, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Vitale, R.; de Noord, O.; Westerhuis, J.; Smilde, A.; Ferrer, A. Divide et impera: How disentangling common and distinctive variability in multiset data analysis can aid industrial process troubleshooting and understanding. J. Chemometr. 2020, in press. [Google Scholar] [CrossRef]
- Schouteden, M.; Van Deun, K.; Pattyn, S.; Van Mechelen, I. SCA with rotation to distinguish common and distinctive information in linked data. Behav. Res. Methods 2013, 45, 822–833. [Google Scholar] [CrossRef]
- Trygg, J. O2-PLS for qualitative and quantitative analysis in multivariate calibration. J. Chemometr. 2002, 16, 283–293. [Google Scholar] [CrossRef]
- Qin, S.; Valle, S.; Piovoso, M. On unifying multiblock analysis with application to decentralized process monitoring. J. Chemometr. 2001, 15, 715–742. [Google Scholar] [CrossRef]
- Xu, Y.; Correa, E.; Goodacre, R. Integrating multiple analytical platforms and chemometrics for comprehensive metabolic profiling: Application to meat spoilage detection. Anal. Bioanal. Chem. 2013, 405, 5063–5074. [Google Scholar] [CrossRef] [PubMed]
- Jourdren, S.; Saint-Eve, A.; Panouillé, M.; Lejeune, P.; Déléris, I.; Souchon, I. Respective impact of bread structure and oral processing on dynamic texture perceptions through statistical multiblock analysis. Food Res. Int. 2016, 87, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Guichard, E.; Repoux, M.; Qannari, E.; Laboure, H.; Feron, G. Model cheese aroma perception is explained not only by in vivo aroma release but also by salivary composition and oral processing parameters. Food Funct. 2017, 8, 615–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos, M.; Sousa, S.; Pereira, A.; Reis, M. Advanced predictive methods for wine age prediction: Part II—A comparison study of multiblock regression approaches. Talanta 2017, 171, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Brás, L.; Bernardino, S.; Lopes, J.; Menezes, J. Multiblock PLS as an approach to compare and combine NIR and MIR spectra in calibration of soybean flour. Chemometr. Intell. Lab. 2005, 75, 91–99. [Google Scholar] [CrossRef]
- Maléchaux, A.; Laroussi-Mezghan, S.; Le Drêau, Y.; Artaud, J.; Dupuy, N. Multiblock chemometrics for the discrimination of three extra virgin olive oil varieties. Food Chem. 2020, 309, 125588. [Google Scholar] [CrossRef] [Green Version]
- Mehl, F.; Marti, G.; Merle, P.; Delort, E.; Baroux, L.; Sommer, H.; Wolfender, J.; Rudaz, S.; Boccard, J. Integrating metabolomic data from multiple analytical platforms for a comprehensive characterization of lemon essential oils. Flavour Frag. J. 2015, 30, 131–138. [Google Scholar] [CrossRef]
- Teixeira dos Santos, C.; Páscoa, R.; Sarraguca, M.; Porto, P.; Cerdeira, A.; González-Sáiz, J.; Pizarro, C.; Lopes, J. Merging vibrational spectroscopic data for wine classification according to the geographic origin. Food Res. Int. 2017, 102, 504–510. [Google Scholar] [CrossRef]
- Næs, T.; Tomic, O.; Mevik, B.; Martens, H. Path modelling by sequential PLS regression. J. Chemometr. 2011, 25, 28–40. [Google Scholar] [CrossRef]
- Biancolillo, A.; Næs, T. The sequential and orthogonalized PLS regression for multiblock regression: Theory, examples, and extensions. In Data Fusion Methodology and Applications, 1st ed.; Cocchi, M., Ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2019; Volume 31, pp. 157–177. [Google Scholar]
- Biancolillo, A.; Måge, I.; Næs, T. Combining SO-PLS and linear discriminant analysis for multi-block classification. Chemometr. Intell. Lab. 2015, 141, 58–67. [Google Scholar] [CrossRef]
- Niimi, J.; Tomic, O.; Næs, T.; Jeffery, D.; Bastian, S.; Boss, P. Application of sequential and orthogonalised-partial least squares (SO-PLS) regression to predict sensory properties of Cabernet Sauvignon wines from grape chemical composition. Food Chem. 2018, 256, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, L.; Via, B.; Wu, Y.; Xiao, W.; Liu, X. NIR and MIR spectral data fusion for rapid detection of Lonicera japonica and Artemisia annua by liquid extraction process. Vib. Spectrosc. 2019, 102, 31–38. [Google Scholar] [CrossRef]
- Giannetti, V.; Mariani, M.; Marini, F.; Torrelli, P.; Biancolillo, A. Grappa and Italian spirits: Multiplatform investigation based on GC-MS, MIR and NIR spectroscopies for the authentication of the geographical indication. Microchem. J. 2020, 157, 104896. [Google Scholar] [CrossRef]
- Biancolillo, A.; Marini, F.; D’Archivio, A. Geographical discrimination of red garlic (Allium sativum L.) using fast and non-invasive attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) spectroscopy combined with chemometrics. J. Food Compos. Anal. 2020, 86, 103351. [Google Scholar] [CrossRef]
- Firmani, P.; Nardecchia, A.; Nocente, F.; Gazza, L.; Marini, F.; Biancolillo, A. Multi-block classification of Italian semolina based on near infrared spectroscopy (NIR) analysis and alveographic indices. Food Chem. 2020, 309, 125677. [Google Scholar] [CrossRef]
- Biancolillo, A.; Foschi, M.; D’Archivio, A. Geographical classification of Italian saffron (Crocus sativus L.) by multi-block treatments of UV-Vis and IR spectroscopic data. Molecules 2020, 25, 2332. [Google Scholar] [CrossRef]
- Lauzon-Gauthier, J.; Manolescu, P.; Duchesne, C. The sequential multi-block PLS algorithm (SMB-PLS): Comparison of performance and interpretability. Chemometr. Intell. Lab. 2018, 180, 72–83. [Google Scholar] [CrossRef]
- Biancolillo, A.; Næs, T.; Bro, R.; Måge, I. Extension of SO-PLS to multi-way arrays: SO-N-PLS. Chemometr. Intell. Lab. 2017, 164, 113–126. [Google Scholar] [CrossRef]
- Roger, J.; Biancolillo, A.; Marini, F. Sequential preprocessing through orthogonalization (SPORT) and its application to near infrared spectroscopy. Chemometr. Intell. Lab. 2020, 199, 103975. [Google Scholar] [CrossRef]
- Biancolillo, A.; Marini, F.; Roger, J. SO-CovSel: A novel method for variable selection in a multiblock framework. J. Chemometr. 2020, 34, e3120. [Google Scholar] [CrossRef]
- El Ghaziri, A.; Cariou, V.; Rutledge, D.; Qannari, E. Analysis of multiblock datasets using ComDim: Overview and extension to the analysis of (K + 1) datasets. J. Chemometr. 2016, 30, 420–429. [Google Scholar] [CrossRef]
- Cariou, V.; Qannari, E.; Rutledge, D.; Vigneau, E. ComDim: From multiblock data analysis to path modeling. Food Qual. Prefer. 2018, 67, 27–34. [Google Scholar] [CrossRef]
- Ríos-Reina, R.; Callejón, R.; Savorani, F.; Amigo, J.; Cocchi, M. Data fusion approaches in spectroscopic characterization and classification of PDO wine vinegards. Talanta 2019, 198, 560–572. [Google Scholar] [CrossRef] [Green Version]
- Lock, E.; Hoadley, K.; Marron, J.; Nobel, A. Joint and individual variation explained (JIVE) for integrated analysis of multiple data types. Ann. Appl. Stat. 2013, 7, 523–542. [Google Scholar] [CrossRef] [PubMed]
- Berglund, A.; Wold, S. A serial extension of multiblock PLS. J. Chemometr. 1999, 13, 461–471. [Google Scholar] [CrossRef]
- Reis, M. Network-induced supervised learning: Network-induced classification (NI-C) and network-induced regression (NI-R). AIChE J. 2013, 59, 1570–1587. [Google Scholar] [CrossRef]
- Måge, I.; Menichelli, E.; Næs, T. Preference mapping by PO-PLS: Separating common and unique information in several data blocks. Food Qual. Prefer. 2012, 24, 8–16. [Google Scholar] [CrossRef]
- Bougeard, S.; Qannari, E.; Rose, N. Multiblock redundancy analysis: Interpretation tools and application in epidemiology. J. Chemometr. 2011, 25, 467–475. [Google Scholar] [CrossRef]
- Löfstedt, T.; Trygg, J. OnPLS—A novel multiblock method for the modelling of predictive and orthogonal variation. J. Chemometr. 2011, 25, 441–455. [Google Scholar] [CrossRef]
- Nguyen, Q.; Liland, K.; Tomic, O.; Tarrega, A.; Varela, P.; Næs, T. SO-PLS as an alternative approach for handling multi-dimensionality in modelling different aspects of consumer expectations. Food Res. Int. 2020, 133, 109189. [Google Scholar] [CrossRef]
- Næs, T.; Romano, R.; Tomic, O.; Måge, I.; Smilde, A.; Liland, K. Sequential and orthogonalized PLS (SO-PLS) regression for path analysis: Order of blocks and relations between effects. J. Chemometr. 2020, in press. [Google Scholar]
- Ruckebusch, C. Resolving Spectral Mixtures with Applications from Ultrafast Time-Resolved Spectroscopy to Super-Resolution Imaging, 1st ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Tauler, R.; Smilde, A.; Kowalski, B. Selectivity, local rank, three-way data analysis and ambiguity in multivariate curve resolution. J. Chemometr. 1995, 9, 31–58. [Google Scholar] [CrossRef]
- Tauler, R. Multivariate curve resolution applied to second order data. Chemometr. Intell. Lab. 1995, 30, 133–146. [Google Scholar] [CrossRef]
- Ruckebusch, C.; Blanchet, L. Multivariate curve resolution: A review of advanced and tailored applications and challenges. Anal. Chim. Acta 2013, 765, 28–36. [Google Scholar] [CrossRef] [PubMed]
- de Juan, A.; Jaumot, J.; Tauler, R. Multivariate curve resolution (MCR). Solving the mixture analysis problems. Anal. Methods 2014, 6, 4964–4976. [Google Scholar] [CrossRef]
- Jaumot, J.; Gargallo, R.; de Juan, A.; Tauler, R. A graphical user-friendly interface for MCR-ALS: A new tool for multivariate curve resolution in MATLAB. Chemometr. Intell. Lab. 2005, 76, 101–110. [Google Scholar] [CrossRef]
- Jaumot, J.; de Juan, A.; Tauler, R. MCR-ALS GUI 2.0: New features and applications. Chemometr. Intell. Lab. 2015, 140, 1–12. [Google Scholar] [CrossRef]
- Maeder, M. Evolving factor analysis for the resolution of overlapping chromatographic peaks. Anal. Chem. 1987, 59, 527–530. [Google Scholar] [CrossRef]
- Windig, W.; Guilment, J. Interactive self-modeling mixture analysis. Anal. Chem. 1991, 63, 1425–1432. [Google Scholar] [CrossRef]
- Abdollahi, H.; Tauler, R. Uniqueness and rotation ambiguity in multivariate curve resolution methods. Chemometr. Intell. Lab. 2011, 108, 100–111. [Google Scholar] [CrossRef]
- Golshan, A.; Abdollahi, H.; Beyramysoltan, S.; Maeder, M.; Neymeyr, K.; Rajkó, R.; Sawall, M.; Tauler, R. A review of recent methods for the determination of ranges of feasible solutions resulting from soft modelling analyses of multivariate data. Anal. Chim. Acta 2016, 911, 1–13. [Google Scholar] [CrossRef]
- Tauler, R.; Izquierdo-Ridorsa, A.; Casassas, E. Simultaneous analysis of several spectroscopic titrations with self-modelling curve resolution. Chemometr. Intell. Lab. 1993, 18, 293–300. [Google Scholar] [CrossRef]
- Bro, R.; De Jong, S. A fast non-negativity-constrained least squares algorithm. J. Chemometr. 1997, 11, 393–401. [Google Scholar] [CrossRef]
- Esteban, M.; Ariño, J.; Díaz-Cruz, J.; Díaz-Cruz, M.; Tauler, R. Multivariate curve resolution with alternating least squares optimisation: A soft-modelling approach to metal complexation studies by voltammetric techniques. TRAC-Trends Anal. Chem. 2000, 19, 49–61. [Google Scholar] [CrossRef]
- Tauler, R.; Maeder, M.; de Juan, A. Multiset Data Analysis: Extended Multivariate Curve Resolution. In Comprehensive Chemometrics, 2nd ed.; Brown, S., Tauler, R., Walczak, B., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2020; Volume 2, pp. 305–336. [Google Scholar]
- Grassi, S.; Alamprese, C.; Bono, V.; Casiraghi, E.; Amigo, J. Modelling milk lactic acid fermentation using multivariate curve resolution-alternating least squares (MCR-ALS). Food Bioprocess Technol. 2014, 7, 1819–1829. [Google Scholar] [CrossRef]
- Grassi, S.; Strani, L.; Casiraghi, E.; Alamprese, C. Control and monitoring of milk renneting using FT-NIR spectroscopy as a process analytical technology tool. Foods 2019, 8, 405. [Google Scholar] [CrossRef] [Green Version]
- Strani, L.; Grassi, S.; Alamprese, C.; Casiraghi, E.; Ghiglietti, R.; Locci, F.; Pricca, N.; de Juan, A. Effect of physicochemical factors and use of milk powder on milk rennet-coagulation: Process understanding by near infrared spectroscopy and chemometrics. Food Control. 2020, in press. [Google Scholar]
- Grassi, S.; Amigo, J.; Lyndgaard, C.; Foschino, R.; Casiraghi, E. Assessment of the sugars and ethanol development in beer fermentation with FT-IR and multivariate curve resolution models. Food Res. Int. 2014, 62, 602–608. [Google Scholar] [CrossRef]
- Fisher, R. The Design of Experiments, 5th ed.; Oliver & Boyd: Edinburgh, UK, 1951. [Google Scholar]
- Box, G.; Hunter, J.; Hunter, W. Statistics for Experimenters: Design, Innovation and Discovery, 2nd ed.; John Wiley & Sons Inc.: New York, NY, USA, 2005. [Google Scholar]
- Montgomery, D. Design and Analysis of Experiments, 8th ed.; John Wiley & Sons Inc.: New York, NY, USA, 2012. [Google Scholar]
- Leardi, R. Experimental design in chemistry: A tutorial. Anal. Chim. Acta. 2009, 652, 161–172. [Google Scholar] [CrossRef]
- Morrison, D. Multivariate Statistical Methods, 4th ed; Duxbury Press: Boston, MA, USA, 2003. [Google Scholar]
- Fisher, R. The correlation between relatives on the supposition of mendelian inheritance. Philos. Trans. R. Soc. Edinb. 1918, 52, 399–433. [Google Scholar] [CrossRef] [Green Version]
- Fisher, R. On the “probable error” of a coefficient of correlation deduced from a small sample. Metron 1921, 1, 3–32. [Google Scholar]
- Fisher, R. Statistical Methods for Research Workers, 1st ed.; Oliver & Boyd: Edinburgh, UK, 1925. [Google Scholar]
- Ståhle, L.; Wold, S. Analysis of variance (ANOVA). Chemometr. Intell. Lab. 1989, 6, 259–272. [Google Scholar] [CrossRef]
- Cooley, W.; Lohnes, P. Multivariate Data Analysis, 1st ed.; John Wiley & Sons Inc.: New York, NY, USA, 1971. [Google Scholar]
- Scheffé, H. The Analysis of Variance, 1st ed.; John Wiley & Sons Inc.: New York, NY, USA, 1959. [Google Scholar]
- Bray, J.; Maxwell, S. Multivariate Analysis of Variance, 1st ed.; SAGE Publications Inc.: Beverly Hills, CA, USA, 1986. [Google Scholar]
- Ståhle, L.; Wold, S. Multivariate analysis of variance (MANOVA). Chemometr. Intell. Lab. 1990, 9, 127–141. [Google Scholar] [CrossRef]
- Jansen, J.; Hoefsloot, H.; van der Greef, J.; Timmerman, M.; Westerhuis, J.; Smilde, A. ASCA: Analysis of multivariate data obtained from an experimental design. J. Chemometr. 2005, 19, 469–481. [Google Scholar] [CrossRef]
- Smilde, A.; Jansen, J.; Hoefsloot, H.; Lamers, R.; van der Greef, J.; Timmerman, M. ANOVA-simultaneous component analysis (ASCA): A new tool for analyzing designed metabolomics data. Bioinformatics 2005, 21, 3043–3048. [Google Scholar] [CrossRef]
- Anderson, M.; ter Braak, C. Permutation tests for multi-factorial analysis of variance. J. Stat. Comput. Sim. 2003, 73, 85–113. [Google Scholar] [CrossRef]
- Vis, D.; Westerhuis, J.; Smilde, A.; van der Greef, J. Statistical validation of megavariate effects in ASCA. BMC Bioinform. 2007, 8, 322. [Google Scholar] [CrossRef] [Green Version]
- de Boves Harrington, P.; Vieira, N.; Chen, P.; Espinoza, J.; Nien, J.; Romero, R.; Yergey, A. Analysis of variance-principal component analysis: A soft tool for proteomic discovery. Anal. Chim. Acta 2005, 544, 118–127. [Google Scholar] [CrossRef]
- de Boves Harrington, P.; Vieira, N.; Espinoza, J.; Nien, J.; Romero, R.; Yergey, A. Proteomic analysis of amniotic fluids using analysis of variance-principal component analysis and fuzzy rule-building expert systems applied to matrix-assisted laser desorption/ionization mass spectrometry. Chemometr. Intell. Lab. 2006, 82, 283–293. [Google Scholar] [CrossRef]
- Marini, F.; de Beer, D.; Joubert, E.; Walczak, B. Analysis of variance of designed chromatographic data sets: The analysis of variance-target projection approach. J. Chromatogr. A 2015, 1405, 94–102. [Google Scholar] [CrossRef]
- Marini, F.; de Beer, D.; Walters, N.; de Villiers, A.; Joubert, E.; Walczak, B. Multivariate analysis of variance of designed chromatographic data. A case study involving fermentation of rooibos tea. J. Chromatogr. A 2017, 1489, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Marini, F.; Walczak, B. ANOVA-Target Projection (ANOVA-TP). In Comprehensive Chemometrics, 2nd ed.; Brown, S., Tauler, R., Walczak, B., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2020; Volume 1, pp. 495–520. [Google Scholar]
- Bouveresse, D.; Pinto, R.; Schmidtke, L.; Locquet, N.; Rutledge, D. Identification of significant factors by an extension of ANOVA-PCA based on multi-block analysis. Chemometr. Intell. Lab. 2011, 106, 173–182. [Google Scholar] [CrossRef]
- Engel, J.; Blanchet, L.; Bloemen, B.; van den Heuvel, L.; Engelke, U.; Wevers, R.; Buydens, L. Regularized MANOVA (rMANOVA) in untargeted metabolomics. Anal. Chim. Acta 2015, 899, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Firmani, P.; Vitale, R.; Ruckebusch, C.; Marini, F. ANOVA-simultaneous component analysis modelling of low-level-fused spectroscopic data: A food chemistry case-study. Anal. Chim. Acta. 2020, 1125, 308–314. [Google Scholar] [CrossRef]
- Zhang, X.; de Juan, A.; Tauler, R. Multivariate curve resolution applied to hyperspectral imaging analysis of chocolate samples. Appl. Spectrosc. 2011, 69, 993–1003. [Google Scholar] [CrossRef]
- Neves, M.; Poppi, R. Monitoring of adulteration and purity in coconut oil using Raman spectroscopy and multivariate curve resolution. Food Anal. Method 2018, 11, 1897–1905. [Google Scholar] [CrossRef]
- Babellahi, F.; Amodio, M.; Marini, F.; Chaudry, M.; de Chiara, M.; Mastrandrea, L.; Colelli, G. Using chemometrics to characterise and unravel the near infra-red spectral changes induced in aubergine fruit by chilling injury as influenced by storage time and temperature. Biosyst. Eng. 2020, 198, 137–146. [Google Scholar] [CrossRef]
- Roger, J.; Boulet, J.; Zeaiter, M.; Rutledge, D. Pre-processing Methods. In Comprehensive Chemometrics, 2nd ed.; Brown, S., Tauler, R., Walczak, B., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2020; Volume 3, pp. 1–75. [Google Scholar]
- Bro, R.; Smilde, A. Centering and scaling in component analysis. J. Chemometr. 2003, 17, 16–33. [Google Scholar] [CrossRef]
- Kimball, B. Smoothing data with Fourier transformations. Agron. J. 1974, 66, 259–262. [Google Scholar] [CrossRef]
- Walczak, B.; Massart, D. Noise suppression and signal compression using the wavelet packet transform. Chemometr. Intell. Lab. 1997, 36, 81–94. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Barnes, R.; Dhanoa, M.; Lister, S. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Geladi, P.; MacDougall, D.; Martens, H. Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl. Spectrosc. 1985, 39, 491–500. [Google Scholar] [CrossRef]
- Martens, H.; Stark, E. Extendend multiplicative signal correction and spectral interference subtraction: New preprocessing methods for near infrared spectroscopy. J. Pharm. Biomed. 1991, 9, 625–635. [Google Scholar] [CrossRef]
- Eilers, P. Parametric time warping. Anal. Chem. 2004, 76, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Westad, F.; Marini, F. Validation of chemometric models—A tutorial. Anal. Chim. Acta 2015, 893, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Kennard, R.; Stone, L. Computer aided design of experiments. Technometrics 1969, 11, 137–148. [Google Scholar] [CrossRef]
- Snee, R. Validation of regression models: Methods and examples. Technometrics 1977, 19, 415–428. [Google Scholar] [CrossRef]
- Daszykowski, M.; Walczak, B.; Massart, D. Representative subset selection. Anal. Chim. Acta 2002, 468, 91–103. [Google Scholar] [CrossRef]
- Wu, W.; Walczak, B.; Massart, D.; Heuerding, S.; Erni, F.; Last, I.; Prebble, K. Artificial neural networks in classification of NIR spectral data: Design of the training set. Chemometr. Intell. Lab. 1996, 33, 35–46. [Google Scholar] [CrossRef]
- Efron, B. The Jacknife, the Bootstrap and Other Resampling Plans, 1st. ed.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1982. [Google Scholar]
Aim | Method | Reference |
---|---|---|
Exploration of apple varieties | PCA | [32] |
Beer storage monitoring | PCA | [33] |
Adulteration detection of Camellia oils | PCA | [34] |
Chemical characterization of Mediterranean olive oils | ICA | [35] |
Chemical characterization of honey samples | ICA | [36] |
Chemical characterization of soft drinks | ICA | [36] |
Determination of lard content in chocolate samples | PLS | [92] |
Quantification of turmeric adulteration in egg-pasta | PLS | [93] |
Straw wine quality parameter prediction | PLS | [94] |
Sensory characterization of Trentingrana cheese | PLS | [95] |
Egg content quantification in dried egg-pasta | Local PLS | [76] |
Characterization of PDO Chianti Classico olive oil | LDA | [123] |
Determination of the geographical origin of pistachios | PLSDA | [124] |
Classification of rice varieties | LW-PLSDA/K-PLSDA/Artificial neural networks | [117,125] |
Classification of honey samples | PLSDA | [126] |
Technological classification of egg white powders | PLSDA | [127] |
Discrimination of distillates | PLSDA | [128] |
Classification of tomato genotypes | LDA/PLSDA/Support vector machines/ | [129] |
Olive fruit classification | QDA | [130] |
Insect infestation detection in stored rice | PLSDA | [131] |
Characterization of Italian craft beers | PLSDA | [132] |
Methods | ||
---|---|---|
Name | Aim | Reference |
UNEQual class spaces (UNEQ) | Exploratory | [137,138] |
Soft Independent Modelling of Class Analogy (SIMCA) | Regression | [139,140] |
Non-parametric class modelling | Regression | [151] |
Neural networks-based class modelling | Regression | [152,153] |
Partial Least Squares Density Modeling (PLSDM) | [154] | |
Potential function (kernel density) method (POTFUN) | Regression | [168,169,170] |
Pattern Recognition by Independent Multicategory Analysis (PRIMA) | Regression | [171] |
Multivariate Range Modeling (MRM) | Regression | [172] |
Support Vector Domain Description (SVDD) | [173] | |
Applications | ||
Aim | Method | Reference |
Traceability of rice varieties | UNEQ/SIMCA/Neural networks-based class modelling | [152] |
Authentication of wine samples | UNEQ/SIMCA/MRM/Neural networks-based class modelling | [153,155,156] |
Authentication of beer samples | UNEQ/SIMCA/POTFUN | [132,157,158] |
Traceability of extra virgin olive oils | SIMCA/Non-parametric class modelling | [151,159,160] |
Authentication of olive seeds | UNEQ/SIMCA/PLSDM | [154,161] |
Traceability of coffee | SIMCA/POTFUN | [150,162] |
Traceability of walnuts | SIMCA | [163] |
Authentication of Avola almonds | SIMCA | [164] |
Authentication of PGI Gragnano pasta | SIMCA | [165] |
Authentication of Italian PDO hazelnut | SIMCA | [166] |
Authentication of Vallerano chestnut | SIMCA | [167] |
Plant ripening monitoring | PRIMA | [174] |
Wheat straw fermentation monitoring | SVDD | [175] |
Methods | ||
---|---|---|
Name of the Method | Aim | Reference |
Hierarchical PLS (H-PLS) | Regression | [178] |
Joint and Individual Variation Explained (JIVE) | Exploratory | [213] |
Multiblock PLS serial extension | Regression | [214] |
Network-Induced Supervised Learning (NI-SL) | Regression | [215] |
Parallel Orthogonalized Partial Least Squares (PO-PLS) | Regression | [216] |
Multiblock Redundancy Analysis | Regression | [217] |
OnPLS | Regression | [218] |
Applications | ||
Aim | Multi-Block method | Reference |
Prediction of bread sensory properties | MB-PLS | [190] |
Prediction of wine ageing time | MB-PLS/H-PLS/NI-SL/SO-PLS | [192] |
Quantification of protein and moisture in soybean flour | MB-PLS | [193] |
Discrimination of lemon essential oils | MB-PLS | [194] |
Determination of the geographical origin of wine | MB-PLS | [196] |
Authentication of spirits | SO-PLS/SO-CovSel | [128,202] |
Determination of the geographical origin of saffron | SO-PLS/SO-CovSel | [205] |
Path modelling | SO-PLS | [219] |
Path modelling | SO-PLS | [220] |
Aim | Method | Reference |
---|---|---|
Chemical characterization of milk lactic acid fermentation | MCR-ALS | [236] |
Milk renneting characterization and monitoring | MCR-ALS | [237,238] |
Chemical characterization of beer fermentation | MCR-ALS | [239] |
Assessment of coconut oil purity/adulteration degree | MCR-ALS | [265] |
Chemical characterization of chocolate samples | MCR-ALS | [266] |
Egg-pasta characterization | ASCA | [76] |
Coffee bean roasting monitoring | ASCA | [150] |
Cheddar cheese ripening monitoring | ASCA | [264] |
Eggplant chilling injury characterization | ASCA | [267] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biancolillo, A.; Marini, F.; Ruckebusch, C.; Vitale, R. Chemometric Strategies for Spectroscopy-Based Food Authentication. Appl. Sci. 2020, 10, 6544. https://doi.org/10.3390/app10186544
Biancolillo A, Marini F, Ruckebusch C, Vitale R. Chemometric Strategies for Spectroscopy-Based Food Authentication. Applied Sciences. 2020; 10(18):6544. https://doi.org/10.3390/app10186544
Chicago/Turabian StyleBiancolillo, Alessandra, Federico Marini, Cyril Ruckebusch, and Raffaele Vitale. 2020. "Chemometric Strategies for Spectroscopy-Based Food Authentication" Applied Sciences 10, no. 18: 6544. https://doi.org/10.3390/app10186544
APA StyleBiancolillo, A., Marini, F., Ruckebusch, C., & Vitale, R. (2020). Chemometric Strategies for Spectroscopy-Based Food Authentication. Applied Sciences, 10(18), 6544. https://doi.org/10.3390/app10186544