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Abstract: In the field of speaker verification, probabilistic linear discriminant analysis (PLDA) is the
dominant method for back-end scoring. To estimate the PLDA model, the between-class covariance
and within-class precision matrices must be estimated from samples. However, the empirical
covariance/precision estimated from samples has estimation errors due to the limited number of
samples available. In this paper, we propose a method to improve the conventional PLDA by
estimating the PLDA model using the regularized within-class precision matrix. We use graphical
least absolute shrinking and selection operator (GLASSO) for the regularization. The GLASSO
regularization decreases the estimation errors in the empirical precision matrix by making the
precision matrix sparse, which corresponds to the reflection of the conditional independence structure.
The experimental results on text-dependent speaker verification reveal that the proposed method
reduce the relative equal error rate by up to 23% compared with the conventional PLDA.

Keywords: graphical least absolute shrinking and selection operator (GLASSO); precision matrix;
probabilistic linear discriminant analysis (PLDA); regularization; text-dependent speaker verification

1. Introduction

Automatic speaker verification (ASV) is a technique to verify a user’s identity by comparing an
utterance of a user (test utterance) with the reference utterance of a known target speaker (enrollment
utterance). The procedure for ASV can be divided into two steps: front-end feature extraction and
back-end scoring. In the front-end step, a fixed-size feature vector is extracted from a variable-length
utterance, for both the enrollment and test utterance. The feature vector (called speaker embedding)
should be extracted to represent the speaker information well. In the back-end step, a similarity score
between the two speaker embeddings, one for the enrollment utterance and the other for the test
utterance, is computed to accept or reject the identity claim [1].

Speaker verification can be divided into two categories: text-independent speaker verification
(TI-SV) [2] and text-dependent speaker verification (TD-SV). In this paper, we focus on TD-SV only
and explain based on TD-SV. The main difference between TI-SV and TD-SV is that whether the phrase
of utterance is limited. In TI-SV, no limitation exists for the phrase, which enables users speak any
types of phrases. TI-SV systems must compensate for phrase variability to improve the verification
performance. In this case, sufficiently long utterances, for example longer than about 10 s, are required
to effectively compensate for the phrase variability, or the performance would be significantly degraded.
It means that users have to speak long enough, which makes the use of TI-SV systems inconvenient.
Moreover, the longer utterance, the larger computational cost. These shortcomings can be solved by
TD-SV. In TD-SV, the available lexicon is limited for a few kinds of phrases, and the phrases of both the
enrollment and test utterances should be the same. Even though the limitation for the phrase makes
TD-SV be less flexible than TI-SV, it enables TD-SV to show both the higher performance and lower
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computational cost even with short utterances, for example, shorter than about 3 s. Because TD-SV
has no need to compensate for the phrase variability, rather it should distinguish between not only
speakers but also phrases. In addition, it is relatively easy to control the phrase variability in TD-SV
because of the limitation for the phrase. Due to these advantages, TD-SV has been widely used in
many real applications that require both the higher performance and short utterance, such as voice
assistant [3,4]. One drawback of TD-SV is that it can be vulnerable to replay attacks which use recorded
voices of the target user. However, currently there have been many active studies to prepare for the
attacks and they have achieved high performance [5–12].

As mentioned above, speaker embedding is the feature vector on fixed-dimension subspace that
represents speaker information contained in the utterance. Typically, the speaker embedding not
only has class information (corresponding to speaker-and-phrase information in TD-SV) but also
undesired information, such as session information [13]. Note that the speaker embedding in TD-SV
actually contains not only speaker information and but also phrase information. Throughout this
paper, nevertheless, we call it speaker embedding for convenience, rather than speaker-and-phrase
embedding. Too much undesired information raises the within-class variability, which can degrade
the speaker verification performance. However, it is challenging to completely remove only unwanted
information in the embedding. In many cases, the score is computed in a more discriminative subspace
to compensate for the within-class variability of the embedding [14].

In the field of ASV, probabilistic linear discriminant analysis (PLDA) [15] has become the dominant
method for back-end scoring. It probabilistically models a discriminative subspace that compensates
for the within-class variability. To estimate a PLDA model, the between-class covariance matrix and
within-class precision matrix (the inverse of the within-class covariance matrix) must be estimated first.
In practice, the empirical covariance/precision matrix is used instead of the true covariance/precision
matrix because it is unknown. However, the empirical covariance/precision matrix has estimation
errors because of the limited number of available samples (corresponding to the embeddings in our
case). The error is increased if the number of samples is insufficient compared to the number of
parameters, which can degrade performance.

In this paper, we propose a method to improve the performance of conventional PLDA by
regularizing the within-class precision matrix used to estimate the PLDA model. The regularization
of the within-class precision matrix is motivated by the need for the reduction of estimation errors
contained in the empirical within-class precision matrix. We use graphical least absolute shrinking and
selection operator (GLASSO) [16–18] to regularize the within-class precision matrix, which makes the
precision matrix sparse. The reason for using the GLASSO for regularization, among many kinds of
regularization methods, is that the GLASSO makes precision matrix sparse, which is based on our
assumption that the true precision matrix has the conditional independence structure. Because the
sparsity in the precision matrix implies the conditional independence of feature variables, the GLASSO
can be understood as a de-noising operator to reflect the conditional independence structure in
the underlying model. We focus on only the within-class covariance/precision, which is based on
our assumption that empirical within-class covariance/precision has larger errors than empirical
between-class covariance, because collecting sufficient utterances from the same class is relatively
more difficult than collecting similar numbers of utterances from various classes. Therefore, it is
expected that regularizing the within-class covariance/precision matrix may be more effective in terms
of performance.

The remainder of this paper is organized as follows. Section 2 outlines the preliminaries related to
our research. Section 3 describes the GLASSO and related theory. Section 4 introduces the proposed
method. Section 5 presents the experiments and their results. Section 6 discusses some issues about
text-independent speaker verification and one more option for our solution. Finally, Section 7 concludes
the paper.
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2. Preliminaries

2.1. I-Vector

Traditional speaker embeddings were mostly based on linear generative models in statistics [2,14].
The i-vector [14] is one of the speaker embeddings based on factor analysis and has been the
state-of-the-art speaker embedding in ASV until the development of deep learning. It is a set of factors
that explain the total variability of the Gaussian mixture model (GMM) supervector [19]. In the i-vector
framework, an utterance-dependent supervector M is represented by the following:

M = m + Tx (1)

where m is an utterance-independent supervector (generally, a universal background model [20]
supervector), T is a low-rank rectangular matrix that defines a total variability subspace, and x is a set of
latent variables that follows a standard multivariate normal distribution N(0, I). In practice, however,
i-vectors exhibit non-Gaussian behavior [21,22]. In most cases, a simple length normalization [23] is
applied to i-vector to reduce the non-Gaussian behavior.

The i-vector extractor (corresponding to the total variability matrix T) cannot be directly estimated
to discriminate between classes because it is trained in an unsupervised manner. It means that the
i-vector may have unnecessarily large within-class variability. Therefore, it is necessary to compensate
for the within-class variability of the i-vector for robust performance [24]. The PLDA has been
dominantly used to compensate for the within-class variability, and the i-vector/PLDA had been the
state-of-the-art option in the field of ASV.

2.2. Deep Speaker Embeddings

Owing to remarkable development in deep learning, many studies have investigated the use of
deep neural networks (DNNs) to extract more discriminative speaker embeddings. The DNNs have the
advantages that they can represent complex nonlinear models and be directly optimized to discriminate
between classes. Deep speaker embedding is extracted from a hidden layer of a speaker-and-phrase
discriminate DNN and is expected to have more discriminative power. The deep speaker embeddings
have become the state-of-the-art in the field of ASV [25].

Early deep speaker embeddings (called d-vectors) were based on a fully connected neural
network (FCNN) [26,27]. The FCNNs were trained to classify frame-level acoustic features in a
temporal context to the corresponding speaker and phrase. However, the FCNN cannot properly
model the time-dependency of the frame-level features in a context. To overcome this drawback,
the methods of using other kinds of DNNs, such as convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), were proposed [28–30]. RNN is a neural network designed to
model time-dependency of time-series data using additional recurrent connections. In this paper,
we use the d-vector based on long short-term memory (LSTM) [31], which is an extension of RNN for
modeling long term time dependencies efficiently by using gates mechanisms [32].

A residual network (ResNet) [33] is the network that has constant bypass weight connections
between layers to optimize very deep networks efficiently. Motivated by the success of ResNet
in the field of image recognition, many studies have employed ResNet to model deep speaker
embedding (called the r-vector to distinguish from the original d-vector) and have shown remarkable
performance [34–37]. In [38], the squeeze-and-excitation (SE) block was proposed, which is the
building block of CNNs to recalibrate channel-wise responses adaptively by explicitly modeling the
relationship between channels. The SE block has been successfully adopted in ResNet, which is called
a squeeze-and-excitation residual network (SE-ResNet). In this study, we extract the r-vectors from
SE-ResNet34 [6,11].

The x-vector [39,40] is the deep speaker embedding extracted from a model based on a time-delay
neural network (TDNN) [41]. The TDNN is the network that computes an output at each time step
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using the inputs from a small temporal context window similarly to CNNs. We can model long-term
context information of input by stacking multiple TDNN layers, even if each TDNN layer has a
small temporal context. Therefore, the TDNN-based model can efficiently capture long-term speaker
information. Each layer of the TDNN models a small temporal context of the output from the previous
layer. The output frames of the TDNN are aggregated over temporal pooling to capture long-term
information. The x-vector/PLDA has shown state-of-the-art performance in TI-SV [25].

Like the i-vector, deep speaker embeddings have also been used with the PLDA and exhibit
performance improvements. One of the main differences between the i-vector and deep speaker
embeddings is that no assumption exists regarding the shape, such as the probability distribution and
covariance structure, of deep speaker embeddings. This difference also affects our proposed method,
which is described later.

2.3. Probabilistic Linear Discriminant Analysis (PLDA)

The PLDA is a generative probabilistic method that models between-class and within-class
variabilities using latent variables. The goal of PLDA is to determine a more discriminative subspace
that maximizes between-class variability and minimizes within-class variability. Some variants of
PLDA exist [15,21,23,42,43]. In this paper, we use the PLDA implemented in the Kaldi toolkit [44],
which is the two-covariance PLDA [43] based on [15]. In Kaldi’s PLDA, a speaker embedding x is
modeled as follows:

x = µ+ Au (2)

u|v ∼ N(v, I) (3)

v ∼ N(0, Ψ) (4)

where µ is the global mean of the embeddings in the original space, A is the PLDA projection matrix,
v represents the class in the projected space, u represents an example of that class in the projected
space, and Ψ is the between-class diagonal covariance in the projected space. The PLDA model
parameters {µ, A, Ψ} is estimated by the eigenvalue equation Φ−1

w ΦbA = AΨ, where Φb and Φw are
the between-class covariance matrix and within-class covariance matrix, respectively.

The expectation-maximization (EM) [45] algorithm is used to estimate Φb and Φw. Note that
the EM algorithm is a greedy algorithm, which guarantees the convergence by updating the
parameters iteratively. However, there is no guarantee to converge toward the global optimum.
Therefore, the estimated PLDA model cannot guarantee the global optimum. It starts with the initial
values of the between-class covariance Φ

(0)
b and within-class covariance Φ

(0)
w matrices, which can be

directly computed from the training dataset, as follows:

Φ
(0)
b =

C∑
c=1

(µc
− µ)(µc

− µ)T (5)

Φ
(0)
w =

C∑
c=1

1
Nc

Nc∑
n=1

(xc
n − µ

c)(xc
n − µ

c)T (6)

where C is the number of speakers in the training dataset, µc is the mean of the embeddings for the
c-th speaker, Nc is the number of utterances for the c-th speaker, and xc

n is the n-th embedding for the
c-th speaker. A detailed explanation can be found in [15,46].

The log-likelihood ratio, which literally means the log ratio between two likelihoods and is used
as the similarity score in our experiments, between two embeddings, x1 and x2, is computed by
the following:

log N
(

¯
u1

∣∣∣∣∣ Ψ

Ψ + I
¯
u2, I +

Ψ

Ψ + I

)
− log N

(
¯
u1|0, I + Ψ

)
(7)
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where
¯
ui = ui/

√
I

Ψ+I u2
i is the length normalization of ui, ui = AT(xi − µ) is the projected embedding,

the subscript ·i is an arbitrary index of embedding for distinguishing each other, and N(
∣∣∣µ, Σ) denotes

the Gaussian probability density function with mean µ and covariance Σ. An arbitrary embedding in
the original space xi is projected into the projected space through the transformation ui = AT(xi − µ).
Note that xi can be both x1 and x2. In other words, the same transformation ui = AT(xi − µ) is applied
to xi, regardless of the kind of subscript ·i. Therefore, xi can correspond to both x1 and x2.

3. Graphical Least Absolute Shrinking and Selection Operator (GLASSO)

3.1. Gaussian Markov Random Field

Consider a D-dimensional random vector x = [x1, . . . , xD]
T (corresponding to the embedding in

our case), which is a set of D random variables xi. The random vector x is a Markov random field (MRF;
an undirected graphical model) if it satisfies Markov properties [47]. An undirected graph G = (V, E),
where V is a set of vertices and E is a set of edges, can describe the random vector. Each vertex in V
corresponds to one of the random variables in x, that is, V = {x1, . . . , xD}. Each edge ei j in E represents
the dependency between xi and x j such that i , j. In undirected graphical models, all edges ei j ∈ E are
unordered pairs, that is, ei j = e ji. The Markov property relates to conditional independence, and three
kinds of Markov properties exist: the pairwise, local, and global Markov properties. In this study,
we focus on the pairwise Markov property. The pairwise Markov property is that variables xi and
x j are conditionally independent given all the other variables x−i j, xi⊥x j

∣∣∣x−i j , which is equivalent to
stating that no edge ei j exists in E [48].

The random vector x is a Gaussian Markov random field (GMRF; a Gaussian undirected graphical
model) if it satisfies the Markov property and follows a multivariate normal distribution N(µ, Σ) with
mean µ ∈ RD and covariance matrix Σ ∈ RD×D. In other words, the GMRF is the MRF following a
multivariate normal distribution. In the GMRF, the set of edges E is represented by the precision
matrix Σ−1. The edge ei j corresponds to the element in the i-th row and the j-th column of the precision
matrix Σ−1

i j , and no edge ei j exists if and only if Σ−1
i j = 0. Therefore, the following three statements are

equivalent to each other: (i) there is no edge ei j, (ii) Σ−1
i j = 0, and (iii) xi⊥x j

∣∣∣x−i j . To summarize, we can

reflect the conditional independence structure to the variables by making Σ−1 sparse [47].

3.2. GLASSO

The GLASSO is a variable selection method to estimate a sparse precision matrix using the L1

(lasso) penalty. In other words, it estimates a sparse undirected graphical model. Consider that we
have samples (corresponding to speaker embeddings in our case) that follow a multivariate normal
distribution N(µ, Σ). Let Θ = Σ−1 be the true precision matrix and S be the empirical covariance

matrix. The GLASSO-regularized precision matrix
^
Θ is defined by maximizer of the L1-penalized

Gaussian log-likelihood:

^
Θ = argmax

Θ

{
log det(Θ) − tr(SΘ) − ρ‖Θ‖1

}
(8)

where det(·) and tr(·) are the determinant and trace of a matrix, respectively, ρ (> 0) is a regularization
parameter, and ‖·‖1 is the L1 norm operator (sum of the absolute values of the elements). We omit
diagonal elements from the penalty. Therefore, only off-diagonal elements are penalized.

The GLASSO is a biased estimator that shrinks all non-zero elements in the estimated precision
matrix toward zero. A higher ρ results in (i) more regularization, (ii) lower estimation error with an
accompanying higher bias in the estimated precision matrix, and (iii) a sparser estimated precision,
and vice versa. Thus, the GLASSO requires the sparse assumption of the true precision matrix for the
desired good asymptotic properties, such as selection consistency [49,50]. In addition, the selection
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consistency requires a strict condition on the covariance matrix S, the irrepresentable condition [49,50].
Typically, the GLASSO can detect the conditional independence structure on the considered covariates
only when the covariates are not severely dependent. Therefore, a proper value of ρ must be selected
for the performance, and simultaneously, the underlying covariance structure of the considered model
should be considered. To summarize, the GLASSO regularization can reduce the estimation error in
the precision matrix by pursuing a sparse structure, but the associated improvement depends on the
underlying model.

In [51], solve (8) using convex duality, taking advantage of the fact that the optimization of (8) is a
kind of convex optimization. In other words, [51] solve (8) by estimating Σ, rather than Σ−1, using
block coordinate descent algorithm, as follows. Let W be the regularization of S. In general, W is
initialized to S + ρI. This algorithm optimizes each column (and corresponding row) of W iteratively
until convergence. For each iteration, W and S are partitioned as follows:

W =

(
W11 w12

wT
12 w22

)
(9)

S =

(
S11 s12

sT
12 s22

)
(10)

for each i-th column, where W11 and S11 are the submatrix of W and S (obtained by excluding the i-th
row and column), respectively, and w12 and s12 are the i-th column of W and S (except the i-th diagonal

elements w22 and s22), respectively. To optimize w12,
^
β is obtained using the following equation:

^
β = min

β

1
2
‖W

1
2
11β−W

−
1
2

11 s12‖
2 + ρ‖β‖1 (11)

and w12 is replaced by W11
^
β in each iteration. A more detailed explanation for the computation can be

found in [17,51]. The complexity of the GLASSO algorithm is roughly O
(
n3

)
for reasonably sparse

problems with n vertices [52]. Notice that the block coordinate descent algorithm does not guarantee
convergence. Therefore, the reasonable conditions on S should be required for convergence [53],
such as that the covariates in S is not severely dependent, as mentioned above.

4. The Proposed Method

4.1. GLASSO Applied PLDA

In this paper, we propose a method of applying the GLASSO to the PLDA (denoted as
GLASSO-PLDA), where the GLASSO-regularized within-class precision matrix is used to estimate the
PLDA model, instead of the original within-class precision matrix. Once the empirical between-class
covariance matrix Φb and the empirical within-class covariance matrix Φw are estimated, we regularize
the empirical within-class precision matrix Φ−1

w using the GLASSO (using Equation (8)):

^
Φ

−1

w = argmax
Θ

{
log det(Θ) − tr(ΦwΘ) − ρ‖Θ‖1

}
(12)

where
^
Φ

−1

w is the regularized within-class precision matrix. The PLDA parameters are then estimated

using
^
Φ

−1

w instead of Φ−1
w . That is, we solve the following eigenvalue equation

^
Φ

−1

w ΦbA = AΨ. All the

other processes are the same as those in the original PLDA. In addition, Φ−1
w and

^
Φ

−1

w have the same
number of parameters. Therefore, the GLASSO-PLDA does not affect the both computation amount
and memory usage in evaluation phase. In other words, the computation amount and memory
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usage of the GLASSO-PLDA for computing the log-likelihood ratio (7) is the same as those of the
conventional PLDA.

The GLASSO-PLDA is based on our assumption that an optimal solution for the within-class
precision matrix (as mentioned in Section 1, we focus on the within-class precision matrix only) exists
at some point between a high variance (corresponding to low ρ) and high bias (corresponding to high
ρ). Notice that there is a trade-off between estimation error and bias, as mentioned in Section 3.2.
Naturally, the performance of the likelihood ratio test depends on a good estimation of the PLDA
model parameters, which depends on a good estimation of the within-class precision matrix. Therefore,
it is important to reduce the estimation error in the empirical within-class precision matrix by finding
the optimal value of ρ. The optimal ρ can be considered as what can achieve the best performance on
evaluation trials. In practice, it should be found with a validation dataset the domain of which is close
to the target domain, because we do not know the target domain in advance.

According to our experiments described in Section 5.3, the GLASSO-PLDA exhibits performance
improvement in TD-SV only if a prerequisite is satisfied. The prerequisite is that the within-class
covariance and accompanying precision matrix of embeddings should be close to diagonal. Unless
the prerequisite is satisfied, the GLASSO converges at a point far from the optimal solution, does not

converge, or even fails to estimate. The failure of the estimation is due to that
^
Φ

−1

w is ill-conditioned,

which means that
^
Φ

−1

w has the value of infinity or is not a number. We describe the effect of the
prerequisite on the performance in Section 5.3.

4.2. Prerequisite: Close-to-Diagonal Within-Class Covariance/Precision Matrix

Even though a common normality assumption exists regarding the embeddings for both PLDA
and GLASSO, we do not consider the normality assumption in our research. As mentioned in Section 2.1
and , we used four kinds of speaker embeddings, that is i-vector, d-vector, r-vector, and x-vector.
Among these embeddings, only the i-vector satisfies the normality assumption. The i-vector has
demonstrated performance improvement with both PLDA and GLASSO-PLDA. However, all deep
speaker embeddings used in our research, which have no assumption of normality, also exhibited
performance improvement with the PLDA. In contrast, the deep speaker embeddings show performance
degradation or failure of the estimation with the GLASSO-PLDA. The experimental results will be
described in Section 5.3. Some research has investigated making the deep speaker embeddings follow
a normal distribution [54–56]. However, we found that deep speaker embeddings obtained using these
methods are still not suitable for the GLASSO-PLDA (see Appendix A), and the embeddings obtained
by [55] were corrupted and lost discriminative power. From this result, we conclude that the absence
of the normality assumption on the embeddings does not matter, and regard all embeddings used in
our experiments as following a multivariate normal distribution.

We focus on the diagonality of the within-class covariance/precision matrix. Close-to-diagonal
covariance matrix of normal variables relates to that the covariates are not severely dependent, which is
the condition for the GLASSO, as mentioned in Section 3.2. In addition, the closer the covariance
matrix is to the diagonal, the closer the accompanying precision matrix is somewhat to the diagonal.
For a quantitative comparison, we define the degree of the diagonality (denote as δ) of the matrix Θ as
the ratio of the L1 norm of the covariance ‖Θ‖1 to the L1 norm of the diagonal elements ‖diag(Θ)‖1:

δ =
‖diag(Θ)‖1
‖Θ‖1

. (13)

The higher δ means that Θ is more close to the diagonal matrix, and δ satisfies 0 ≤ δ ≤ 1.
As mentioned above, the prerequisite of the GLASSO-PLDA is that the empirical within-class
covariance matrix Φw and accompanying precision matrix Φ−1

w should be close to diagonal. Therefore,
it is important to check whether Φw and Φ−1

w of each kind of embedding are close to diagonal. Figures 1
and 2 illustrate Φw and Φ−1

w of four kinds of embeddings, respectively. The diagonality δ of Φw and Φ−1
w
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is 0.2179 (Figure 1a) and 0.2 (Figure 2a) for the i-vectors, 0.0262 (Figure 1b) and 0.0696 (Figure 2b) for the
d-vectors, 0.0522 (Figure 1c) and 0.0794 (Figure 2c) for the r-vectors, and 0.019 (Figure 1d) and 0.0916 for
the x-vectors (Figure 2d), respectively. As you can see, only Φw and Φ−1

w of the i-vector (Figures 1a and
2a) are close to diagonal, and the others (Figures 1b–d and 2b–d) are far from diagonal. The covariances
of the i-vector are assumed to be zero, that is, the features consisting of the i-vector are independent.
In most cases, the empirical covariance matrix is close to the diagonal matrix due to the estimation error.
Therefore, both Φw and Φ−1

w of the i-vectors are close to diagonal. In contrast, both Φw and Φ−1
w of all

deep speaker embeddings are far from diagonal, even considering the estimation error. In practice,
no assumption of the diagonality exists for the covariance of all deep speaker embeddings, and all
kinds of covariances of all deep speaker embeddings are far from diagonal. It means that only i-vector
satisfies the prerequisite of the GLASSO-PLDA. The characteristics in the two covariance structures
of the i-vector and deep speaker embeddings lead to different results in applying the regularization
method, the GLASSO, to the PLDA. In practice, as described in Section 5.3, only the i-vector, which
satisfies the prerequisite, showed the performance improvements when using the GLASSO-PLDA.
All the deep speaker embeddings, which have Φw and Φ−1

w that are far from diagonal, showed the
performance degradations when using the GLASSO-PLDA.
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Our goal of the use of the GLASSO is to reduce the estimation errors in the precision matrix.
We aim to remove small noises in the precision matrix raised by the estimation errors. In the case of
close-to-diagonal precision, like i-vector, the GLASSO-PLDA exhibited the performance improvement.
Therefore, the GLASSO can remove many of the small noises effectively when the precision matrix is
close to diagonal. However, in the case of far-from-diagonal precision, like deep speaker embeddings,
the GLASSO-PLDA demonstrated the performance degradation or failure of the estimation of the PLDA
parameters. The GLASSO also shrinks the principal elements that have relatively larger values toward
zero, on the contrary a too-large bias toward zero, when the precision matrix is far from diagonal.
Thus, the loss from a high bias is greater than the gain from the low estimation error for that case.
This result may imply that the GLASSO can improve the performance only if the covariance/precision
matrix is close to diagonal.

We assume that deep speaker embeddings also show the performance improvements with the
GLASSO-PLDA, like i-vector, if we make the within-class covariance matrix Φw and the accompanying
precision matrix Φ−1

w close to diagonal. To make the Φw and Φ−1
w of the deep speaker embeddings

close to diagonal, we orthogonalize the deep speaker embeddings using principal component analysis
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(PCA). The PCA transform makes the total covariance close to diagonal through orthogonalization.
The diagonalization of the total covariance has the effect of making both within-class covariance and the
accompanying precision matrix close to diagonal. We use the orthogonalized deep speaker embeddings
for the GLASSO-PLDA instead of the original embeddings (denote as PCA-GLASSO-PLDA). We do
not reduce the dimensionality in the PCA transform to avoid information loss. It is important to check
whether Φw and Φ−1

w actually become closer to diagonal after the PCA transform. Figures 3 and 4
reveal the within-class covariance and within-class precision matrix estimated from the transformed
embeddings (denoted as Φw_pca and Φ−1

w_pca), respectively. After applying the PCA transform, all the
within-class covariance/precision matrix (corresponding to Φw_pca and Φ−1

w_pca, respectively) become
closer to diagonal. The diagonality δ of Φw_pca and Φ−1

w_pca is 0.1509 (Figure 3a) and 0.1935 (Figure 4a)
for the d-vectors, 0.2262 (Figure 3b) and 0.364 (Figure 4b) for the r-vectors, and 0.1728 (Figure 3c) and
0.1827 (Figure 4c) for the x-vectors, respectively. As described in Section 5.3, the orthogonalized deep
speaker embeddings exhibited performance improvements with the GLASSO-PLDA (corresponding to
the PCA-GLASSO-PLDA), as in the i-vector. Therefore, the empirical within-class covariance/precision
matrix should be close to diagonal for the GLASSO regularization. Thus, if we find the transformation
that makes the within-class covariance/precision matrix close to diagonal, the performance of the PLDA
can improve by soft-thresholding the noises in the accompanying empirical within-class precision
matrix using GLASSO regularization.
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5. Experiments

5.1. Database

For the evaluation of the task of TD-SV, we used parts 1 and 2 of the robust speaker recognition
(RSR) 2015 dataset [57]. Both parts consist of utterances from 300 speakers and are divided into
background (50 male and 47 female speakers), development (50 male and 47 female speakers),
and evaluation (57 male and 49 female speakers) subsets. The speakers from parts 1 and 2 are the same,
and no speaker overlap exists across the subsets. For each part, each speaker utters 30 different phrases
in nine different sessions. The average duration of utterances is 3.2 s for part 1, and 1.99 s for part 2,
including silence. We used the background set to build gender-independent models, the development
set for validation on gender-independent trials, and the evaluation set to evaluate the performance of
the proposed system on the gender-dependent trials. Figures 1–4 were based on RSR part 1.
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5.2. Experimental Setup

We extracted 400-dimensional i-vectors. For each utterance, 25-ms frames were extracted at
10-ms intervals. Preprocessing was performed for all frames in the following order: removing the
direct current (DC) offset, pre-emphasis filtering with a coefficient of 0.97, and applying a Hamming
window. A 60-dimensional (19 static + energy + delta + acceleration) mel-frequency cepstral coefficients
(MFCCs) was extracted from each preprocessed frame. We applied utterance-level cepstral mean
normalization (CMN) using a 300-frame sliding window, then voice activity detection (VAD) to
remove silent frames. A gender-independent Gaussian mixture model universal background model
(GMM-UBM) consists of 1024 mixture components with diagonal covariance, which was trained for
10 iterations. A gender-independent 400-dimensional i-vector extractor was trained for five iterations.
Length normalization was applied to i-vectors.

The common configurations for extracting deep speaker embeddings were as follows.
A 40-dimensional mel-filterbank feature was extracted from each preprocessed frame. The preprocessing
is the same as that used for i-vector extraction. As in the i-vector extraction, the CMN and VAD were
applied to the mel-filterbank feature. Except for extracting d-vectors, the sequences of mel-filterbank
features of the utterances were truncated or padded along the time axis to have lengths of 250
and 150 for parts 1 and 2, respectively. For extracting d-vectors, the sequences of mel-filterbank
features were handled by using distortion-free method [58]. The speaker-and-phrase discriminative
networks have two softmax classifiers: one is the speaker classifier, and the other is the phrase
classifier. Unless otherwise noted, all weights of the networks were initialized from the Glorot normal
distribution [59] and those of the classifiers were orthogonalized with no bias. The AMSGrad [60],
a variant of the Adam [61] optimizer, was used to minimize the cross-entropy loss with a learning rate
of 10−3. We trained 100 epochs with a mini-batch size of 32 and selected the best model by validation.

The extraction process for the d-vector is the same as in [58]. We extracted a 512-dimensional
d-vector from a 2-layer LSTM. Each layer of the LSTM has 512 units. On top of the LSTM is a
self-attention [62] layer with four attention heads, followed by a batch normalization [63] layer.
The recurrent weights of the LSTM were orthogonalized. The biases of the forget gate of the LSTM
were initialized to 1 [64], and the other biases were initialized to 0. The d-vector is the result of the
batch normalization of the sum of the output of the attention layer.

We extracted the 256-dimensional r-vector from SE-ResNet34. Except for the SE blocks,
SE-ResNet34 has the same structure as ResNet34 in [37] up to the last residual block. The layers
were stacked on top of the last residual block in the following order: the statistical pooling layer to
compute the mean and standard deviation along the time axis for each channel, the flattening layer,
the 256-dimensional fully connected layer followed by a batch normalization layer, and the classifiers.
We used the batch-normalized output vector as the r-vector.

We extracted the 512-dimensional x-vector. The architecture of the x-vector network is the same
as the standard DNN in [29]. We applied batch normalization after each activation layer. The x-vector
is the output of the layer segment 2 in [29].

The PLDA model was trained using each embedding for 10 iterations. For the GLASSO-PLDA,
we first estimated the GLASSO-PLDA models with different values of ρ in the range 0 to 0.5 at intervals
of 0.0005. The maximum number of iterations of the GLASSO was set to 100, and the tolerance for
convergence (corresponding to the duality gap [65]) was set to 10−4. We then computed equal error
rates (EERs) for each GLASSO-PLDA model on the validation trials. The EER is the rate when the
false positive rate and false negative rate are equal. We use EER as the performance metric for our
experiments. For evaluation, we selected the best GLASSO-PLDA model based on the EERs of the
validation trials.

All the acoustic features and linear models (corresponding to GMM, i-vector extractor, and PLDA)
were implemented using the Kaldi toolkit. All the DNN-based models (corresponding to the extractors
of all deep speaker embeddings) were implemented using PyTorch [66]. The GLASSO algorithm was
implemented in scikit-learn [67].
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5.3. Results

We first evaluated the EERs of the proposed method only with the i-vector, which satisfies the
prerequisite (close-to-diagonal within-class covariance matrix) of the GLASSO-PLDA. Figure 5 displays
the EERs on the validation trials of the RSR 2015 part 1 (Figure 5a) and part 2 (Figure 5b). The dashed
red line depicts the EERs of the original PLDA (corresponding to the baseline), and the solid blue line
depicts the EERs of the GLASSO-PLDA (corresponding to the proposed method). We confirmed that
the GLASSO converged in all conditions, and the performances were improved with the proposed
method. The same trend also can be observed in the evaluation trials. Figure 6 reveals the EERs
on the evaluation trials of the RSR 2015 part 1 (Figure 6a,c) and part 2 (Figure 6b,d). Except for the
interval of the regularization parameter ρ > 0.0535 on the male evaluation trials of RSR 2015 part 2
(Figure 6b), the proposed method also demonstrated performance improvements on the evaluation
trials. Therefore, the proposed GLASSO-PLDA can improve the performance by detecting the optimum
(sparse within-class precision matrix) when the sparse assumption of the true within-class precision
matrix holds, and the prerequisite is satisfied.
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2 datasets.
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Figure 6. The EERs (%) of the PLDA (dashed red line) and GLASSO-PLDA (solid blue line) according
to ρ on the evaluation trials of the RSR 2015 part 1 and part 2 datasets: (a) male trials of the part 1,
(b) male trials of the part 2, (c) female trials of the part 1, and (d) female trials of the part 2.
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Next, we performed experiments using deep speaker embeddings, which generally do not satisfy
the prerequisite of the GLASSO-PLDA. Figure 7 lists the EERs of the validation trials of RSR 2015
part 1 for the (a) d-vector, (b) r-vector, and (c) x-vector. The dashed red line depicts the EERs of
the original PLDA, and the solid blue and green lines depict the EERs of the GLASSO-PLDA and
PCA-GLASSO-PLDA, respectively. Unlike for the i-vector, the GLASSO did not converge because
the within-class covariance/precision matrices of all deep speaker embedding are far from diagonal.
For this reason, the GLASSO-PLDA demonstrated performance degradation for all deep speaker
embeddings, as mentioned in Section 4. In contrast, the GLASSO with PCA converged by making
the within-class covariance/precision matrix close to diagonal. As a result, the PCA-GLASSO-PLDA
displayed performance improvements for all deep speaker embeddings in all the conditions. The same
trends can be observed in the evaluation trials of RSR 2015 part 1 (Figure 8), the validation trials of
RSR 2015 part 2 (Figure 9), and the evaluation trials of RSR 2015 part 2 (Figure 10). There are no EER
graphs of the GLASSO-PLDA for the x-vector on the trials of RSR 2015 part 2 (there is no solid blue
line in Figures 9c and 10c,f), due to the failure of the estimation of the GLASSO-PLDA model caused
by the failure of GLASSO regularization. These results indicate that the GLASSO-PLDA can improve
performance when the within-class covariance/precision matrix is close to diagonal.
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part 1 for the (a) d-vector, (b) r-vector, and (c) x-vector.
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and PCA-GLASSO-PLDA (solid green line) according to ρ on the evaluation trials of RSR 2015
part 1: (a) male trials for d-vector, (b) male trials for r-vector, (c) male trials for x-vector, (d) female
trials for d-vector, (e) female trials for r-vector, and (f) female trials for x-vector.
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Figure 9. The EERs (%) of the PLDA (dashed red line), GLASSO-PLDA (solid blue line), PCA-PLDA
(dotted red line), and PCA-GLASSO-PLDA (solid green line) according to ρ on the validation trials
of RSR 2015 part 2 for the (a) d-vector, (b) r-vector, and (c) x-vector; EERs of the PCA-PLDA are not
shown if the PLDA and PCA-PLDA have the same EER.
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Figure 10. The EERs (%) of the PLDA (dashed red line), GLASSO-PLDA (solid blue line), PCA-PLDA
(dotted red line), and PCA-GLASSO-PLDA (solid green line) according to ρ on the evaluation trials
of RSR 2015 part 2: (a) male trials for d-vector, (b) male trials for r-vector, (c) male trials for x-vector,
(d) female trials for d-vector, (e) female trials for r-vector, and (f) female trials for x-vector. EERs of the
PCA-PLDA are not shown if the PLDA and PCA-PLDA have the same EER.

Tables 1 and 2 summarize the EERs of the baseline and proposed methods for each embedding on
RSR 2015 parts 1 and 2, respectively. The proposed method is the GLASSO-PLDA for the i-vector and
the PCA-GLASSO-PLDA for deep speaker embeddings. For the proposed method, the regularization
parameter ρ was set to that of the lowest EER of the validation trials. In RSR 2015 part 1 trials,
the proposed method revealed relative EER reductions of approximately 7% (for the x-vector) to 19%
(for the d-vector) on the validation trials, reductions of approximately 7% (for the i-vector) to 13%
(for the d-vector) on the male evaluation trials, and reductions of approximately 5% (for the x-vector) to
23% (for the d-vector) on the female evaluation trials. In RSR 2015 part 2, the proposed method similarly
revealed relative EER reductions of approximately 7% (for the x-vector) to 16% (for the r-vector) on the
validation trials, reductions of approximately 3% (for the i-vector) to 13% (for the r-vector) on the male
evaluation trials, and reductions of approximately 6% (for the x-vector) to 15% (for the d-vector) on the
female evaluation trials. Finally, we performed a score-level fusion of all proposed systems for each
dataset. The weights for each score were estimated using logistic regression with the scores from the
validation trials. With score-level fusion, we achieved significant performance improvements.
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Table 1. EERs (%) of the baseline and proposed methods for each embedding on the validation and
evaluation trials of RSR 2015 part 1.

Method Embedding
EER (%)

Validation
Evaluation

Male Female

Baseline

i-vector 2.5183 1.3845 1.8032
d-vector 1.4874 1.1144 1.1249
r-vector 2.4317 1.6478 1.7459
x-vector 3.631 2.938 3.3259

Proposed with ρ of

0.027 i-vector 2.0842 1.2811 1.4627
0.134 d-vector 1.2036 0.9644 0.8651
0.055 r-vector 1.9761 1.5127 1.4949
0.025 x-vector 3.3587 2.6728 3.1442

Score fusion 1.0089 0.7532 0.6875

Table 2. EERs (%) of the baseline and proposed methods for each embedding on the validation and
evaluation trials of RSR 2015 part 2. (* means the EER of the PCA-PLDA).

Method Embedding
EER (%)

Validation
Evaluation

Male Female

Baseline

i-vector 3.4689 3.0395 2.9271
d-vector 3.7577 2.9342 3.1697

r-vector
4.2289 3.5635

3.53064.2186 * 3.5714 *
x-vector 6.3205 5.9704 6.1229

Proposed with ρ of

0.027 i-vector 3.0575 2.9434 2.6338
0.134 d-vector 3.2286 2.5765 2.6918
0.055 r-vector 3.5621 3.1058 3.0593
0.025 x-vector 5.8561 5.509 5.7785

Score fusion 2.2855 1.7897 1.7363

6. Discussion

In this section, we first evaluate the proposed method in TI-SV tasks. Next, we compare the
performance of the proposed method with the banding method, which is more simple method than
the GLASSO for making matrix sparse.

6.1. Evaluation in Text-Independent Speaker Verification

We explain the difference between TD-SV and TI-SV in terms of variability. The total variability
of samples Σ can be decomposed as the sum of the between-class variability Σb and the within-class
variability Σw; that is, Σ = Σb + Σw. In TD-SV, Σb contains the speaker variability Σspk and phrase
variability Σphr, and Σw contains other variabilities, such as channel variability Σch and residual
variability Σε. Therefore, Σb = Σspk +Σphr and Σw = Σch +Σε. In TI-SV, in contrast,Σb contains only Σspk,
and Σw contains other variabilities Σphr, Σch, and Σε. Therefore, Σb = Σspk and Σw = Σphr + Σch + Σε.
To summarize, the difference between TD-SV and TI-SV is whether Σw contains Σphr or not. For TD-SV,
Σw = Σch + Σε does not contain phrase variability Σphr. For TI-SV, in contrast, Σw = Σphr + Σch + Σε

contains Σphr. Therefore, the GLASSO regularization of the empirical within-class precision matrix
Φ−1

w does not affect Σphr for TD-SV but affects Σphr for TI-SV.
For the evaluation of the task of TI-SV, we used the VoxCeleb1 dataset [68], which is divided into

development (148,642 utterances from 1211 speakers) and test (4874 utterances from 40 speakers) sets.
The average duration of utterances is 8.2 s. We split the development set into training (144,990 utterances
from 1183 speakers) and validation (3652 utterances from 28 speakers; speaker id10357-id10384) sets.
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We created 37,904 validation (10,492 target and 27,412 impostor) trials using the validation set. We used
the training set to build gender-independent models, the validation set for validation, and the test
set to evaluate the performance of the proposed system. We used the VoxCeleb1 dataset to build
and evaluate the i-vector-based system only, which satisfies the prerequisite of the GLASSO-PLDA.
The configuration for extracting i-vectors was the same as that described in Section 5.2.

Figure 11 displays the EERs on the validation (Figure 11a) and evaluation (Figure 11b) trials
of the VoxCeleb dataset. Unlike the results in the TD-SV tasks, the performances were degraded
with the proposed method in the TI-SV tasks, even though the prerequisite was satisfied and the
GLASSO converged. These results mean that the proposed method is suitable for only TD-SV tasks,
where Σw = Σch + Σε does not contain phrase variability Σphr. In other words, the true within-class
precision matrix is sparse only if Σw does not contain Σphr. The optimums of both channel variability
Σch and residual variability Σε have conditional independence structure, but that of Σphr does not.
Therefore, the sparse assumption of Φ−1

w does not hold and the proposed method is not suitable for
TI-SV tasks, where Σw = Σphr + Σch + Σε contains phrase variability Σphr.
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6.2. Comparison with Matrix Banding

In this section, we describe another option for our proposed method, matrix banding.
Matrix banding is a simple method to make arbitrary matrix a band matrix [69]. The band matrix
is a sparse matrix all non-zero elements of which are in at most some consecutive and diagonally
bordered bands including main diagonal. In other words, all out-of-band elements of the band matrix
are zero. Therefore, the matrix banding is the method that can make arbitrary matrix sparse with
less computational burden than the GLASSO. We compare the performances of the proposed method
(GLASSO-PLDA) with those of the matrix banding-based PLDA (denoted as banding-PLDA), in which
the within-class precision matrix is regularized with the banding rather than the GLASSO. There is no
reason for using the GLASSO-PLDA if the banding-PLDA generally shows better performances than
the GLASSO-PLDA.

Tables 3 and 4 summarize the EERs of the proposed method and banding-PLDA for each
embedding on RSR 2015 part 1 and 2, respectively. For the both proposed method and banding-PLDA,
all deep speaker embeddings were orthogonalized using the PCA. Therefore, the EERs of the proposed
method in Tables 3 and 4 are the same as those in Tables 1 and 2, respectively. For the banding-PLDA,
we constrained the bands to symmetric because within-class precision matrix must be symmetric.
k means the bandwidth for one side (left or right). The total bandwidth is 2k + 1 because the bands
are constrained to be symmetric. k = 0 means the diagonal matrix. The GLASSO-PLDA generally
exhibited better performances than the banding-PLDA. In TD-SV, therefore, the GLASSO, which is
based on the L1-penalized Gaussian log-likelihood, is more effective than the banding.
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Table 3. EERs (%) of the proposed and banding methods for each embedding on the validation and
evaluation trials of RSR 2015 part 1.

Method Embedding
EER (%)

Validation
Evaluation

Male Female

Proposed

i-vector 2.0842 1.2811 1.4627
d-vector 1.2036 0.9644 0.8651
r-vector 1.9761 1.5127 1.4949
x-vector 3.3587 2.6728 3.1442

Banding-PLDA with k of

0 i-vector 2.1904 1.3757 1.5431
0 d-vector 1.2398 1.0033 0.8529
0 r-vector 2.0544 1.5728 1.5796

11 x-vector 3.3551 2.6337 3.2162

Table 4. EERs (%) of the proposed and banding methods for each embedding on the validation and
evaluation trials of RSR 2015 part 2.

Method Embedding
EER (%)

Validation
Evaluation

Male Female

Proposed

i-vector 3.0575 2.9434 2.6338
d-vector 3.2286 2.5765 2.6918
r-vector 3.5621 3.1058 3.0593
x-vector 5.8561 5.509 5.7785

Banding-PLDA with k of

0 i-vector 3.173 3.1342 2.669
0 d-vector 3.2393 2.5571 2.6877
0 r-vector 3.7074 3.1803 3.1319
9 x-vector 5.9019 5.5572 5.8016

7. Conclusions

In this paper, we improved the conventional PLDA by proposing the GLASSO-PLDA, in which the
GLASSO-regularized within-class precision matrix was used to estimate the PLDA model. The GLASSO
makes empirical within-class precision matrices sparse. It has the effects of reducing the estimation
error in the within-class precision matrices and of reflecting a conditional independence structure on
the variables. We assumed that the empirical within-class precision matrices would have large errors
due to the limited amount of data and expected that the reduction of the estimation error would lead to
performance improvement. From the experimental results on the trials on a public database RSR 2015
parts 1 and 2, we found that the GLASSO-PLDA demonstrated the performance improvement when the
within-class covariance/precision matrix of the embedding is close to diagonal. That is, the performance
of the PLDA can be improved using GLASSO regularization on the empirical within-class precision
matrix when the covariance/precision matrix is close to diagonal. With system fusion, we also have
achieved significant performance improvements in the task of TD-SV. The GLASSO-PLDA can be
directly applied to the TD-SV systems based on the conventional PLDA without changing the structure
of the systems. Therefore, it can be applied to any kinds of applications that uses the TD-SV systems
based on the PLDA.

In the future, we will apply the GLASSO-PLDA onto noisy condition, where the within-class
variability Σw = Σch + Σε+ Σnoise contains not only both channel variability Σch and residual variability
Σε but also noise variability Σnoise. Notice that the within-class variability on clean condition,
Σw = Σch +Σε, does not contain Σnoise. In detail, we will evaluate the performance of the GLASSO-PLDA
based TD-SV system that is trained using only clean utterances on various noisy conditions, which is the
setting close to the environment where real applications are used. This experiment is to confirm whether



Appl. Sci. 2020, 10, 6571 17 of 21

the GLASSO-PLDA can compensate for the Σw = Σch + Σε + Σnoise without noisy training utterances.
As shown in our experiments, the optimums of both Σch and Σε have conditional independence
structure. If the optimum of Σnoise has also conditional independence structure; that is, if the sparse
assumption of the within-class precision matrix also holds in noisy condition, the GLASSO-PLDA
would bring performance improvements in the condition. It means that the GLASSO-PLDA can
compensate for the noise variability even without using noisy utterances.
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Appendix A

In this appendix, we describe the effect of making the deep speaker embeddings follow a
normal distribution [54–56]. Figures A1 and A2 list the EERs of the PLDA and Gaussian-constrained
(GC)-GLASSO-PLDA on the trials of RSR 2015 parts 1 and 2, respectively. We used d-vectors as speaker
embeddings, which generally exhibited good performance in our experiments. The GC-GLASSO-PLDA
means that the embeddings were extracted from the DNN trained using the GC training method [54–56].
However, the GC embeddings are still unsuitable for GLASSO-PLDA, because the GLASSO-PLDA with
the GC embeddings actually showed performance degradations, as shown in Figures A1 and A2. If the
GC embeddings are suitable for the GLASSO-PLDA, the GLASSO-PLDA with the GC embeddings
would show performance improvements. Therefore, we can claim that the GC embeddings are
not suitable for the GLASSO-PLDA, regardless of whether the GC embeddings actually follow a
normal distribution. It means that the GC training cannot make the embeddings follow a Gaussian
distribution, or the prerequisite of the GLASSO-PLDA may not be related to the normality assumption
of embeddings.
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