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Abstract: Comprehensive Geriatric Assessment (CGA) is an integrated clinical process to evaluate
frail elderly people in order to create therapy plans that improve their quality and quantity of life.
The whole process includes the completion of standardized questionnaires or specific movements,
which are performed by the patient and do not necessarily require the presence of a medical expert.
With the aim of automatizing these parts of the CGA, we have designed and developed CLARC (smart
CLinic Assistant Robot for CGA), a mobile robot able to help the physician to capture and manage
data during the CGA procedures, mainly by autonomously conducting a set of predefined evaluation
tests. Using CLARC to conduct geriatric tests will reduce the time medical professionals have to
spend on purely mechanical tasks, giving them more time to develop individualised care plans for
their patients. In fact, ideally, CLARC will perform these tests on its own. In parallel with the effort to
correctly address the functional aspects, i.e., the development of the robot tasks, the design of CLARC
must also deal with non-functional properties such as the degree of interaction or the performance.
We argue that satisfying user preferences can be a good way to improve the acceptance of the robot
by the patients. This paper describes the integration into the software architecture of the CLARC
robot of the modules that allow these properties to be monitored at run-time, providing information
on the quality of its service. Experimental evaluation illustrates that the defined quality of service
metrics correctly capture the evolution of the aspects of the robot’s activity and its interaction with
the patient covered by the non-functional properties that have been considered.

Keywords: assistive robotics; Comprehensive Geriatric Assessment; non-functional properties;
QoS metrics

1. Introduction

The Comprehensive Geriatric Assessment (CGA) is a clinical procedure designed to capture
information on medical, psycho-social and functional resources and problems of elderly people.
The collected data is subsequently used to personalize the treatment prescription, allowing the creation
of an overall plan for follow-up. CGA is an interdisciplinary effort, requiring the coordination
of several clinical professionals such as occupational therapists, physiotherapists, social workers,
or medical doctors. At the end, a typical CGA session takes about three hours of clinicians’ time,
and it should be repeated every six months to be really efficient [1]. The CGA comprises three
different types of activities: a clinical interview, a multidimensional assessment and a customized
care plan. First, a clinical interview allows the patient and their relatives to discuss the elder health
problems. Next, multidimensional clinical tests are performed to evaluate the overall patient status.
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Finally, clinical professionals can create a personalized care plan after taking into account the evidence
gathered during the two previous phases and the patient’s evolution since the last CGA session.
The multidimensional clinical tests include questionnaires (functional tests such as the Barthel one [2]),
cognitive exercises (e.g., the Mini-Mental State Examination or MMSE [3]), and motion analysis
exercises (as the Get Up & Go test [4]). This important part of the CGA procedure could be automated,
which has been considered by the European Union ECHORD++ (European Coordination Hub for
Open Robotics Development) project as one of the initiatives to be covered within its Public end-user
Driven Technological Innovation (PDTI) program (http://echord.eu/pdti/pdti-healthcare/).

CLARC (http://echord.eu/essential_grid/clark/) is an autonomous robotic solution designed to
support CGA in hospitals and retirement homes [5–7]. It was designed by a multidisciplinary team
including robotics and software engineers, medical doctors and physiotherapists from the Hospital
Virgen del Rocio (Seville, Spain), and experts on user-centered design from the University of Troyes.
Users were involved during each phase of the design and development of the system [8]. CLARC is
currently able to perform several kinds of tests, but in this paper, it was used for performing a
functional test (the Barthel one), and a motion analysis test (the Get Up & Go one). These tests include
closed-answer questions (“Select one option: 1, 2, 3 or 4”), and monitoring of patient movements
(“get up from the chair and walk three meters”). While deploying CLARC in larger evaluation pilots,
its suitability with real patients in real-life hospital environments has already been demonstrated [5–7].

However, CLARC is not limited to just executing multidimensional tests. For instance, some kinds
of tests are usually conducted at different rooms in the care centre. Therefore, CLARC is a mobile
robot that must be able to guide patients and go to rooms when required, while avoiding static or
dynamic obstacles. It must also be able to detect and adapt to exogenous events during the execution
of a test, such as the patient asking for help or leaving the room. Moreover, and before conducting the
tests, the CLARC robot will need to introduce itself as an accessible and helpful assistant (or, at least,
tool). Last but not least, elderly people undergoing CGA procedures are usually not familiar at all with
robotic technologies and, therefore, it will be also crucial for CLARC to make them feel comfortable
and reassured, and to offer them natural and intuitive ways to interact. These described behaviors of
CLARC comprise many requirements. Some of them are typical functional aspects (e.g., going to a
room, avoiding an obstacle, conducting the tests) but other are non-functional aspects such as safety,
performance, engagement or interaction, which are considered as key requirements for the validation
of CLARC as a whole.

This paper describes a methodology for the integration of key non-functional requirements
in CLARC that are monitored and verified during the robot operation, thus providing semantic
information about the quality of its service. Instead of synthesizing valuable or expected results
of these properties from records collected in the testing or deployment phases, our non-functional
properties will be now modelled at design-time. This enables the specification of global Quality of
Service (QoS) metrics defined in terms of the (internal and external) contextual information available
in the the robot. We refer to QoS as a way to express non-functional properties in terms of their
quantifiable (through the use of metrics) fulfillment. In addition to modeling these QoS metrics,
the component in charge of providing them at run-time will be integrated in the CLARC software
architecture. This so-called QoS metrics provider component is a probabilistic reasoner, which will
compute a numeric estimation for each metric (e.g., a real value between 0 and 1, indicating its degree
of fulfillment). In future work, these estimations could be used: (1) to determine how patients have
performed or interacted with the robot during these tests, (2) as a benchmarking tool to decide the best
algorithm to use in some cases (for instance, which speech recognition algorithm is better for a specific
patient), and (3) to adapt the test to a particular patient (even at run-time) depending on how she has
performed the test (time consumed, interaction mechanism use, etc.).

The rest of the paper is organized as follows: Section 2 introduces how the robot CLARC helps
to automatize the multidimensional clinical testing in the CGA, and it also provides some details
about the two tests considered in this work (Barthel and Get Up & Go). Section 3 describes the model
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designed to provide the QoS metrics for the CLARC scenario, including the probabilistic framework
deployed for computing these metrics. The platform description and the software architecture in
charge of controlling CLARC is presented in Section 4. This design is based on the cognitive software
architecture CORTEX [9,10], which will be augmented with the software components in charge of
providing the expected QoS metrics. Section 5 details and discusses the execution of several tests and
how our framework is able to monitor the specified non-functional properties at run-time. Section 6
focuses on related work. Finally, Section 7 draws the main conclusions and future work.

2. Using CLARC for Automatizing a CGA Session

CLARC is waiting in the Charging Room and Jaime, an 85-year old patient is with Dr. Gálvez
passing his evaluation. When Dr. Gálvez presses the Start button corresponding to the programmed
CGA session for Jaime on his mobile phone, CLARC goes out of standby, navigates to the room where
the patient is with the doctor, and looks for Jaime. It is the first time that Jaime is going to make a
session with CLARC. This time the session will consist of a Barthel test. When CLARC sees Jaime,
it greets him and presents itself. Before starting the test, CLARC proposes the patient to answer some
simple questions to get Jaime familiar with the different interfaces of CLARC and learn to interact
with it. At the same time CLARC evaluates if the patient is able to correctly use the interaction
devices: whether the patient can hear, see what is written on the interface, and select the appropriate
answer. After this CLARC explains to Jaime what the test will be about, and then, the test starts.
After 10–15 min of efficient patient-CLARC interaction, the test ends. It is time to thank and say
goodbye to Jaime. CLARC sends an internal message to Dr. Gálvez on his mobile phone, indicating
that Jaime’s Barthel test results are stored on the CGAmed server, waiting for his validation.

This brief summary provides a global snapshot on how the CLARC robot helps a clinician
when conducting a CGA test, in this case the Barthel one. The aim is that, meanwhile the robot is
interviewing the patient, the doctor has time for addressing other tasks, such as meeting with the
relative/s. In order to drive the test, CLARC is equipped with specific sensors and actuators and is
endowed with a cognitive software architecture. Both issues will be covered in Sections 4.1 and 4.2
respectively. It should be noted that CLARC is also included within a more global framework that
provides the tools that, for instance, allow Dr. Gálvez to launch the test and to review all the vast
amount of data (video files) associated with a session. This framework is responsible for connecting
our system with the Clinical Data Management System (CDMS). More details can be found in [5].

As CLARC works with real patients in real-life hospital environments, it needs to be much
more than a simple survey tool. Thus, it has to demonstrate its performance in terms of usefulness,
usability and accessibility [11]. It needs to be a helpful tool for both patients and clinicians, taking into
account that elderly people are usually not familiar at all with robotic technologies and that they must
feel comfortable and reassured during the whole CGA procedure [8]. One solution for achieving this
goal is that the robot can adapt at run-time the session to the preferences of the user. The first step
is then to be able to capture some metrics related to these topics. In this paper, we have considered
at design time some QoS metrics about performance and interaction of the patient with the system.
Their run-time computation has been integrated in the software architecture of the robot and evaluated
with real patients. The two tests considered in our experimental evaluation were the Barthel [2] and
the Get Up & Go [4] ones. Next we provide some details about them:

• The Barthel test. The Barthel test [2] is a heteroadministered test composed of 10 questions about
daily life activities, following a Likert scale structure, where each situation is described. It usually
lasts about 10–15 min. The test must be undertaken by the patient, but it is also conducted to
relatives and/or caregivers. It can also be related to present or past conditions. CLARC is currently
able to ask questions using natural interaction channels (i.e., voice output and text on screen).
For each question, two, three or four possible answers can be chosen. The person can answer the
questions either speaking, touching the option on the screen, or by using a specially designed
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remote control (Figure 1 (Right)). For each question, the patient has two opportunities to answer.
If the patient has not answered after these two opportunities, it will advance to the next question.

Figure 1. (Left) CLARC interacting with a patient for performing a Barthel test. (Right) The external
remote control.

• The Get Up & Go test. In this test, the patient is asked to stand up from a chair, walk a short
distance (around three meters) following a straight line, turn back, return to the chair and sit down.
The goal is to measure balance, detecting deviations from a confident, normal performance. In its
current implementation, the test has two main parts. In the first one, the patient is sitting next to
CLARC to receive the instructions to correctly perform the test. In the second one, the patient is
asked to go to the position where the test will be done, and the robot positions itself in a proper
location to observe the complete motion. After that, the robot provides a signal to start the test.
For a successful automation of the test, the robot needs to perceive the gait and to analyze balance
and timing issues.

3. Modelling QoS Metrics for the CLARC Scenario

Non-functional properties relate to how a system performs rather than to what it does.
Examples of non-functional properties include timing, dependability, safety or resource consumption,
among others. In this paper, we will consider that a QoS metric expresses the degree of fulfilment of a
non-functional property as a real number in the range [0,1]. In other words, a QoS metric will be a
score of how well the system performs according to, e.g., safety. If the metric is 1, the system is optimal
in terms of this property, while 0 indicates the opposite. Besides, this value can change as the behavior
of the robot evolves during its operation.

In parallel to the work on CLARC, our team carried out the RoQME project (https://robmosys.eu/
roqme) aimed at providing robotics software engineers with a model-driven framework to: (1) model
system-level non-functional properties in terms of contextual information; and (2) generate runtime
software artifacts to evaluate the specified properties as QoS metrics [12–14]. In RoQME, the modelling
of QoS metrics involves three major concepts:

• The non-functional properties relevant to the scenario. At run-time, the QoS metrics provider,
whose code is generated from the models, will update the estimates (the value of the metrics) for
those properties.

• The context information available to the robot. The fulfilment of a property evolves over time
according to the evidences collected by the robot from its context.

• The observations, which are specific context patterns whose occurrence reinforces or undermines
the fulfilment of non-functional properties.

(https://robmosys.eu/roqme
(https://robmosys.eu/roqme
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The following three Sections describe the RoQME specification of the above elements to include
QoS metrics in the CLARC scenario. Finally, Section 3.4 presents the probabilistic framework behind
this specification.

3.1. Non-Functional Properties

The aim of CLARC is to perform CGA tests to elderly people. For measuring the degree to which
the robot is successful in closing a test, we will define the Performance property. As aforementioned,
the fulfilment of a property will range from 0 to 1. In the Barthel test, it is close to 1 if the patient
remains sitting on the chair and answers all the robot’s questions on the first try. In the Get Up & Go
test, a value close to 1 means that the patient correctly follows the robot’s commands and performs the
required task, allowing the robot to score the test. On the other hand, values close to 0 indicate that the
robot could not end the session. For example, the robot had to call the doctor because the patient got
up from the chair during a Barthel test.

As will be introduced in the description of the experiments (see Section 5.2), we have a close
collaboration with several medical institutions, where clinicians provide us with professional advice.
In this sense, we were asked to customize how the robot interacts with a patient. For instance, if a
patient always answers Barthel’s questions using the remote control, there is no point in waiting for a
verbal response, therefore, the robot could disable voice interaction to speed up the test and improve the
patient experience. For that, we introduce the VoiceInteractionQuality property, which evaluates
the patient’s preference for verbal interaction against non-verbal (touch screen and remote control).
A value close to 1 will result when verbal interaction is preferred. Moreover, it is also important
to quickly detect when a patient is not interacting properly with the robot. We will consider the
Interaction property, which expresses whether the patient is actively interacting with the robot in an
efficient way. If so, a value close to 1 will be obtained, regardless of whether or not the patient follows
the robot’s instructions (which is captured by Performance). Listing 1 shows the declaration of the
non-functional properties specified for the scenario.

Listing 1: Non-functional properties for CLARC.

1 property Performance
2 property I n t e r a c t i o n
3 property V o i c e I n t e r a c t i o n Q u a l i t y

3.2. Context Information

The evaluation of non-functional properties relies on the monitoring of (1) the scenario where the
test is addressed (including the external factors, such as the behavior of the person interacting with
CLARC) and (2) the information from the robot’s sensors (e.g., battery level).

Listing 2 shows the context variables for the scenario. BatteryLevel, TestState, PersonDetected
and CallingDoctor are used in the Barthel and Get Up & Go tests. BatteryLevel indicates the
remaining battery of the robot. The CLARC system provides a five-level quantification, which offers
enough detail for our use case. PersonDetected represents whether the patient has been detected by
the robot. TestState shows the current state of the test and CallingDoctor is an event fired when
the patient presses the calling doctor button. It is worth noting that the REPEATING state is used
only in the Get Up & Go test and indicates that the robot is repeating the instructions because the
patient did not perform the test successfully. Regarding the contexts that only concern the Barthel test,
the CLARC system provides information on whether a patient has answered a question on the first
attempt (FirstAttemptAnsewerd = true), on the second attempt (FirstAttemptAnswered = false and
SecondAttemptAnswered = true) or if the patient has not answered (FistAttemptAnswered = false and
SecondAttemptAnswered = false). Finally, UserInteraction stores the interaction mechanism used by
a patient to answer a question.
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Scored, PersonIsNextToChair, PersonIsSeated and PersonGetsUp are contexts used in the
Get Up & Go test. Scored indicates whether the evaluation of last task returns a score,
whereas PersonGetsUp, PersonIsNextToChair and PersonIsSeated show if the patient is following
the robot instructions. These contexts allow us to determine how well the patient is doing the test.

Listing 2: Definition of contexts.

1 contex t Bat teryLeve l : enum {
2 VERY_LOW,
3 LOW,
4 HALF,
5 HIGH,
6 VERY_HIGH
7 }
8
9 contex t T e s t S t a t e : enum{

10 RUNNING,
11 PAUSED,
12 RESTARTED,
13 STOPPED,
14 REPEATING, //GetUpAndGo
15 FINISHED
16 }
17
18 contex t FirstAttemptAnswered : boolean
19 contex t SecondAttemptAnswered : boolean
20
21 contex t PersonDetected : boolean
22 contex t Cal l ingDoctor : eventtype
23
24 contex t U s e r I n t e r a c t i o n : enum {
25 TOUCH_SCREEN,
26 VOICE_RECOGNITION,
27 REMOTE_CONTROL
28 }
29
30 contex t Scored : boolean
31 contex t PersonGetsUp : boolean
32 contex t PersonIsNextToChair : boolean
33 contex t PersonIsSeated : boolean

3.3. Observations

An observation provides contextual evidence that the robot is optimal (or not) in terms of
a property. It is defined as a context pattern whose occurrence improves (reinforces) or worsens
(undermines) the QoS estimate of a property, to some degree (very high, high, medium, low, very low).
In addition, the language offers a wide range of event sequence operators and aggregate functions that
allow users to express complex contextual patterns.

Listing 3 shows the observations specified for the CLARC scenario. We have captured fourteen
observations that defines the relationship between contexts and non-functional properties. It is
worth noting that we involved two experts (a physiotherapist and an engineer specialized in
usability/accessibility of human-computer interfaces) to assist us in the modeling process.

An observation will be triggered when its context pattern becomes true. For example, the O2
observation acts when the patient has answered a Barthel question on the first attempt or the
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test is finished. In this case, O2 impacts on Performance by increasing (reinforcing) its estimate.
Moreover, the observations related to Performance and Interaction can be activated during the
Barthel or Get Up & Go test. However, observations O13 and O14 are triggered only during the Barthel
test, as they establish which interaction mechanism the patient is using.

Listing 3: Observations for both tests.

1 observat ion O1 : T e s t S t a t e : : RUNNING or Scored or
2 PersonIsNextToChair or PersonIsSeated or
3 PersonGetsUp r e i n f o r c e s Performance high
4 observat ion O2 : FirstAttemptAnswered or T e s t S t a t e : : FINISHED or
5 PersonDetected r e i n f o r c e s Performance low
6 observat ion O3 : SecondAttemptAnswered or T e s t S t a t e : : RESTARTED
7 r e i n f o r c e s Performance verylow
8 observat ion O4 : Bat teryLeve l : : VERY_LOW or T e s t S t a t e : : STOPPED or
9 T e s t S t a t e : : PAUSED undermines Performance veryhigh

10 observat ion O5 : ! Scored or ! SecondAttemptAnswered or
11 T e s t S t a t e : : REPEATING or ! PersonIsNextToChair or
12 ! PersonIsSeated or ! PersonGetsUp or Cal l ingDoctor
13 undermines Performance high
14 observat ion O6 : ! FirstAttemptAnswered or ! PersonDetected
15 undermines Performance low
16 observat ion O7 : PersonIsSeated or PersonIsNextToChair or
17 FirstAttemptAnswered
18 r e i n f o r c e s I n t e r a c t i o n high
19 observat ion O8 : PersonDetected or PersonGetsUp
20 r e i n f o r c e s I n t e r a c t i o n low
21 observat ion O9 : Cal l ingDoctor undermines I n t e r a c t i o n veryhigh
22 observat ion O10 : ! PersonIsSeated or ! SecondAttemptAnswered or
23 ! PersonIsNextToChair undermines I n t e r a c t i o n high
24 observat ion O11 : ! PersonGetsUp or ! FirstAttemptAnswered or
25 T e s t S t a t e : : PAUSED or T e s t S t a t e : : REPEATING or
26 ! PersonDetected undermines I n t e r a c t i o n low
27 observat ion O12 : SecondAttemptAnswered or T e s t S t a t e : : RESTARTED
28 r e i n f o r c e s I n t e r a c t i o n verylow
29 observat ion O13 : U s e r I n t e r a c t i o n : : VOICE_RECOGNITION
30 r e i n f o r c e s V o i c e I n t e r a c t i o n Q u a l i t y high
31 observat ion O14 : U s e r I n t e r a c t i o n : : REMOTE_CONTROL or
32 U s e r I n t e r a c t i o n : : TOUCH_SCREEN
33 undermines V o i c e I n t e r a c t i o n Q u a l i t y high

3.4. QoS Metrics

RoQME aims at providing a way to specify system-level non-functional properties at design-time,
whose fulfilment is expressed as QoS metrics at runtime. The dynamic estimation of these metrics,
in terms of the contextual information available, is solved through a probabilistic framework based on
the use of Bayesian Networks [15].

3.4.1. Our Model as a Probabilistic Network

The specification defined in previous Sections for the CLARC scenario abstracts a probabilistic
network, in which properties, such as Performance or Interaction, are represented by hidden Boolean
variables. Therefore, a property has two possible states, i.e., the system may or may not be optimal in
terms of the property, which cannot be observed directly, but rather what one has is the belief of being
in a particular state based on observable evidence. The runtime quantification of this belief results in
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the corresponding QoS metric values. For example, a resulting value of 0.67 for Performance can be
understood as the probability of the robot being optimal in terms of this property. On the other hand,
observations are evidence Boolean variables given that a contextual situation may or may not occur
but it can be perceived. These variables exhibit a direct probabilistic dependence with one or more
hidden variables.

Figure 2 (left) illustrates the Bayesian Network associated with Performance—other properties
in our model will produce similar networks. The graph shows the causal interactions (arcs) among
a set of variables (nodes). Any pair of unconnected nodes indicates (conditional) independence
between variables. So that, an observation is a variable that depends on a property. In other words,
the probability of the occurrence of an observation (i.e., observation = true) depends on whether the
system is optimal in terms of the property (property = true) or not (property = false). In addition,
although the concept of time is not an inherent characteristic of Bayesian Networks, we have considered
a continuous-time Markov chain [15] to manage the internal dynamics of each observation (Figure 2
(Right) shows the transition graph). This allows properties to evolve over time according to the
sequence of past observations. Further details will be provided in the following Section.

Performance

O1
O2

O3 O4
O5

O6

𝑂𝑖 = 𝑡𝑟𝑢𝑒

𝜆

𝜇

𝑂𝑖 = 𝑓𝑎𝑙𝑠𝑒

Figure 2. (Left) Qualitative specification of the Bayesian Network for Performance. (Right) The
transition graph for observations.

3.4.2. Deriving Probabilities

In order to complete the probabilistic network, we need to define the probabilities associated with
the variables. It should be noted that probabilities will be derived transparently from the high-level
descriptions provided in the previous Sections, which means that users do not have to deal with this
complexity and can focus on the application of their QoS metrics.

The “observation” sentences in the model allows users to establish dependencies on properties,
whose quantification is expressed as P(Observation|Property).

observation NAME: (PATTERN EXPRESSION) [survival T]

(reinforces | undermines) Property [VERY_HIGH | HIGH | LOW | VERY_LOW]

We obtain this probability by assuming that the intensity of an observation (VERY_HIGH, HIGH,
etc.) indicates the Likelihood Ratio (LR). See its definition in Equation (1). Table 1 maps the all intensity
values with the corresponding LR. Although other assignments are possible, this one has been shown
to be effective in our experiments.

LR =
P(Observation = true|Property = f alse)
P(Observation = true|Property = true)

(1)
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Table 1. Mapping between Likelihood Ratios and intensities.

Intensity LR (Reinforcing) LR (Undermining)

VERY HIGH 0.1 1/0.1
HIGH 0.3 1/0.3

(DEFAULT VALUE) 0.5 1/0.5
LOW 0.7 1/0.7

VERY LOW 0.9 1/0.9

Operating on Equation (2), and assuming P(Property) and P(Observation) equal to 0.5, we can
obtain Equations (3) and (4), which allows us to calculate the conditional probabilities based on LR.
Although we could choose a more elaborate method to initialize the a priori probabilities, the above
assumption is a simplification that seems to make sense. For example, in this case, when there is
no evidence, the belief of being optimal in terms of a property is reduced to 0.5, which expresses
maximum uncertainty. Therefore, 0.5 will be the baseline value for QoS metrics.

P(Observation = true) = P(Observation = true|Property = true)P(Property = true)+

+ P(Observation = true|Property = f alse)P(Property = f alse)
(2)

P(Observation = true|Property = true) =
1

1 + LR
(3)

P(Observation = true|Property = f alse) =
LR

1 + LR
(4)

As mentioned in Section 3.4.1, we will consider a continuous-time Markov chain to describe
the internal dynamics of the observations. When declaring an observation, we can use the option
“survival” to specify its average survival time in seconds (denoted as T). Observations gradually lose
their significance as time passes, so this parameter configures how long the effect of an observation
will last on the estimation of a property. For instance, consider the observation O9 in Listing 3,
it undermines Interaction when the calling-the-doctor button is pressed. As soon as the patient
presses the button, the urgency is maximum, but as time passes the effect weakens until it eventually
disappears. It does not seem very important that a patient pressed the button weeks ago. For the
CLARC scenario, we have set the default value of T to 100 min. This value has been chosen to maintain
the importance of the observations throughout the test, stabilizing the QoS metrics and making them
more robust to the time differences between patients.

The transition graph shown in Figure 2 (right) describes how the state of an observation variable
evolves over time. Considering that an observation can be in two states: true, if it is active, or false,
when it is not, we can describe the transition rates between states as λ (from true to false) and µ (from
false to true). Expression (5) is the resulting transition rate matrix (Q), where µ =0 since the effect of an
observation always fades, as we have already mentioned above.

Q =

(
−λ λ

µ −µ

)
(5)

Finally, the conditional probability of an observation after a period t from its activation
(Pt(Observation|Property)) can be determined from Q with the Kolmogorov forward equation,
whose particular solution for our problem is shown in Equation (6). The parameter λ can be calculated
using this result by considering the survival value T and setting the probability PT(Observation =

true|Property = true), see Equation (7).

Pt(Observation = true|Property) =


(

P(Observation = true|Property)− 1
2

)
· e−2λt + 1

2 i f (P(Observation = true|Property) < 0.5)

1
2 − ( 1

2 − P(Observation = true|Property)) · e−2λt (otherwise)

(6)
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λ =
1

2T

(
log

(∣∣∣∣∣PT(Observation = true|Property = true)− 1
2

P(Observation = true|Property = true)− 1
2

∣∣∣∣∣
))

(7)

4. Implementation

4.1. Platform Description

Figures 1 and 3a show the external aspect of the first version of the CLARC robot. Internally,
the robot is built over the MetraLabs SCITOS G3 platform (http://www.metralabs.com/en/). This base
is fitted with a LIDAR sensor for localization, navigation and obstacle avoidance. The robot’s
locomotion is based on a differential drive system consisting of two powered wheels and a caster
wheel for stability. This enables the robot to rotate on the spot and drive at a speed of up to 1 m/s,
if necessary. The platform contains a 40 Ah lithium battery which allows for up to 18 h of autonomous
operation, and can be recharged fully within 4 h. A safety bumper socket sensor is used to prevent the
robot from exerting force against animate or inanimate objects.

For solving the use cases involved in the current scenario, CLARC has been equipped with
additional sensors and interfaces for human-robot interaction. Thus, the robot is equipped with a
Microsoft Kinect V2 sensor, a shotgun microphone, a touch screen, speakers, and a web-cam for
recording the sessions. The touch screen located in the torso of the robot includes tactile buttons
for allowing the patient to pause/restart the session or to call the doctor. There are also buttons
for controlling the audio volume. Looking at Figure 3a, we can note that all the devices needed
for providing interaction or recording abilities are mounted over the external chassis of the robot.
The major disadvantage of this scheme is the fragility of the coupling of these devices on the chassis.
A minor hit can provoke an unexpected turn of the device, being the consequence that the microphone
does not allow now to hear the patient or that the IP camera is not recording the session. With the aim
of providing a more robust coupling of these devices on the robot’s structure, the chassis of CLARC
was redesigned. The aims were (i) to include the web-cam and IP camera inside the head of the robot
(the small monitor providing the ‘face’ of CLARC was then removed) and (ii) to attach the microphone
to the chassis, locating it over the Kinect sensor. The disposition of the two cameras within the head
and their fields of view are shown in Figure 4.

(a) (b)
Figure 3. (a) The CLARC robot; and (b) External device used for interacting with the robot.

http://www.metralabs.com/en/
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Figure 4. (Left) The bottom part of the final head of CLARC showing the camera disposition;
and (Right) the fields of view of both cameras.

The robot is also fully connected to an external device equipped with large buttons for facilitating
the interaction with the elderly people. Figures 1 (Right) and 3b show two different versions of
this external device. The one in Figure 1 (Right) includes a tactile touchscreen, allowing the user to
complete Barthel test and also cognitive tests such as the MMSE one [5]. The device in Figure 3b is a
lighter version, which can be used for performing the Barthel test. Both devices include buttons for
controlling the audio volume and also for calling the doctor.

4.2. Software Architecture

CLARC is a social assistive robotic platform which has to deal with complex tasks in its everyday
work. In these scenarios, cognitive architectures for robotics try to provide a reasonable structure
where all the functionalities of the robot can be adapted. Specifically, the CLARC robot is endowed
with the CORTEX cognitive architecture. Briefly, CORTEX can be described as a collection of agents
that interact and cooperate to achieve a global goal using the so-called Deep State Representation
(DSR) data structure [9,10]. The DSR is a short-term, graph-based dynamic representation of the space
surrounding the robot, the objects and humans in it, and the robot itself. All these entities are perceived
and internalized in the DSR by transforming them into different levels of abstraction, ranging from the
raw data provided by the sensors to high-level symbolic relationships. Contrary to approaches like
KnowRob [16], where symbolic facts are evaluated when needed, the DSR is cooperatively built and
kept updated by all the agents. They are continuously running in the background, computing and
asserting the knowledge representation. Moreover, agents are not hierarchically organized as in the
3T-based architectures [17]. In CORTEX, agents can be anywhere in the reactive-deliberative spectrum,
but each of them is in charge of a basic robotic functionality affecting a specific domain.

Figure 5 shows an overview of the instantiation of the CORTEX architecture in CLARC.
Surrounding the representation provided by the DSR there are nine agents marked as grey-coloured
boxes: PELEA, Speech, Panel, Remote Control, CogniDrive, Recorder, HMC, Person and QoS Metric
Provider. Internally, agents are implemented as a network of software components. Some of these
components are perceptive ones, which transform sensor information into internal representations.
Other components are actuators, which activate the robot end-effectors. Further components are
planners, which compute the plans needed to meet a goal or a desired behaviour. Sensors and actuators
in CLARC are marked as yellow-coloured boxes in the figure, linked to the agents in charge of their
management. For continuously capturing all the information of the Kinect V2 sensor, the architecture
includes an additional software component, the WinKinectComp. This component provides a stream of
information (e.g., human faces and skeletons) to the HMC and Person agents.
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Figure 5. Overview of the software architecture within the CLARC robot.

Next Sections provide a more detailed description of the DSR and of the QoS Metric Provider
agent. The rest of agents are only briefly introduced in Section 4.2.2.

4.2.1. The Deep State Representation (DSR)

The Deep State Representation (DSR) is a multi-labeled directed graph that holds symbolic
and geometric information within a shared data structure. Symbolic tokens are stated as logic
attributes related with predicates that are stored in nodes and edges within the graph, respectively.
Geometric information is stored as predefined object types linked by 4× 4 homogeneous matrices.
Again, they are respectively stored as nodes and edges of the graph. Figure 6 shows a reduced view of
the state associated with the execution of a Barthel test. The person and robot nodes are geometrical
entities, both linked to the world (a specific anchor providing the origin of coordinates) by a rigid
transformation. But, at the same time that we can compute the geometrical relationship between both
nodes (RT−1 × RT′), the person can be located (is_with) close to the robot. Furthermore, an agent can
annotate that currently the robot is speaking. More details about the DSR can be found in Marfil et al. [10].

The information available in the DSR will provide the context background that the QoS metrics
provider needs. In the reduced view on Figure 6, we can see four of the context items associated to a
Barthel test (for instance, the Battery level is LOW and the person used the TOUCHSCREEN for the last
response). As described in Section 4.2.3, a specific module will bridge the gap between the DSR and a
complex event detector module.
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Figure 6. Unified representation of the Deep State Representation (DSR) as a multi-labeled directed
graph. For instance, edges labeled as is_with or is_not denote logic predicates between nodes. On the
other hand, edges starting at world and ending at person and robot are geometric and they encodes a rigid
transformation (RT′ and RT respectively) between them. Geometric transformations can be chained or
inverted to compute changes in coordinate systems (see text).

4.2.2. Software Agents in CLARC

The PELEA agent is an instantiation of the Planning, Learning and Execution Architecture
(PELEA) [18], which is in charge of providing the deliberative skills to the architecture. The Recorder
agent manages an IP camera, which provides a stream of video for online supervision and also records
the session for offline visualization.

The different channels for patient-robot interaction are provided by the Speech, Panel and Remote
Control agents. The Speech agent is in charge of generating the voice of CLARC from text using the
Text-To-Speech (TTS) software provided by Microsoft Speech Platform SDK. This software is also used
to recognize the answers of the patient with the help of specific grammars that are loaded for each
question, in order to maximize recognition rates. The robot is currently able to interact with patients
in French, English or Spanish. The verbal channel is enhanced by using a touchscreen on the torso
of the robot [19]. The Panel agent manages the tactile interaction and the information shown in this
touchscreen, which has been carefully designed for dealing with elderly people [20,21]. The intense
use of this quasi-vertical touchscreen forces the patient to adopt an uncomfortable position, not only
because of keeping the arm extended, but also because the robot cannot be so close to the patient to
avoid that s/he is continually approaching/moving away from the screen to touch it. Therefore, and in
order to avoid this problem, we added a third element to the interface: an external device with large
buttons (see Figure 3b) for answering the typical questions in a Barthel test, which is managed by the
Remote Control agent.
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All navigation and localisation are provided by the CogniDrive software running over the MIRA
middleware (http://www.mira-project.org/joomla-mira/). The CogniDrive agent implements a
bridge for connecting these software modules to our cognitive architecture.

The Person agent is in charge of detecting and tracking the people in the environment of the
robot. But this information is not sufficient for the Get Up & Go test. In this test, we need to capture
and process the motion of the full body joints of the patient. The HMC agent implements a framework
able to describe and evaluate human motion. The framework is based on parametric segmentation
and evaluation of action primitives, requiring the complete gait to be perceived before evaluating
it. Once the gait is captured the analytic nature of the algorithm allows producing fast responses.
It has been successfully used for the autonomous evaluation of human gait in the Get Up & Go
test (see [7] for further details). The Person and the HMC agents are connected to the WinKinectComp
module. This module is in charge of capturing the preprocessed data provided by a Kinect sensor v2
(i.e., joints and face of the person).

Details about the QoS Metrics Provider agent are given in the next subsection.

4.2.3. The QoS Metrics Provider Agent

The QoS Metrics Provider agent computes the QoS metrics explained in Section 3 using the
context information monitored from the DSR. As Figure 7 shows, this contextual information will be
sequentially processed by four modules:

• The Context Monitor module reads the contextual data from the DSR and sends contexts to the
Complex Event Processor (e.g., changes in the battery level).

• The Context Event Processor module searches for event patterns that were specified in the model
(Listing 3). If there is a match, it will produce observations (e.g., battery is draining too fast) that
will be sent to the Probabilistic Reasoner. Specifically, this Complex Event Processor: (1) supports
the creation of derived context variables, i.e, if a user defines a derived context, the Complex
Event Processor comes into play to calculate its value each time the primitive contexts on which it
depends are updated; (2) evaluates observations as event-typed expressions, which produces an
event whenever the pattern is satisfied; and (3) allows the computation of aggregate functions,
such as, sum, average, maximum and minimum and the use of timers.

• The Probabilistic Reasoner module implements the mathematics described in Section 3.
It reinforces or undermines the properties according to the observation definitions available
with the model. As stated before, it computes a numeric estimation for each metric (i.e., the degree
of fulfillment of each non-functional property) returning a value between 0 and 1.

• The QoS metric server module reads estimations sent by the probabilistic reasoner and forwards
them to any external software in charge of interpreting these estimations (e.g., for benchmarking
or for robot’s self-adaptation, among others).

http://www.mira-project.org/joomla-mira/
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Figure 7. A sequence diagram showing data exchange within modules in the Quality of Service (QoS)
Metrics Provider agent.

5. Experimental Evaluation

The runtime updating of the QoS metrics is based on the detection of certain context patterns
(observations). These patterns and their influence on the metrics must be captured in advance from
experts. In our case, an initial list of observations was defined with the help of one physiotherapist and
one software engineer with a large experience on usability/accessibility of human-computer interfaces.
Both researchers were involved in the CLARC project from the first phase. For evaluating this initial
model, a test-bench was designed. This test-bench consists of several completed tests, where the
human responses are simulated. Thus, executing one of these tests using the same model will generate
the same metrics. The possibility of repeating these tests until the experts agree with the evolution
of the obtained QoS metrics allowed us to tune the list of observations. Section 5.1 describes the
test-bench and the final QoS metrics obtained from their execution. The observations in Listing 3 are
the result of this tuning procedure. They were then employed in the tests conducted to real patients
described in Section 5.2.

5.1. Preliminary Experiments

In order to test the QoS metrics provider agent and the model describing non-functional properties,
we have created a test-bench consisting of six and nine executions of Barthel and Get Up & Go tests,
respectively. As aforementioned, these tests were artificially created, being the responses of the human
to the questions, or to commands emanated from the robot, entered by hand. These closed tests have
been designed taking into account the most common scenarios that we found during the execution of
real Barthel or Get Up & Go tests, and they cover situations that affect the non-functional properties
defined in this paper. As aforementioned, this test-bench allows us to intensively validate the correct
response of the whole framework.

The relevant features of the Barthel tests included in the test-bench are depicted in Table 2.
The test-bench allows us to monitor the evolution of the properties defined in Listing 1 simulating that
the patient answers each one of the questions using voice (VR), the Remote Control device (RC), or the
touch screen (TS). We include situations where the patient answers in the first attempt (1st), in the
second attempt (2nd), or just does not answer a question (QNA). We have also included situations
where the patient presses the pause button or calls the doctor. In both cases we consider that the
session is posteriorly restarted (PR and CDR, respectively). Finally, we also consider spurious failures
on the detection of the person (NPD).
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Table 2. Bathel tests used to validate our model. Legend: 1st (FirstAttemptAnswered),
2nd (SecondAttemptAnswered), VR (UserInteraction::VOICE_RECOGNITION), RM (UserInteraction::
REMOTE_CONTROL), TS (UserInteraction::TOUCH_SCREEN), CDR (CallingDoctor and then
TestState::RESTARTED), PR (TestState::PAUSED and then TestState::RESTARTED), QNA (Question not
answerered. Defined as SecondAttemptAnswered=false) and NPD (PersonDetected=false and then
PersonDetected=true).

Question Barthel #1 Barthel #2 Barthel #3 Barthel #4 Barthel #5 Barthel #6

1 1st, VR 1st, TS 2nd, TS 1st, VR 2nd, TS QNA

2 1st, VR 1st, TS 2nd, TS 2nd, VR QNA QNA

3 1st, VR 1st, TS 2nd, TS QNA PR, 1st, TS NPD, 2nd, TS

4 1st, VR 1st, TS 2nd, TS 1st, TS 2nd, TS 2nd, TS

5 1st, VR 1st, TS 2nd, TS 2nd, TS PR, 2nd, RC NPD, 1st, TS

6 1st, VR 1st, RC 2nd, TS QNA CDR, 1st, TS QNA

7 1st, VR 1st, RC 2nd, TS 1st, VR 1st, TS CDR, 1st, TS

8 1st, VR 1st, RC 2nd, TS 2nd, VR 1st, TS 2nd, TS

9 1st, VR 1st, RC 2nd, TS 1st, TS 1st, TS PR, 1st, TS

10 1st, VR 1st, RC 2nd, TS 2nd, TS 1st, TS 2nd, TS

The properties to monitor when running a Barthel test are Performance, Interaction and
VoiceInteractionQuality. After choosing a final list of observations, Table 3 details the statistical
features of these properties when running the six Barthel tests in Table 2. As statistical features we
choose the minimum (min), maximum (max), average (avg), standard deviation (sd) and the final
value of the property when the test is finished (last). It is worth noting that all the properties have a
default value of 0.5 if they were not initialized explicitly (see Listing 1). In Barthel #1 test, where the
simulated user always answered in the first attempt using the verbal channel, results show how the
reference value for each property increase up to a maximum (and last) value of 0,98 (Performance)
and 1 (Interaction and VoiceInteractionQuality), the average value is also very high, around 0.8.
This clearly demonstrates to the decision making agent in the software architecture that the test is
going well and that the patient is proactively interacting with the robot. Moreover, this agent could
also appreciate that this user prefers the verbal channel for interaction. On the other hand, in Barthel
#2 (third column, Table 2), simulated answers were always captured using the touch screen on the
torso of the robot or the remote control. In this case, we can note the significant difference on the
VoiceInteractionQuality property. It starts with a reference value of 0.5 which, during the test,
decreases until 0.0 (last value). The robot correctly captured the responses to the questionnaire and the
patient-robot interaction was fluent. But the VoiceInteractionQuality metric shows that this user
prefers to not use the verbal channel.

Barthel #3 (fourth column, Table 2) shows a scenario where the user answers all the
questions, but in the second attempt and using the touch screen interface. The behaviour of the
VoiceInteractionQuality property is similar to the one obtained in Barthel #2 (meaning that a
non-verbal channel for interaction is preferred). However, the last values of the Performance and
Interaction metrics are less than 0.18. This can be interpreted as correct: the robot must repeat all
questions to the patient for capturing a response, and the patient-robot interaction was not fluent.
Barthel #4, #5 and #6 (fifth-seventh columns, Table 2) incorporate new situations, such as questions
not answered (QNA), patients suddenly undetected (NPD), calls to the doctor (CDR) and patients
that pause the test (PR). We also emulate the scenario where patients sometimes answer in the first
attempt but, in other cases, they answer in the second attempt. For example, in Barthel #4, the average
and last values of the Performance metric are similar to the ones obtained in the execution of the
Barthel #3. However, the standard deviation of this metric in the execution of the Barthel #4 is greater.
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The reason is that the patient in Barthel #4 sometimes answers in the first attempt and sometimes in
the second attempt (or does not answer). All these situations have an impact on the evolution of the
Performance property. Significantly, the fact that the simulated patient in Barthel #4 answered four of
the questions in the first attempt provokes that the Interaction metric provides an average value of
0.61. This value is greater than the one obtained for the patient that run the Barthel #3. But it is a low
value. Sometimes the patient answered fluently, and sometimes she needed a second attempt or did
not provide an answer. The metrics associated to the execution of the Barthel #5 and #6 are affected by
the multitude of uncommon situations included in both executions. In the execution of the Barthel
#5, the simulation includes one call to the doctor and two pauses on the session. The result is a very
poor Performance (these situations implied that the robot was not able to perform the complete test
by itself). However, having a look to the evolution of Barthel #5 (sixth column, Table 2) we can infer
that, after receiving help by the doctor (question 6), the human-robot interaction was fluent. The final
Interaction value is therefore high (0.94), correctly capturing this fact. Finally, Barthel #6 shows the
typical response when the robot deals with a patient that is really uncomfortable in the interaction
with the robot.

Table 3. Barthel test results associated to the tests in Table 2 (see text for details).

Barthel #1 Barthel #2 Barthel #3 Barthel #4 Barthel #5 Barthel #6

Pe
rf

or
m

an
ce

min 0.5000 0.5000 0.1147 0.0787 0.0017 0.0031

max 0.9822 0.9823 0.5882 0.6692 0.5882 0.5882

avg 0.8188 0.8187 0.3351 0.3248 0.1671 0.1357

sd 0.1363 0.1367 0.1474 0.2108 0.2351 0.1944

last 0.9822 0.9823 0.1727 0.1686 0.0400 0.0082

In
te

ra
ct

io
n

min 0.5000 0.5000 0.1147 0.2653 0.0303 0.0342

max 1.0000 1.0000 0.5882 0.8252 0.9474 0.5882

avg 0.9084 0.9076 0.3349 0.6107 0.4026 0.1893

sd 0.1545 0.1553 0.1477 0.1433 0.2175 0.1776

last 1.0000 1.0000 0.1275 0.6938 0.9470 0.2259

V
IQ

ua
lit

y

min 0.5000 0.0000 0.000 0.4155 0.0001 0.0006

max 1.0000 0.5000 0.5000 0.9141 0.5000 0.5000

avg 0.8870 0.1139 0.1055 0.6870 0.1454 0.2098

sd 0.1859 0.1869 0.1769 0.1711 0.1826 0.2200

last 1.0000 0.0000 0.0000 0.4159 0.0001 0.0006

As the QoS metrics are being continuously monitored, it is important to analyse their evolution
over time. Table 4 (Right) depicts how the Performance, Interaction and VoiceInteractionQuality
metrics evolve during the execution of the test Barthel #4. Table 4 (Left) summarizes the observations
detected by the Complex Event Processor, linked to the instant of time on which they were generated,
and to the context stored in the DSR. With respect to Table 2, we can note the presence of two new
context values in the Table 4 (Left): PD indicates that the person is detected and the session can start;
and FINISHED states that the 10 questions were captured and the session can end. For instance,
ten seconds after starting the test the PersonDetected (PD) context is annotated by the Person agent in
the DSR, firing the observations two and eight (O2:O8). Both observations reinforce Performance and
Interaction (as defined in Listing 3). Then, about two minutes later (t = 135 s), the user answered the
first question of the Barthel test in the first attempt using the voice recognition system (fifth column,
Table 2). These contexts fire the O13, O2, and O7 observations, increasing the three QoS properties.
Observations that decrease these properties are, for instance, O6, O11 that are fired when the patient



Appl. Sci. 2020, 10, 6618 18 of 28

does not answer the question in the first attempt (t = 205 s), or O5 and O10 in the case the patient does
not answer the question after the two attempts (t = 340 s).

Table 4. Barthel #4: (Left) Contexts and observations generated by the system. PD (PersonDetected),
1st (FirstAttemptAnswered=true), !1st (FirstAttemptAnswered=false), 2nd (SecondAttemptAnswered=
true), !2nd (SecondAttemptAnswered=false), VR (UserInteraction::VOICE_ RECOGNITION),
TS (UserInteraction::TOUCH_SCREEN), FINISHED (TestState::FINISHED). (Right) Graphical evolution
of the properties values during the test.

Time (s) Observations Contexts

10 O2:O8 PD

135 O13:O2:O7 1st,VR

205 O6:O11 !1st

230 O13:O12:O3 2nd,VR

310 O6:O11 !1st

340 O5:O10 !2nd

400 O2:O14:O7 1st,TS

485 O6:O11 !1st

505 O12:O14:O3 2nd,TS

595 O6:O11 !1st

630 O5:O10 !2nd

690 O13:O2:O7 1st,VR

790 O6:O11 !1st

810 O13:O12:O3 2nd,VR

890 O12:O14:O7 1st,TS

965 O6:O11 !1st

990 O12:O14:O3 2nd,TS

1000 O2 FINISHED

Regarding the Get Up & Go test, we have added to the test-bench nine simulated tests. Table 5
provides a brief description of each test. It can be seen that they consider different execution alternatives,
such as the Person agent losing the patient for a few seconds, or the patient calling the doctor during
the visual presentation of how she must perform the test.

For the Get Up & Go test, the framework only computes two metrics: Performance and
Interaction. It is worth noting that the VoiceInteractionQuality is not used in this test because
the user does not have to answer any question. Statistical features of the obtained metrics when
we execute the nine tests are illustrated in Table 6. Specifically, the table shows the minimum (min),
maximum (max), and the final value (last) of the two properties. In contrast to Barthel tests, we have
not considered the average and deviation values. The reason for discarding them is that, contrary to
the Barthel test where the robot maintains the control over the time slots for answering a question,
in the Get Up & Go test, the time is controlled by the patient. That is, a patient has a maximum time
of 300 s to perform all the movements on the Get Up & Go test, i.e., sitting on the chair, getting up,
walking and sitting on the chair again. But, within this interval of time, she will decide for instance
when she sits on or gets up off the chair. As the observations are typically generated in the transition
between two actions, the metrics can maintain their values during a few seconds. The result is that the
metrics associated with two correctly executed tests can present very different average and deviation
features. As the minimum, maximum and last values are not affected by the test duration or the
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temporal distance between consecutive performed actions, they can be used for characterizing the
Performance and Interaction metrics.

Table 5. Get Up & Go tests used to validate our model.

Test Description

Get Up & Go #1 The patient performs the test successfully

Get Up & Go #2
Starting the test, the robot lost the person during a few seconds. Then the test is
performed successfully.

Get Up & Go #3
Starting the test, the robot lost the person during a few seconds. In the first attempt,
the person does not stay next to the chair. In the second attempt he stays next to the
chair and the test is performed successfully.

Get Up & Go #4
Starting the test, the robot lost the person during a few seconds. The person does not
stay next to the chair. The test finishes

Get Up & Go #5
The patient stays next to the chair but he sits on the chair in the second attempt (the
robot must repeat the instructions). Then, the test is performed successfully.

Get Up & Go #6
The patient stays next to the chair, sits on chair but he does not get up. The robot does
not give him a score.

Get Up & Go #7
The patient stays next to the chair, sits on chair, gets up but does not sit on the chair
again. The robot does not give him a score.

Get Up & Go #8
During the test introduction the patient presses the pause and the restart button. The test
is performed successfully.

Get Up & Go #9
During the test introduction the patient presses the calling doctor button. The doctor
presses the restart button. The test is performed successfully.

Table 6. Get Up & Go test results associated to the tests in Table 5 (see text for details).

Performance Interaction

min max last min max last

Get Up & Go #1 0.5000 0.9987 0.9987 0.5000 0.9861 0.9857

Get Up & Go #2 0.4982 0.9987 0.9987 0.4982 0.9861 0.9857

Get Up & Go #3 0.2978 0.9808 0.9808 0.2978 0.9567 0.9567

Get Up & Go #4 0.1550 0.5882 0.1555 0.0824 0.5882 0.0828

Get Up & Go #5 0.5000 0.9956 0.9956 0.4879 0.9372 0.9361

Get Up & Go #6 0.5000 0.9387 0.8310 0.5000 0.9387 0.7067

Get Up & Go #7 0.5000 0.9806 0.9343 0.5000 0.9559 0.8270

Get Up & Go #8 0.1242 0.9904 0.9904 0.4981 0.9823 0.9818

Get Up & Go #9 0.2984 0.9963 0.9963 0.1242 0.9058 0.9055

As Table 5 shows, the first Get Up & Go test was successfully performed. Hence, both metrics
only growed with time. We can note that the minimum value for Performance and Interaction is
0.5 (the initial reference value), whereas the maximum value is the same as the final value. In this
test, Performance and Interaction increased their values during the test execution until reaching
0.9987 and 0.9857 respectively. This means that the session was successfully addressed and that the
patient correctly responded to the commands from the robot. The second Get Up & Go test is similar
to the first one. However, the robot lost the patient for a few seconds at the beginning of the test. As a
result, Performance and Interaction decreased their values falling below 0.5. The maximum and
final values are also close to 1.0, meaning that the patient successfully finished the test and correctly
interpreted the commands from the robot.



Appl. Sci. 2020, 10, 6618 20 of 28

In the Get Up & Go #3 the robot also lost the patient at the beginning of the session
(!PersonDetected). Moreover, when detected, she did not stay next to the chair in a first attempt
(!PersonIsNextToChair). The robot was forced to repeat the instructions. This decreased the
Performance and Interaction metrics, but, as the test was correctly executed, the final values are
close to 1.0. As expected (the commands from the robot were not correctly understood for the first
attempt), the last value of the Interaction metric is lower than the last value of the Performance one.
The same initial situations were simulated for the Get Up & Go #4. However, in this case, the patient
does not stay next to the chair in the last attempt. This implies a severe penalty in the Performance
and Interaction metrics since the robot was forced to repeat the instructions and wait for the patient.
As it is described in Table 5, the test ends before the robot can assess the test. This provokes very
final values for the Performance and Interaction metrics. In the test Get Up & Go #5 the patient
performed the test after not following correctly the robot instructions (she sat down on the chair in
the second attempt). That implies that the robot had to repeat instructions and, therefore, there was a
penalty for the Performance and Interaction metrics. As was the case for the execution of the Get
Up & Go #3, this situation affected a little more to the Interaction metric.

Get Up & Go #6 and #7 describe two examples where the system does not return a score. This may
be caused by a problem related to the tracking system (Person agent) or, as it occurred in these two
cases, when the patient has not completed one of the actions asked by the CLARC robot. Finally, tests #8
and #9 are similar. The difference lies in the button pressed by the patient. While in the execution
of the Get Up & Go #8 the patient pressed the pause button, in the test #9 the patient pressed the
CallingDoctor button. In the first case, the patient restarted the test using the resume button. However,
in the test #9, it was the doctor who pressed the continue button.

Table 7 shows the response of the framework (context, observations and metrics) during the
execution of the Get Up & Go #9. In this example, after visualizing the introductory video (t = 120 s),
the patient called the doctor for help. This decreased the Performance and Interaction metrics
because of the observations five (O5) and nine (O9) generated by the Complex Event Processor.
We can assume that, after describing the test to the patient, the doctor pressed the continue button
(RESTARTED). This action (t = 140 s) triggered observations that increase both metrics. For the rest
of the test, the patient followed the robot instructions (as detailed in Table 5). Thus, the generated
observations increased the Performance and Interaction metrics until reaching values close to 1.0
for the end of the test.

Table 7. Get Up & Go #9: (Left) Contexts and observations generated by the system. (Right) Graphical
evolution of the properties values during the test.

Time (s) Observations Contexts

10 O2:O8 PersonDetected

120 O5:O9 CallingDoctor

140 O12:O3 RESTARTED

170 O1:O7 PersonIsNextToChair

225 O1:O7 PersonIsSeated

235 O1:O8 PersonGetsUp

250 O1:O7 PersonIsSeated

270 O1:O2 Scored,FINISHED

5.2. Experiments in Real Scenarios

In the consortium of the CLARC project, there are two research groups that are very close to
end-users. One of them is a research group of the Hospital Virgen del Rocio of Seville (Spain), and the
other one is from the University of Troyes (France), which has strong links with the Hospital of Reims
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(France). Thus, from January 2019 to March 2019, a CLARC robot (in its final version) was deployed at
the Hospital of Reims (see Figure 8 (left)) and two others (first versions of CLARC) at the Hospital
Virgen del Rocio (see Figure 8 (right)). The one at Reims worked in the geriatric unit, but those in
Seville were tested in several care centres. Several complete test executions were recorded in both
scenarios and deeply analyzed. The experimental evaluation on this Section is built using 22 Barthel
tests and 13 Get Up & Go tests.

Figure 8. The CLARC robot interacting with elderly people. (Left) The final version deployed in Reims;
and (Right) The first version of the robot, which was one of the platforms tested in Seville.

Table 8 details the Barthel tests performed with real patients. Each column provides the patient’s
response to each question on the test. As in the previous Section, we detail how patients answered
each question: if they used the remote control (RC), the touch screen (TS) or the voice interface (VR),
and if they answered in the first (1st) or second (2nd) attempt (or did not answer (QNA)). We can also
know if they pressed the pause/restart buttons (PR) or the calling doctor/restart buttons (CDR), or if
they were undetected for a while (NPD). We are grouped in the same row of the table the patients
that completed the test exhibiting the same behaviour. For instance, patients #3, #5, #7, #17, and #22
completed the tests in the same way: answering all the questions in the first attempt (1st) using the
touch screen (TS). From the point-of-view of our system, the evolution of the QoS metrics for the group
of users in each one of the rows of the table is practically identical, regardless of the small differences
in the response time of the patients.

Table 8. Barthel tests performed in real scenarios. 1st (FirstAttemptAnswered), 2nd (Second
AttemptAnswered), VR (UserInteraction::VOICE_RECOGNITION), RC (UserInteraction::
REMOTE_CONTROL), TS (UserInteraction::TOUCH_SCREEN), CDR (CallingDoctor and then
TestState::RESTARTED), PR (TestState::PAUSED and then TestState::RESTARTED), QNA (Question
not answered. Defined as NOT SecondAttemptAnswered) and NPD (not PersonDetected and then
PesonDetected).

Group Patient # Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 1 1st,VR 1st,VR 1st,VR QNA 1st,VR 1st,VR 1st,VR 1st,VR 1st,VR 1st,VR

2 2, 14 2nd,TS 1st,TS 1st,TS 1st,TS 1st,TS 1st,TS 1st,TS 1st,TS 1st,TS 1st,TS

3 3,5,7,17,22 1st,TS 1st,TS 1st,TS 1st,TS 1st,TS 1st,TS 1st,TS 1st,TS 1st,TS 1st,TS

4 4 QNA 1st,VR QNA 1st,VR QNA QNA 1st,VR QNA QNA QNA

5 6 1st,TS 1st,TS 1st,TS QNA 1st,TS 1st,TS 1st,TS 1st,TS 1st,TS 1st,TS

6 8 1st,TS QNA 1st,TS 1st,TS 1st,TS 1st,TS 1st,TS 1st,TS 1st,TS 1st,TS

7 9,10,12,13,16,18,20 1st,RC 1st,RC 1st,RC 1st,RC 1st,RC 1st,RC 1st,RC 1st,RC 1st,RC 1st,RC

8 11 PR,2nd,RC 1st,RC 1st,RC 1st,RC 1st,RC 1st,RC 1st,RC 1st,RC 1st,RC 1st,RC

9 15 2nd,RC 1st,RC 1st,RC 1st,RC 1st,RC 1st,RC 1st,RC 1st,RC 1st,RC 1st,RC

10 19 1st,VR 1st,VR 1st,VR 1st,VR 1st,VR 1st,VR 1st,VR 1st,VR 1st,VR 1st,VR

11 21 PR,2nd,RC 1st,RC 2nd,RC 1st,RC 2nd,RC 2nd,RC NPD,1st,RC 1st,RC NPD,2nd,RC 1st,RC
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Table 9 depicts the results obtained on these tests. Considering each row of Table 8 as a group,
the groups of patients G#1, G#4, and G#10 (3 patients in total) answered using the voice recognition
system, groups G#2, G#3, G#5, and G#6 (9 patients) used the touchscreen, whereas the rest of patients
(10 patients) answered using the Remote Control device. Regarding Group G #1 (Table 9), the patient
answered all questions in the first attempt except question 4. The Performance and Interaction
metrics provide last values close to 1.0. Moreover, the VoiceInteractionQuality property never
decreases below the initial value (0.5) and it reaches a maximum value of 1. This shows that the patient
always answered using voice. As for the Performance, there was a penalty due to an unanswered
question (Q4). This is illustrated in a minimum value of 0.45, as well as the fact that the maximum value
reached is 0.91, with an average value of 0.68 (the optimal average value is 0.82, as we can see in the
data associated with G #3, the perfect case where the patient answered all questions in the first attempt).
Finally, the Interaction property for G #1 was also influenced by the question not answered by the
patient. However, it recovered quickly to almost reach the optimal value obtained during these tests.
The evolution of the three properties (Performance, Interaction and VoiceInteractionQuality) are
depicted in Table 10 (Right). The observations provided by the Complex Event Processor are shown in
Table 10 (Left). This table also describes the context information captured from the DSR.

Table 9. Barthel test results associated to the tests in Table 8 (see text for details).

G #1 G #2 G #3 G #4 G #5 G #6 G #7 G #8 G #9 G #10 G #11

Pe
rf

or
m

an
ce

min 0.4572 0.4984 0.5000 0.0002 0.4522 0.2958 0.5000 0.1241 0.4976 0.5000 0.1071

max 0.9120 0.9722 0.9822 0.5882 0.9109 0.9163 0.9822 0.9278 0.9701 0.9822 0.5882

avg 0.6800 0.7433 0.8204 0.1602 0.6774 0.6083 0.8191 0.5586 0.7482 0.8182 0.2647

sd 0.1122 0.1549 0.1364 0.2060 0.1133 0.1555 0.1366 0.2167 0.1494 0.1365 0.1423

last 0.9120 0.9722 0.9822 0.0003 0.9109 0.9163 0.9822 0.9278 0.9701 0.9822 0.4833

In
te

ra
ct

io
n

min 0.5000 0.4984 0.5000 0.0017 0.5000 0.4854 0.5000 0.4978 0.4976 0.5000 0.4352

max 0.9999 1.0000 1.0000 0.5882 0.9998 0.9998 1.0000 1.0000 0.9999 1.0000 0.9861

avg 0.8946 0.8399 0.9094 0.2423 0.9003 0.8372 0.9081 0.8879 0.8514 0.9078 0.7596

sd 0.1498 0.1947 0.1544 0.2128 0.1447 0.1797 0.1549 0.1705 0.1897 0.1548 0.1639

last 0.9999 1.0000 1.0000 0.0017 0.9998 0.9998 1.0000 1.0000 0.9999 1.0000 0.9860

V
IQ

ua
lit

y

min 0.5000 0.0000 0.0000 0.5000 0.0001 0.0001 0.0000 0.0000 0.0000 0.5000 0.0000

max 1.0000 0.5000 0.5000 0.9642 0.5000 0.5000 0.5000 0.5000 0.5000 1.0000 0.5000

avg 0.8803 0.1386 0.1117 0.8126 0.1103 0.1401 0.1133 0.1284 0.1316 0.8862 0.1278

sd 0.1837 0.2017 0.1858 0.1747 0.1781 0.1805 0.1864 0.1971 0.2003 0.1863 0.1978

last 1.0000 0.0000 0.0000 0.9471 0.0001 0.0001 0.0000 0.0000 0.0000 1.0000 0.0000

The rest of patients that used voice recognition to answer questions obtained uneven results.
For instance, Patient #4 did not answer seven questions. Although the remaining questions
were answered on the first attempt, the Performance and Interaction values are very low.
However, this did not affect the VoiceInteractionQuality property, which decreases its value only
when the patient answered using the Remote Control device or the touch screen. Patient #19 (G #10)
performed the test perfectly, answering questions on the first attempt. The metrics obtained by this
patient can be considered a reference value for validating other patients.

Patients in the group G #3 also performed the test answering questions on the first attempt
but using the touch screen on the torso of the robot. Due to this, the VoiceInteractionQuality
decreased during the test until it reached a value of 0, indicating that these patients used a non-verbal
channel for interacting with the robot. Patients #6 and #8 did not answer question four and two,
respectively. Comparing these two patients, we can see how the maximum and the final value are
nearly identical, as expected. The minimum and the average differ slightly as the observations
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associated with the Question non Answered occurred in different instants of time. Both patients
always used the touchscreen (the VoiceInteractionQuality metric ends close to 0.0).

Table 10. Barthel(patient) #1: (Left) Contexts and observations generated by the system: 1st (First
AttemptAnswered=true), !1st (FirstAttemptAnswered=false), 2nd (SecondAttempt Answered=true),
!2nd (SecondAttemptAnswered=false), VR (UserInteraction:: VOICE_RECOGNITION), FINISHED
(TestState::FINISHED). (Right) Graphical evolution of the properties values during the test.

Time (s) Observations Contexts

10 O2:O8 PD

90 O13:O2:O7 1st,VR

135 O13:O2:O7 1st,VR

180 O13:O2:O7 1st,VR

225 O6:O11 !1st

245 O5:O10 !2nd

280 O13:O2:O7 1st,VR

325 O13:O2:O7 1st,VR

365 O13:O2:O7 1st,VR

415 O13:O2:O7 1st,VR

460 O13:O2:O7 1st,VR

500 O13:O2:O7 1st,VR

505 O2 FINISHED

The remaining 10 patients have completed the test using the Remote Control device. Patients in
group G #7 obtain identical results that the ones in G #3. Although the only difference was the
interaction mechanism used, the values obtained for the VoiceInteractionQuality property are
identical, since neither used voice interaction. Patients #11 (G #8) and #15 (G #9) also performed the test
in a similar way, as they both answered the first question at the second chance. However, Patient #11,
before answering, paused the test and then resumed it. If we observe the model (Listing 3), we can
see how pausing and resuming the test significantly affects Performance but very little Interaction.
This is the reason why worse results are obtained for Performance and practically identical for the
Interaction property.

Tables 11 and 12 show how patients performed the Get Up & Go tests and the results obtained,
respectively. Twelve patients performed the tests properly: they followed the robot instructions and
the robot was able to detect all the movements and return a score. In that case, results show how the
Performance and the Interaction properties reach almost 1.0, as expected. More details are available
in Table 13. Only Patient #4 did not complete the test. The robot only detected the patient standing
next to the chair and sat down. Thus, the minimum values for Performance and Interaction remain
at 0.5 and the maximum values reach 0.93, although the latest values are lower than those obtained by
the other patients.

Table 11. Get Up & Go tests description.

Patient # Description

1,2,3,5,6,7,8,9,10,11,12,13 The patient performs the test successfully

4
The robot detects that the patient stays next to the chair, sits on chair but he does not
get up. The robot does not give him a score.
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Table 12. Get Up & Go real test results associated to the tests in Table 11 (see text for details).

Patient # Performance Interaction

max min last max min last

1,2,3,5,6,7,8,9,10,11,12,13 0.9987 0.5000 0.9987 0.9862 0.5000 0.9858

4 0.9387 0.5000 0.8310 0.9387 0.5000 0.7067

Table 13. Get Up & Go #1: (Left) Contexts and observations generated by the system. (Right) Graphical
evolution of the properties values during the test.

Time (s) Observations Contexts

10 O2:O8 PersonDetected

145 O1:O7 PersonIsNextToChair

195 O1:O7 PersonIsSeated

205 O1:O8 PersonGetsUp

215 O1:O7 PersonIsSeated

235 O1:O2 Scored,FINISHED

6. Related Work

Assessing non-functional properties is gaining attention as systems become more complex and
need to fulfill qualities of service at run-time. In robotics, QoS metrics have been applied to different
domains, such as Human-Robot Interaction (HRI) [22,23] or human-machine teams [24], focusing on
different non-functional properties, such as performance [25] or safety [26]. In general, QoS metrics are
based on the observation of low-level contextual data to elaborate a more abstract perception of how
the system works in terms of certain non-functional properties. For example, the metrics presented
in [23] focus on productivity, efficiency, reliability, safety, and co-activity; Schreckenghost et al. [25]
and Ma et al. [27] on performance; and Adam et al. [26] on safety. Moreover, QoS metrics can be
useful for system evaluation and benchmarking [24,28], requirements checking [26,27], and run-time
adaptation [29].

Despite all the attention, there seems to be a lack of tools to support the specification of
non-functional properties and the generation of the robot run-time artefacts to estimate QoS. In the
following we describe approaches dealing with non-functional properties. The UML MARTE [30]
profile provides a common way to model hardware and software aspects of real-time embedded
systems. It allows users to annotate models with information relevant for performing quantitative
predictions and performance analysis. The usual workflow is to: (1) annotate information about
non-functional properties directly in the software models; (2) use a model transformation for generating
analysis-domain models; and (3) perform formal analysis using specialized tools. This process provides
engineers with the means to evaluate the system designs and to take informed action if necessary. In the
same line, Winiarski et al. [31] propose a modeling language to support the development of the robot
control system based on SysML [32]. As MARTE, SysML is a UML profile that enables the specification
of traceable requirements and analytical models. Other works propose modeling languages for specific
non-functional concerns, for example, Lotz et al. [33] extend a model-driven software development
process to include performance specifications associated with the robot components, which enables
system-level timing analysis. Juez Uriagereka et al. [34] present a model-based tool for safety
assessment in robotic systems by using fault injection simulations. It is built on Papyrus4Robotics [35]
(a UML profile) and allows expressing context situations that can cause hazardous effects.

Unfortunately, all these approaches do not seem to provide much benefit when it comes to
non-standardized application-dependent properties, such as the “voice interaction quality” considered
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in our work. In many cases, developers end up opting for custom solutions, with the consequent
increase in time, cost and complexity. On the contrary, our approach does not limit the properties that
can be defined, it is independent to the purpose (e.g., QoS metrics can be used for the robot adaptation,
for analysis, benchmarking, etc.) and it allows the automatic code generation for context monitoring,
patterns detection and the probabilistic estimation of the robot QoS.

Finally, it is worth noting that, differently from the above works, our approach also promotes the
application of probabilistic techniques to address uncertainty and thus estimate the QoS associated with
non-functional properties. In this sense, there are many probabilistic programming languages [36] that
could be used to apply Bayesian inference. However, in general, their use is complex, mainly, because
they require to accurately quantify probabilities, which does not fit well with the natural way
people express things. Therefore, our approach provides a simpler way to define QoS metrics,
where qualitative descriptions predominate over quantitative ones.

7. Conclusions and Future Work

Service robots are called to play a relevant role in the years to come. They will not
just tackle repetitive or intense tasks, but will also share with us our daily scenarios,
as co-workers or assistants. The importance of being able to perform these tasks is well
assumed and, therefore, much of the research in service robotics focuses on the functional aspects.
However, the non-functional properties, which describe how the robot performs its tasks, cannot be
overlooked. Safety, performance, engagement or usability, among other requirements, must be taken
into account and monitored during robot operation, providing information about its quality of service.
Furthermore, it is worth noting that these non-functional properties should also guide the design,
implementation, and testing of the robot’s software and hardware components prior to deployment in
real-world scenarios.

This paper has proposed and evaluated a framework for considering non-functional properties in
a robotics scenario. The framework allows the users to model quality of service metrics at design-time
in three steps: (1) what is the relevant information to monitor (contexts); (2) how to identify relevant
context patterns; and (3) how to estimate the value of each non-functional property in terms of the
positive or negative influence of the identified context patterns. This model is instantiated into a
QoS metrics provider, a software agent that is able to estimate the metrics at run-time by considering
the context information captured by the robot. For validating this proposal, we have integrated this
framework in CLARC. In this scenario, our objective is to be able to engage end-users in the interaction
with the robot and all end-users (patients but also physicians) in the center of our design [6,8].
When we asked the care professionals in charge of testing CLARC what aspects should be improved,
they requested us to extend the solution with the possibility to personalize the interaction according to
the preferences of the users. This is the reason for considering in our pilot study properties related to
the interaction. However, it is important to note that our approach is general enough to be used with
other robotic systems that have different service requirements. A simple example of using the model
for considering safety is described in Vicente-Chicote et al. [13].

Our results showed that this technique has been effective in detecting compliance with
non-functional requirements, including the validation of the provided model itself. The evolution
of the QoS metrics show that they are correctly capturing how the patient is interacting with the
robot. Our current research focuses on using these QoS metrics to allow the robot to adapt itself to
the expected requirements without external supervision. To address this task, we are extending our
framework with capabilities to model and express adaptation policies and the selection of alternative
behaviors at run-time. This recommender will be linked to the decision making (the PELEA agent) for
adapting the course of action to the preferences of the user. Future work will also focus on adding
other properties such as safety to the model in CLARC. In the current implementation, safety issues
were addressed from our first designs by the Automated planning module (e.g., it autonomously takes
the decision of calling the doctor when the patient gets up off the chair during a Barthel test). But the
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decision is actually a one-time action, and the robot is not aware that things may go wrong in advance.
Therefore, if we model safety as a QoS metric, the system will be able to have that perception, and will
be able to react accordingly. It is clear that the system will not only have to incorporate new properties
to the model, but also observations and contexts (such as emotion detection and even biometric signals
captured with sensors on the patient). Our efforts in this line are being carried out as part of the
MIRoN research project (https://robmosys.eu/miron/), where we are validating the proposal with
intensive testing in real environments.
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