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Abstract: The noise prediction using machine learning is a special study that has recently received
increased attention. This is particularly true in workplaces with noise pollution, which increases
noise exposure for general laborers. This study attempts to analyze the noise equivalent level (Leq)
at the National Synchrotron Radiation Research Center (NSRRC) facility and establish a machine
learning model for noise prediction. This study utilized the gradient boosting model (GBM) as the
learning model in which past noise measurement records and many other features are integrated as
the proposed model makes a prediction. This study analyzed the time duration and frequency of
the collected Leq and also investigated the impact of training data selection. The results presented
in this paper indicate that the proposed prediction model works well in almost noise sensors and
frequencies. Moreover, the model performed especially well in sensor 8 (125 Hz), which was
determined to be a serious noise zone in the past noise measurements. The results also show that
the root-mean-square-error (RMSE) of the predicted harmful noise was less than 1 dBA and the
coefficient of determination (R2) value was greater than 0.7. That is, the working field showed a
favorable noise prediction performance using the proposed method. This positive result shows the
ability of the proposed approach in noise prediction, thus providing a notification to the laborer
to prevent long-term exposure. In addition, the proposed model accurately predicts noise future
pollution, which is essential for laborers in high-noise environments. This would keep employees
healthy in avoiding noise harmful positions to prevent people from working in that environment.

Keywords: noise prediction; machine learning; noise equivalent level (Leq); gradient boosting model
(GBM); harmful noise

1. Introduction

Noise pollution is often overlooked in many working environments, which are very often
noise-filled [1,2]. According to the Environmental Protection Agency (EPA), the volume of human
speech is approximately 60 dBA. Moreover, people will feel irritable, nervous, unable to concentrate,
and will be affected by prolonged exposure to environmental noise at 70 dBA [3]. Long-term exposure
to noise at more than 85 dBA will cause chronic hearing damage and can indirectly cause occupational
disasters [3]. Likewise, laboratories contain many equipment that generate noise, which distracts
researchers and impairs their ability to concentrate. Thus, locating noise sources, predicting future
noise levels, and altering environmental factors are important research topics that could be improved
to protect against noise, which is important for safe and productive work environments.

Many existing prediction models for acoustical properties and traffic noise still have problems
with accuracy limitations. For example, the grey model (GM) with Fourier correction gray model (FGM)
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was proposed to predict the normal incidence sound absorption coefficient and tire/road noise [4].
Based on the analysis of the Federal Highway Administration (FHWA) traffic noise model, a new
simplified prediction method was proposed that showed the connection between the traffic noise
increments with increases in traffic volume [5]. Another study predicted the total industrial production
output value, which will help the design plan of the development city [6]. According to nonlinear
time series such as noise data, the gradient lifting technology model is recognized in the prediction of
nonlinear time series with a high accuracy rate [6]. Successful examples include predicting real estate
sales prices, which includes noise similar to that of time series data [7]. A recent study applied this
method for forecasting air quality in Taiwan and also extracted meaningful time and historical features
as input to the gradient lifting technology model [8].

Although some literature has shown that gradient lifting technology models work well for
predicting certain targets that included a decision tree getting initial values for the fitting function
with multiple regression, which treated the many input variables considered in this research.
However, the observed data information and output values are calculated error, which uses a loss
function. The frequently used loss functions include square-error, absolute-error, and negative binomial
log-likelihood functions [8]. Then, gradient lifting technology was applied to find the fitting function
where the expected value of loss function is minimized. This procedure was repeated to acquire the
optimized fitting function. Unfortunately, their application in noise prediction is very limited.

To the best of our knowledge, predicting future noise using the gradient boosting model (GBM) [9]
has not been addressed in the existing literature. In fact, the existing noise information belongs to time
series data, and their closeness to time is similar to other predicted targets. This motivates our use of the
GBM prediction model in a noisy environment, which enables efficient identification of suitable training
features in response to different environments and noise conditions, thereby achieving robust and
reliable prediction results. Following this, the method proposed in this paper can effectively select the
appropriate features as the model input for different characteristics of the noise fields. Moreover, it has
good portability, which will be useful for the conversion of many noise sources in the future.

The paper of this purpose was to analyze the noise equivalent level (Leq (dBA)) [10–14] in a
work environment that contained the most seriously affected zones. It was evident from long-term
monitoring that the highest dBA levels occurred on a certain day every week, that the dBA of certain
frequency bands was always higher, and that the dBA levels differed between morning and night.
Thus, the noise frequencies most harmful to humans were identified and machine learning was used
to target these frequency bands for prediction. Through this method, we confirmed the noise map
of the examined field, attempted to add meaningful time and historical features from the previous
analysis, and predicted the likelihood of harmful noise [15–18] at future time points in the operating
environment. The results in this paper can be used to prevent noise pollution in advance to create
better working conditions.

The main process in this paper is divided into three parts, as shown in Figure 1:

1. According to the data provided by the National Synchrotron Radiation Research Center (NSRRC),
we performed daily and monthly statistical analyses on the noise data of 12 sensors at different
frequencies. Once collected, the data were cleaned to derive useful information and analyze the
data distribution.

2. We derived and extracted the features from the data analysis. We identified the frequency, time,
and eight sensors from related history features, and then input a harmful frequency and the
noisiest dBA sensor as extracted features.

3. We extracted the Leq historical features and time-related features from 80% of the data inputted
to the machine learning model for training; the data for the remaining 20% was used for testing.
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Figure 1. The main process of the method in three parts.

2. Materials

2.1. Information Introduction and Data Analysis

The noise data were provided by the NSRRC and contained more than 13,000,000 samples covering
the time period from 08:00 on 1 February 2019 to 23:59 on 31 August 2019. The NSRRC installed 12
noise detection sensors around the work environment. As shown in Figure 2a, it showed the circle
building has a 120 m circumference, and 24 straight line experimental stations that are differential
function research experiments; the locations of the sensors were divided into the inner circle (1–6)
and the outer circle (7–12), shown as green dots. In addition, there are many noise sources from
vacuum pumps, cooling pumps, liquid nitrogen pressure relief, computer servers, etc. in the working
environment, as shown in Figure 2b. In this study, the noise sensor module had more details including
the measuring range, frequency range, weighing, and resolution, as shown in Figure 2c. This sensor
device can instantly convert sound into Leq information in the cloud as shown in Figure 2d. Due to the
limitations of the hardware and network, the Leq was recorded once per second and the average Leq
was uploaded once every 10 s. Using this device, the different frequencies for Leq values were collected.
The data were divided into eight different frequencies: 125 Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz,
8 kHz, and 16 kHz. Furthermore, the noise monitoring system that provided sensors, the location, time
and different frequency noise data are shown in Figure 2e. An alternative function in our monitoring
system showed 12 groups for real-time linear charts that can be displayed within two hours’ data, as
shown in Figure 2f. The segmentation for a maximum date interval of 12 group’s linear charts was
set as a month, as shown in Figure 2g. Based on this system, we kept the data collection for further
analysis in future work.
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 Figure 2. (a) Noise sensor map. (b) Noise working environment of the National Synchrotron Radiation
Research Center (NSRRC). (c) Noise sensor module. (d) Noise detector and location. (e) Noise
monitoring system illustrating. (f) Two hours’ real-time detection chart. (g) One-month detection chart.
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As the inner and outer ring sensors had different installation times, we divided the statistics of
the Leq for the 12 sensors as shown in Figure 3. The data collected from sensors 1–6 were recorded
from February to August; the remaining sensors collected data from April to August. The detailed
time distribution and the number of data points are shown in Figure 3. In addition, all sensors had
relatively complete data in July and August; thus, we used the most recent August data for training in
the experiment.

Figure 4 shows the distribution of the average Leq levels of each sensor at 125 Hz and 1000 Hz
over the different months (for the other monthly statistics from different frequencies, see Appendix A).
It is evident that the average Leq level for sensor 8 was higher than that of the other sensors and closer
to 70 dBA from 125 to 1000 Hz for each month. As shown in Figure 5, there was no sensor with a
particularly prominent value from 2000~16 kHz, indicating that the low frequencies were the main
noise sources in the environment. Therefore, we hypothesized that when the equipment was operating,
it caused louder low-frequency noise near sensor 8. In fact, there were more noise sources near sensor
8 than in the other areas, which caused dBA values higher than those of the other sensors.
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Next, we measured each sensor’s average daily data on a single frequency band over one week.
The Leq value for the 125 Hz band was higher than that of the other frequencies, as shown in Figures 6
and 7 (for the other daily statistics from different frequencies, see Appendix B). It has been established
that the values for sensor 8 at 125 Hz–1000 Hz were obviously greater than those of the other sensors.
In particular, it was evident that on Sunday, the sensor 8 Leq value was greater than the other days for
all frequencies. We hypothesized that this was due to the fact that the equipment near sensor 8 was
relatively old. In addition, there were no people working on Sunday and the temperature increased
due to the air-conditioning being shut down to save energy costs. As a result, older equipment closer
to sensor 8 were prone to make loud noises on Sunday. In addition, each sub-image in Figures 6 and 7
had two lines, representing the average of the Leq levels of the 12 sensors in the morning (red) and at
night (blue) within a week in the above frequency band. It is evident that as the frequency increased,
the red line was higher than the blue line, and the differences between the average Leq levels during
the morning and night also increased.

The results of statistical analyses for all sensor averages and for sensor 8 from morning and night
differ from the Leq value at each frequency band over the week, as shown in Figure 8. The horizontal
axis is the frequency and the vertical axis is the Leq error value. We can clearly observe that the average
chart position for all sensors grows with increasing frequency in the range of 125 Hz to 16 kHz (apart
from 500 Hz). When the frequency was higher, the difference was greater. Moreover, the average
values for sensor 8 values were higher than those of all other sensors.
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The results for all sensor values and from sensor 8 are shown in Figure 9, which shows a decrease
in Leq levels with increasing frequency. On the other hand, there was an instance of low dBA levels
from a high frequency. The results also show that all average sensors were lower than sensor 8
regardless of whether the levels were measured in the morning or at night. Thus, we can add features
in the experiment.

The histograms added below show the average Leq changes in the morning and at night for each
frequency band in a week where the upper and lower bounds of the vertical axis differ by 2.5 dBA.
We can clearly see that the average noise in the morning was slightly higher than that measured at
night on any frequency band. This gap was more obvious in Figures 10 and 11 (see Appendix C for
other noise frequency changes during the morning and night).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 23 

regardless of whether the levels were measured in the morning or at night. Thus, we can add features 
in the experiment. 

The histograms added below show the average Leq changes in the morning and at night for each 
frequency band in a week where the upper and lower bounds of the vertical axis differ by 2.5 dBA. 
We can clearly see that the average noise in the morning was slightly higher than that measured at 
night on any frequency band. This gap was more obvious in Figures 10 and 11 (see Appendix C for 
other noise frequency changes during the morning and night). 

 
Figure 8. Morning and night noise error data vs. frequency (all sensor avg. vs. sensor 8). 

 
Figure 9. Morning and night average noise data vs. frequency (all sensor avg. vs. sensor 8). 

Figure 8. Morning and night noise error data vs. frequency (all sensor avg. vs. sensor 8).



Appl. Sci. 2020, 10, 6619 8 of 21

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 23 

regardless of whether the levels were measured in the morning or at night. Thus, we can add features 
in the experiment. 

The histograms added below show the average Leq changes in the morning and at night for each 
frequency band in a week where the upper and lower bounds of the vertical axis differ by 2.5 dBA. 
We can clearly see that the average noise in the morning was slightly higher than that measured at 
night on any frequency band. This gap was more obvious in Figures 10 and 11 (see Appendix C for 
other noise frequency changes during the morning and night). 

 
Figure 8. Morning and night noise error data vs. frequency (all sensor avg. vs. sensor 8). 

 
Figure 9. Morning and night average noise data vs. frequency (all sensor avg. vs. sensor 8). Figure 9. Morning and night average noise data vs. frequency (all sensor avg. vs. sensor 8).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 21 

 
Figure 8. Morning and night noise error data vs. frequency (all sensor avg. vs. sensor 8). 

 
Figure 9. Morning and night average noise data vs. frequency (all sensor avg. vs. sensor 8). 

  

Figure 10. Average morning vs. night at 125 Hz and 1000 Hz in a week for all sensors. 
Figure 10. Average morning vs. night at 125 Hz and 1000 Hz in a week for all sensors.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 21 

  

Figure 11. Average morning vs. night at 2000 Hz, 16000 Hz in a week for all sensors. 

2.2. Methods 

2.2.1. Feature Extraction 

We derived and extracted features from the Leq time data for model training. The continuity of 
the noise generation process, which is affected by working days and working time, resulted in the 
input vector Xt containing temporal features; the output variable Yt+1 is the Leq value for the next 
minute. In this experiment, we chose to include days in a week, hours in a day, whether the day was 
a holiday, whether it was a Saturday or a Sunday, and the previous one minute or two minutes of 
historical noise frequency data for sensor 8. Thus, a total of 21-dimensional features were input for 
training (as shown in Table 1). 

Table 1. Input features obtained from noise sensor monitoring. 

Input Feature (21-Dimensional) 
History 
feature previous 1 min of sensor *8 previous 2 min of sensor *8 16 

Time feature 
Which day in a week, Which hour in a day, Holiday or not, Saturday or not, 

Sunday or not.  5 

* Eight noise frequencies: 125 Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz, 8 kHz, and 16 kHz. 

2.2.2. Machine Learning Model 

Artificial intelligence has recently attracted considerable attention, and various machine 
learning approaches have been extensively implemented to model data in numerous applications 
[19,20]. For example, a travel time prediction model based on gradient boosting decision tree (GBDT) 
has been proposed to improve the prediction accuracy of traffic flow [21]. A new extreme gradient 
boosting (XGBoost) model with weather similarity analysis and feature engineering was proposed 
for short-term wind power forecasting [22]/ Air quality prediction in smart cities was undertaken 
using machine learning technologies based on sensor data [23]. This paper presented an innovative 
gradient boosting decision tree (GBDT) model to explore the joint effects of comprehensive factors 
on the traffic accident indicators [24]. A method was presented for predicting the broadband noise 
spectra of horizontal axis wind turbine generators [25] as well as a study on noise sensitivity by 
machine learning algorithms [26]. 

We used the gradient boosting model (GBM) to predict future Leq levels. This model combines 
fitting functions, loss functions, a decision tree, and gradient descent analysis [9]. The decision tree, 
error function L(F(X୲), Y୲ାଵ) [27,28], fitting function F(Xt) [29], and gradient descent analysis were 
applied to train the model. Specifically, the decision tree algorithm was used to generate a series of 
fitting functions F(X୲, βᇱ). The error function L(F(X୲, βᇱ), Y୲ାଵ) was used to calculate the fitting value 

Figure 11. Average morning vs. night at 2000 Hz, 16000 Hz in a week for all sensors.



Appl. Sci. 2020, 10, 6619 9 of 21

2.2. Methods

2.2.1. Feature Extraction

We derived and extracted features from the Leq time data for model training. The continuity of
the noise generation process, which is affected by working days and working time, resulted in the
input vector Xt containing temporal features; the output variable Yt+1 is the Leq value for the next
minute. In this experiment, we chose to include days in a week, hours in a day, whether the day was
a holiday, whether it was a Saturday or a Sunday, and the previous one minute or two minutes of
historical noise frequency data for sensor 8. Thus, a total of 21-dimensional features were input for
training (as shown in Table 1).

Table 1. Input features obtained from noise sensor monitoring.

Input Feature (21-Dimensional)

History feature previous 1 min of sensor * 8 previous 2 min of sensor * 8 16

Time feature Which day in a week, Which hour in a day, Holiday or not, Saturday or not, Sunday or not. 5

* Eight noise frequencies: 125 Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz, 8 kHz, and 16 kHz.

2.2.2. Machine Learning Model

Artificial intelligence has recently attracted considerable attention, and various machine learning
approaches have been extensively implemented to model data in numerous applications [19,20].
For example, a travel time prediction model based on gradient boosting decision tree (GBDT) has been
proposed to improve the prediction accuracy of traffic flow [21]. A new extreme gradient boosting
(XGBoost) model with weather similarity analysis and feature engineering was proposed for short-term
wind power forecasting [22]/ Air quality prediction in smart cities was undertaken using machine
learning technologies based on sensor data [23]. This paper presented an innovative gradient boosting
decision tree (GBDT) model to explore the joint effects of comprehensive factors on the traffic accident
indicators [24]. A method was presented for predicting the broadband noise spectra of horizontal axis
wind turbine generators [25] as well as a study on noise sensitivity by machine learning algorithms [26].

We used the gradient boosting model (GBM) to predict future Leq levels. This model combines
fitting functions, loss functions, a decision tree, and gradient descent analysis [9]. The decision tree,
error function L(F(Xt), Yt+1) [27,28], fitting function F(Xt) [29], and gradient descent analysis were
applied to train the model. Specifically, the decision tree algorithm was used to generate a series of
fitting functions F(Xt,β′). The error function L(F(Xt,β′), Yt+1) was used to calculate the fitting value
F(Xt,β′), which is the error from the actual value Yt+1, where Xt is the input vector at time t and Yt+1

is the output variable at time t+1. Next, we used the gradient descent method to find and select the
fitting function F(Xt,β) with the smallest error. The above steps are repeated until the optimal fitting
function is found. The procedure is described in the equations in detail. The testing samples are put
into the prediction model F(xt) to calculate the prediction results [8].

The objective of machine learning is to find a mapping function F(x) between the independent
variable xi and target variable yi by using the training data. In order to find the optimal function, a loss
function L(y, F(x)) is usually set for the model [21,25]. First, initialize the learning machine by the
following equation:

F0(Xt) = argminβ

N∑
i=1

L(yi,β) (1)

where β is the estimated constant value that minimizes the loss function and N is the number of
training samples.

Then, the target is to predict the next-24 h of noise Leq, where the output is the variable shown as
yt+24. After N pairs of the input vector xt and the output variable yt+24 are given, a fitting function
F(xt) is selected from unknown functions F(xt, β′) generated by the decision tree. Moreover, β′ is a
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gradient decent step size and (xi
t, yi

t+24) is the i-th training sample pair. When the value of the loss
function L(yt+24, F(xt, β′)) is minimized as [8,21,25]

β = argminβ′

∑N

i=1
L(yi

t+24, F(xi
t,β
′)) (2)

the target function F(xt) is chosen as F(xt, β)

F0(Xt) = F0(xt,β0) (3)

In this procedure, the value of N was 39,515. This is obtained from sensor 8 during August and the
training model needed 80% of them. In addition, the gradient descent analysis is applied for optimized
fitting function F(xt). The procedure is described as below. In the first step, the initial guess function
F0(xt, β′) is produced and initial gradient descent step size β0 as [8,21,25]

β0 = argminβ′

∑N

i=1
L(yi

t+24, F0(xi
t,β
′)) (4)

Thus, we take the gradient of loss function as a first-step base learner function f1(xt) as

f1(xt) = −5F0 L(yt+24, F0(xt)), (5)

β1 = argminβ′

∑N

i=1
L(yi

t+24, [F0(xi
t) + β′f1(xi

t)]) (6)

In this study, M iterations was set as 500, where fm(xt) and βm are expressed as follows:

fm(xt) = −5Fm−1 L
(
yt+24, Fm−1(xt)

)
(7)

βm = argminβ′

∑N

i=1
L(yi

t+24, [Fm−1(xi
t) + β′fm(xi

t)]) (8)

and the target function F(xt) is expressed as

F(xt) = F0(xt) +
M∑

m=1

βmfm(xt) (9)

Through the above formulas, description flow was calculated by Algorithm 1, that is the entire
GBM procedure. There is no doubt that F(xt) is the target prediction model, thus, the testing samples
were put into the model to calculate the prediction results.

The algorithm flow is as follows:

Algorithm 1. GBM

Input:
1: F0(xt,β′0)

2: β0 = argminβ′0

N∑
i=1

L(yi
t+24, F0(xi

t,β
′))

3: M: Iteration times
4: N: Number of data sets
Output: F(xt) = FM(xt)

5: For m = 1 to M
6: fm(xt) = −5F L

(
yt+24, Fm−1(xt)

)
7: βm = argminβ′m

∑N
i=1 L(yi

t+24, [Fm−1(xi
t) + β′m.fm(xi

t)])

8: Fm(xt) = Fm−1(xt) + βm.fm(xt)

9: end
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3. Results and Discussion

To use the GBM model for future Leq value prediction on the 125 Hz frequency band, time
characteristics and historical Leq were used as the input data. There were 12 sensor data, which were
recorded every 10 s (sampling time = 10 s) with an average sample of 875,000. As the training time was
too long, the sampling time was lengthened in order to reduce the amount of training data. Sensor 8
was used as a sampling example and used the previous two minutes of data to make predictions at
different sampling times; the results are shown in Figure 12.

The X-axis in Figure 12 is the R2 [30], which represents the degree of curve fit between the
predicted value and the actual value (sensor 8 at 125 Hz in August). The R2 value is distributed in the
range of 0–1, and values closer to 1 indicate better prediction performance; otherwise, the prediction
performance worsens. The Y axis is the RMSE [31]. Here, the higher the value indicates a worse
prediction result; otherwise, the convergence is smaller. We found that a sampling time of 1 min
and 30 s had a higher R2 and the best prediction performance; in addition, the RMSE was below
1 dBA. However, the R2 value of the 30 s sampling time was very close to those of 1 min and better,
but the calculation requires double the time to complete. Thus, in the subsequent experimental design,
the sampling time was adjusted to 1 min. Next, according to the frequency of harmful Leq levels
at 125 Hz, a 21-dimensional feature prediction task was performed for the Leq for 12 sensors at this
frequency in August. The features included the previous one minute and the previous two minutes of
each frequency Leq value; the prediction results are shown in Figure 13.

In Figure 13, the X-axis represents the R2. The Y-axis represents the RMSE and the prediction
results of 12 sensors at 125 Hz; R2 > 0.7 represents sensors 10, 8, and 3, among which sensor 3 had
the largest R2 value and the smallest RMSE value. This indicates that input characteristics and Leq
values are highly influence. In addition, the RMSE values of the 12 sensors were all below 1 dBA,
indicating that the difference between the predicted Leq values and the actual Leq values was minute.
Therefore, the R2 value was mainly used as an indicator to judge the quality of the prediction results.
Observing the prediction results of sensor 1, not only was the R2 only 0.0643, but the RMSE was within
0.75 dBA and the input features were almost unrelated to the Leq values.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 23 
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However, we added multiple linear regression (MLR) experiments to compare noise prediction
results with the proposed approach, as shown in Figures 14a and 15a. This shows that GBM outperforms
MLR in terms of both index, R2, and RMSE while using the full 21 dimensions at 125 Hz. As shown in
Figure 14b, the results clearly show that the GBM algorithm achieved higher R2 and showed a good
grasp of the trend and reference value of noise fluctuations at each sensor, thus it was more effectively
and accurate than MLR in this task. This result also shows that although the working environment
was relatively stable, a very simple prediction model may not work well. This explains why we used
the GBM prediction model for this problem in the NSRRC.
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Furthermore, we compared three different input features set with 21, 16, and five dimensions,
respectively, to investigate the impact of input factors. The conditions are shown in Table 1, and the
prediction results in Figure 15a–c. Then, we clearly found more dimensions were better in terms of
R2. Then, it was easily found that the input 21-dimensional data had better performance, as shown
in Figure 15d. Therefore, the results showed that the full dimensional feature performed the best,
indicating that the historical features may have more information than the time features. Thus, the more
feature dimensions are input in the GBM enables efficient identification of suitable training features in
response to reliable prediction results. Moreover, this study indicates that the loudest location near
the working environment was sensor 8, and 125 Hz was the most serious harmful frequency. For the
practical issues, we could pre-improve the low frequency pump surrounding sensor 8 by using sound
insulators or remind workers to prevent long-term exposure in that area.

We counted the prediction results of all sensors with a R2 greater than 0.7 at all frequencies, as
shown in Table 2. Taking sensor 2 as an example, the R2 of noise with a frequency of 500 Hz and with a
frequency of 1 kHz were both greater than 0.7 (marked with an asterisk). Other sensors can be deduced
by analogy from the prediction results at different frequencies, as shown in Figure 16.
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Here, we focused on the noise value of 125 Hz as its dBA values reached levels that are harmful to
the human body [15–18]. Moreover, we found that sensors 3, 8, and 10 achieved favorable prediction
performance, as shown in Table 2. Among them, the prediction performance of sensor 3 from 125 Hz
to 4 kHz showed a R2 greater than 0.7, and these noise frequencies were coherent with one another.
Likewise, the sensor 7 noise frequencies between 2 kHz and 16 kHz were coherent with one another.

As a result, we found that while the sensor prediction index R2 of this frequency was above 0.7,
the values near this frequency could also produce excellent prediction results (for example, 500 Hz and
1000 Hz of sensor 2, 125 Hz to 4 kHz of sensor 3, 500 Hz and 1000 Hz of sensor 4, and 500 Hz and
1000 Hz of sensor 6). Thus, we found mutual influence between similar frequencies and hypothesized
that the noise sources of similar frequencies were likely to have very similar occurrence conditions.
The coefficient of determination (R2) of the sensor was higher than 0.7, and the root-mean-square-error
(RMSE) was less than 1 dBA. This indicates that the proposed model could accurately predict the
trends of future Leq levels with an average error margin within 1 dBA. Therefore, we successfully
completed predictions for all sensors at other noise frequencies, and derived an effective reference
value for improving future prediction accuracy.

Table 2. All sensors with R2 greater than 0.7 at all frequencies.

Frequency
(Hz) 125 250 500 1k 2k 4k 8k 16k

Sensor1
(R2 > 0.7)

Sensor2
(R2 > 0.7) F F

Sensor3
(R2 > 0.7) F F F F F F

Sensor4
(R2 > 0.7) F F

Sensor5
(R2 > 0.7)

Sensor6
(R2 > 0.7) F F

Sensor7
(R2 > 0.7) F F F F

Sensor 8
(R2 > 0.7) F F

Sensor9
(R2 > 0.7)

Sensor10
(R2 > 0.7) F F F F

Sensor11
(R2 > 0.7) F

Sensor12
(R2 > 0.7)

F The R2 of noise with a frequency greater than 0.7.
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4. Conclusions

In this study, we found that as frequencies increased, the average Leq error values between
morning and night were greater, with noise in the morning returning higher and greater values than
those at night. This may be due to the fact that more people work in the morning and more noise is
generated. Moreover, the human voice has a high noise frequency, whereas machine pumps have a
noise lower frequency, indicating significant differences in noise sources.

This study focused on the prediction results for the noise frequency for one of twelve sensors
(sensor 8) at 125 Hz. This sensor was chosen because its static Leq value (>70 dBA) reached the
threshold of damaging human hearing, which affects physical and mental health. Based on this finding,
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we used the GBM model to predict future noise data. The Leq prediction results for sensor 8 at 125 Hz
showed an error rate of less than 1 dBA and a R2 value greater than 0.7, which is a favorable prediction
performance result. The poorer prediction results of the other sensors were between 2 to 1 dBA with a
R2 value that was generally below 0.7.

The results indicate that the prediction model worked well in most regions and frequencies
and particularly for sensor 8 (125 Hz), which is a serious noise zone. The results also indicate that
this working environment produced good noise prediction performance using the proposed method.
This enables the notification of laborers to prevent long-term exposure while predicting future noise
pollution. In fact, we are now collecting more characteristic data for several months for this purpose.
We believe that it would be better to have a longer observation duration to predict detailed noise
location. This would keep employees healthy for avoiding a harmful noise position to prevent people
from working in that environment. In the future, we will analyze the data structures of the noise
frequencies of more sensors, discuss noise types, and analyze the possibilities of noise-related physical
harm. We will also attempt to add new features to improve noise prediction performance.
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Appendix A

Average at different frequencies in different months for different sensors.
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Appendix B

Daily average at different frequencies per week for different sensors.
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Appendix C

Average morning vs. night in a week for all sensors.
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