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Featured Application: This image recognition approach for gauge neck levels can effectively
reduce measurement times, decrease manmade errors in liquid level readings, and improve the
efficiency of pipe prover validation.

Abstract: An image recognition technique is proposed for determining optimal neck levels for
standard metal gauges, in the process of validating pipe provers. A camera-level follow-up control
system was designed to achieve automated tracking of fluid levels by a camera, thereby preventing
errors from inclined viewing angles. An orange background plate was placed behind the tube to reduce
background interference, and highlight scale numbers/lines and concave meniscus. A segmentation
algorithm, based on edge detection and K-means clustering, was used to segment indicator tubes
and scales in the acquired images. The concave meniscus reconstruction algorithm and curve-fitting
algorithm were proposed to better identify the lowest point of the meniscus. A characteristic
edge detection model was used to identify centimeter-scale lines corresponding to the meniscus.
A binary tree multiclass support vector machine (MCSVM) classifier was then used to identify scale
numbers corresponding to scale lines and determine the optimal neck level for standard metal
gauges. Experimental results showed that measurement errors were within ±0.1 mm compared to a
ground truth acquired manually using Vernier calipers. The recognition time, including follow-up
control, was less than 10 s, which is much lower than the switching time required between measuring
individual tanks. This automated measurement approach for gauge neck levels can effectively reduce
measurement times, decrease manmade errors in liquid level readings, and improve the efficiency of
pipe prover validation.
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1. Introduction

The metering of oil flow is critical for crude oil production and trade. As such, flow meters must
be regularly verified to ensure accuracy. Standard pipe provers and volume methods are often used
to test flow meters in varying conditions. Therefore, provers must be regularly checked against a
traceable reference to demonstrate compliance with accuracy and repeatability requirements [1,2].

Water calibration is often used to verify pipe provers. The volume of a standard metal gauge
includes the volume of the lower main body (which is fixed) and the volume of the neck. As a
result, if the liquid level in the neck can be measured accurately, the volume can be calculated with
high precision. According to the NIST standards [2], for volumetric field standards the maximum
permissible errors should be ±0.05% of the nominal capacity, and reading errors of the neck level
should be ±0.2 mm correspondingly. Because some normal level sensors cannot be used to measure
the level due to being unfit in range, accuracy or installation, manual readings with Vernier calipers
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are used to measure the level [3], which prevents automated calculation of the water volume. In the
two-color gauge recognition system designed by Changsheng et al. [4,5], a horizontal and vertical
endpoint line (HVPL) identification technique was used to read scale numbers and line positioning was
achieved using horizontal projection statistics. However, this approach did not consider measurement
errors caused by differences in camera viewing angles, which reduced its accuracy and therefore did
not meet the accuracy requirement of ±0.2 mm. In the automatic verification system designed by
Zhang Haipeng [6], the automatic collection of liquid level is realized by image recognition, but the
center of gravity of the concave meniscus of the liquid tube is used as the reading point in the liquid
level, and the reading method is based on the level of the liquid level at two standard points, and thus
the accuracy is lower than ±0.5 mm, which does not meet the accuracy requirement of ±0.2 mm.

In this study, an automated measurement technique utilizing image recognition is proposed
for neck level measurements. The inclusion of computer vision, rather than manual readings of
liquid levels, compensates for the accuracy problems faced by conventional liquid level sensors.
A camera-level follow-up control system was designed to achieve automated tracking of fluid levels
using a camera, thereby improving level measurement accuracy other than inclined viewing angles.
A curve-fitting algorithm was used to identify the lowest point of the meniscus. This increases the
accuracy of level measurements and the efficiency of volumetric calculations for prover verification.

2. Experimental Design

2.1. The Water Calibration System for the Pipe Prover

The water verification system is illustrated in Figure 1 and can be described as follows. In the
project, a 6000 L pipe prover needs be validated. Two 1000 L standard metal gauges were used to
alternately measure the volume Vs of water flowing through the standard tube section of a pipe
prover. The volume Vps at the calibrated temperature and pressure was then converted to Standard
Temperature and Pressure (STP, 20 ◦C and 101.325 kPa) and used to represent the standard volume of
the pipe prover. This process can be expressed as:

Vs =
∑

Vsi (1)

Vsi = V0 + h− h0s (2)
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Figure 1. A schematic diagram of the water calibration system used in the pipe prover. Labels include: 
1—pool, 2—liquid level collection system, 3—pump, 4—ball push device, 5—volume tube, 6—
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Figure 1. A schematic diagram of the water calibration system used in the pipe prover. Labels include:
1—pool, 2—liquid level collection system, 3—pump, 4—ball push device, 5—volume tube, 6—infrared
photoelectric detection switch, (V1–V8)—solenoid valves, (D1 and D2)—detection switches, (P1 and
P2)—pressure transmitters, (T1 and T2)—temperature transmitters, C1—commutator, (R1 and
R2)—standard metal gauges, and M1—flowmeter.
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Vsi—The volume of water measured by the standard metal gauge, L; Vs—The volume of water
measured by the accumulative standard metal gauge, L; V0—Standard metal gauge capacity, L;
h—Liquid level height in the tube, mm; h0—Liquid level height corresponding to the rated volume,
mm; s—Volume per unit height, L/mm.

The liquid level height h in the tube is the only unknown parameter used for calculating the standard
metal gauge volume Vsi. The accuracy of readings in the standard measurement neck determines the
accuracy of water volume calculations in the metal measuring device. As such, measurement precision
for liquid levels must be within 0.2 mm in the calibration system. Verification regulations also require
that liquid level readings be completed within a specific timeframe. The static setting time (after filling)
can be denoted as T1, the reading time for the liquid level is represented by T2, the water release time
for the bottom valve is T3, and the time required for a standard metal gauge to be filled is indicated
by T4. As such, the condition T1 + T2 + T3 < T4 must be satisfied. Liquid level readings for standard
metal gauges are typically completed within 20 s, after the gauge is placed in the water and bubbles
are allowed to dissipate.

This study proposes a new level measurement technique, based on image recognition, to improve
the accuracy and speed of liquid height readings. The methodology includes two components:
acquisition of liquid images and automated recognition of liquid levels.

2.2. Design of Automatic Acquisition System for Gauge Neck Level

The NIST standards [2] stipulate that the reading of a glass tube should be performed with the line
of sight and liquid level at the same height. For a given camera, a larger field of vision and a smaller
focal length result in greater distortion, increased image deformation, and lower precision. As shown
in Figure 2, a larger angular view and increased reading errors occur when the concave meniscus
level is not at the same horizontal height as the camera. Concave meniscus readings exhibit large
errors when the deviation angle exceeds a certain limit and precision requirements for pipe prover
verification cannot be met.

Appl. Sci. 2020, 10, x 3 of 15 

(P1 and P2)—pressure transmitters, (T1 and T2)—temperature transmitters, C1—commutator, (R1 
and R2)—standard metal gauges, and M1—flowmeter. 

The liquid level height h in the tube is the only unknown parameter used for calculating the 
standard metal gauge volume Vsi. The accuracy of readings in the standard measurement neck 
determines the accuracy of water volume calculations in the metal measuring device. As such, 
measurement precision for liquid levels must be within 0.2 mm in the calibration system. Verification 
regulations also require that liquid level readings be completed within a specific timeframe. The static 
setting time (after filling) can be denoted as T1, the reading time for the liquid level is represented by 
T2, the water release time for the bottom valve is T3, and the time required for a standard metal gauge 
to be filled is indicated by T4. As such, the condition T1 + T2 + T3 < T4 must be satisfied. Liquid level 
readings for standard metal gauges are typically completed within 20 s, after the gauge is placed in 
the water and bubbles are allowed to dissipate. 

This study proposes a new level measurement technique, based on image recognition, to 
improve the accuracy and speed of liquid height readings. The methodology includes two 
components: acquisition of liquid images and automated recognition of liquid levels. 

2.2. Design of Automatic Acquisition System for Gauge Neck Level 

The NIST standards [2] stipulate that the reading of a glass tube should be performed with the 
line of sight and liquid level at the same height. For a given camera, a larger field of vision and a 
smaller focal length result in greater distortion, increased image deformation, and lower precision. 
As shown in Figure 2, a larger angular view and increased reading errors occur when the concave 
meniscus level is not at the same horizontal height as the camera. Concave meniscus readings exhibit 
large errors when the deviation angle exceeds a certain limit and precision requirements for pipe 
prover verification cannot be met. 

 

Figure 2. Readings of a concave surface from different view angles, including (a) outside of readings 
of a concave surface, (b) looking down, (c) same horizontal height as the eye, (d) looking up, (e) 
outside of readings of a concave surface. 

A camera-based liquid level follow-up control system was designed to solve this problem, by 
achieving automated tracking of liquid levels and improving the accuracy of image acquisition other 
than the inclined viewing angle. In this process, the camera is mounted on a linear guide with a ball 
screw, allowing the lens to be controlled manually. A camera with a wide-angle lens in initial position 
A first acquires an image of the entire glass tube. This image is only used to approximate the liquid 
level and calculate the vertical distance between the camera and the height of the liquid column. The 
camera is then driven by a stepper motor to position C, where the angle of inclination provides a 
view of the concave meniscus within the allowed range. After the camera is moved to the required 
position, the focal length is adjusted and another image is acquired for accurate liquid level 
measurements, thereby achieving automated tracking. 

Figure 2. Readings of a concave surface from different view angles, including (a) outside of readings of
a concave surface, (b) looking down, (c) same horizontal height as the eye, (d) looking up, (e) outside
of readings of a concave surface.

A camera-based liquid level follow-up control system was designed to solve this problem,
by achieving automated tracking of liquid levels and improving the accuracy of image acquisition
other than the inclined viewing angle. In this process, the camera is mounted on a linear guide with
a ball screw, allowing the lens to be controlled manually. A camera with a wide-angle lens in initial
position A first acquires an image of the entire glass tube. This image is only used to approximate
the liquid level and calculate the vertical distance between the camera and the height of the liquid
column. The camera is then driven by a stepper motor to position C, where the angle of inclination
provides a view of the concave meniscus within the allowed range. After the camera is moved to the
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required position, the focal length is adjusted and another image is acquired for accurate liquid level
measurements, thereby achieving automated tracking.

The hardware for the proposed liquid level acquisition system, shown in Figure 3, primarily consists
of a linear guide rail, a camera, and an infrared photoelectric detection switch, used to determine
the recognition range. A programmable logic controller (PLC) drives the step motor. Liquid level
photos taken by the camera are transmitted to the upper computer, which processes the images in real
time. An orange background plate was placed behind the tube to reduce background interference,
and highlight the scale numbers/lines and concave meniscus.
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Figure 3. A diagram of the proposed automated acquisition system for liquid level measurements.
Labels include: 1—indicator tube, 2—infrared photoelectric detection switch, 3—measurement neck,
4—ball screw linear guide, 5—camera position A, 6—camera position B, and 7—stepper motor.

2.3. Automatic Recognition Algorithm for Gauge Neck Level

A sample image collected by the proposed system is shown in Figure 4. The height of the
liquid level (h) was determined using image processing, performed by the aforementioned computer.
The included recognition algorithm is designed to improve both accuracy and speed. Figure 4
demonstrates that the liquid tube and scale are relatively small in the images, which were segmented
to remove background structures and identify the liquid level edge. The algorithm used to identify
meter neck level first divided the tube and scale images, to identify a mapping relationship between
the physical distances represented in each picture. This information was then used to determine the
true height of the liquid level. A workflow diagram for this algorithm is shown in Figure 5.
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Figure 5. A general block diagram for the liquid level recognition algorithm.

3. Image Segmentation Algorithm Based on Edge Detection and K-Means Clustering Algorithm

Images collected by the liquid level acquisition system were 1024 × 768 pixels with three RGB
channels. The original image offers high resolution, which is helpful for improving accuracy but
increases runtime. From the figure above, it is evident the effective information in the green area
includes the scale and liquid indicator. As such, the acquired images were segmented to improve
algorithm efficiency and extract the useful information. Segmentation, particularly for color images,
is a critical component of image processing and analysis [7]. Common algorithms include the threshold,
clustering, region growth, and edge detection techniques. For example, K-means clustering has
successfully been applied in fruit segmentation, medical image processing, and other fields. Liming et
al. used clustering in color space to segment images of Bayberry plants [8]. Yongfang et al. used a
graph cut method based on K-means clustering to subdivide nuclear magnetic resonance images of
the brain [9]. Edge detection can also be used to segment images by finding high-contrast boundaries
between adjacent pixels. For example, Meng et al. used edge detection and automatic seed region
growing to segment target objects [10].

The target area in the image exhibits obvious linear features. The vertical edges can be divided
into four structures: the left edge of the scale, the right edge of the scale, the left edge of the tube,
and the right edge of the tube. The K-means clustering algorithm can classify multidimensional data
using the shortest distance between subclass information and cluster centers, based on the number of
clusters. As such, a hybrid methodology, combining image segmentation based on edge detection and
K-means clustering, is proposed in this study for automated liquid level identification.

Prior to segmentation, a series of image processing steps were performed. This consisted of
denoising the original image with a filter, using the Sobel operator to extract edge information in the
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vertical direction, and applying the Hough straight-line detection model to identify edges. The K-means
clustering algorithm was then used to classify the resulting line information, locate the edge of the target
area, crop the original image, and achieve precise segmentation of the scale and liquid tube images.

3.1. Filtering of Images

A filtering step was included to suppress noise in the original images and preserve details.
This involved the use of a smoothing kernel and a low-frequency enhanced spatial domain filtering
technique. Some operations, such as low-pass filtering, can blur edge features. However, this application
required detecting edges without losing feature information. Special classes of filters exist to
simultaneously optimize these two objectives, including anisotropic diffusion and bilateral filtering,
the effects of which are shown for the original image [11]. The results produced by these two algorithms
are visually similar. Quantitative assessment was also performed using peak signal-to-noise ratio [12]
(PSNR) and the structural similarity index [13] (SSIM).

PSNR is based on the average calculation of gray values for image pixels. It is a basic quality
evaluation algorithm and a commonly used indicator for measuring signal distortion. PSNR compares
the original and distorted images on a pixel-by-pixel basis, calculates the total (summed) error between
the pixels, and provides an evaluation score. Its value is typically in the range of 20-50, with larger
values representing higher image quality. SSIM compares the brightness, contrast, and structural
similarity of the original and processed images, returning a value in the range of 0–1. Larger values
indicate better image quality, with unity indicating identical data. PSNR and SSIM values for the liquid
level images are shown in Table 1. An analysis of these results suggests that bilateral filtering is superior
to anisotropic diffusion, as measured by both the PSNR and SSIM. Bilateral filtering considers both
proximity in the spatial domain and similarity in grayscale and brightness. As such, it is independent
of anisotropic diffusion filtering. Processing results were also more effective because of connections
between pixels. As such, bilateral filtering was selected for use in this study.

Table 1. An evaluation index for the two filtering algorithms.

Index Bilateral Filtering Anisotropic Diffusion

PSNR 41.5381 35.9861
SSIM 0.9952 0.9908

3.2. Improved Edge Detection Algorithm for Image

Bilateral filtering was used to denoise the original image while preserving edge features,
which facilitated vertical edge detection for the liquid tube and scale. Edge information in other
directions was lessened to reduce interference. This improved vertical edge detection model was
designed using specific image features and a conventional edge detection algorithm. The edges of
the image are a set of points on the boundary of two different characteristic regions, reflecting the
discontinuity and distortion of local features. As a result, most of the useful information contained in
the image resides on the edge.

Edges are denoted by large discrepancies between a pixel and its neighboring pixels, which can be
represented by a vector with the attributes of amplitude and direction [14,15]. Common edge detection
algorithms include the Roberts, Prewitt, Sobel, Canny, and Laplace operators.

The Roberts operator uses only the 2 × 2 neighborhood of the current pixel, which is
computationally simple but sensitive to noise. This operation can be expressed mathematically
as: [16]:

G1 =

[
1 0
0 −1

]
G2 =

[
0 1
−1 0

]
(3)
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The Prewitt operator reduces the influence of noise on edges using a 3 × 3 neighborhood,
defined as [17]:

Gx =


−1 −1 −1
0 0 0
1 1 1

 Gy =


−1 0 1
−1 0 1
−1 0 1

 (4)

The final edge image can then be acquired using G = max
(
Gx, Gy

)
or G = Gx + Gy. The Sobel

operator improves on the accuracy of the Prewitt detection by using a weighted approach to calculate
differences. This technique not only detects edge points more accurately, it can further suppress the
influence of noise. The operator can be represented as [18]:

Gx1 =


−1 0 1
−2 0 2
−1 0 1

 Gy1 =


−1 −2 −1
0 0 0
1 2 1

 (5)

Sobel edge detection is one of the most common discrete differential operators. It can be used
to calculate the norm of a gradient vector corresponding to pixel points, indicating edges in either
the horizontal or vertical direction. As such, the Sobel operator is better suited for processing edge
information along the X and Y axes (horizontal and vertical vector components) and can be inaccurate
for angled structures. In contrast, the Canny [19] operator identifies edges using the maximum value
of an image signal function. This involves removing noise with a Gaussian filter, calculating the
amplitude and direction of the gradient, performing nonmaximum value suppression, and connecting
the edges of an image with a lag threshold technique. The Canny operator also exhibits strong noise
reduction capabilities. It can balance noise, effectively detect edge information, and smooth pixel
gradients [20].

The Laplace kernel is an isotropic two-order differential operator. It is independent of direction
and exhibits rotational invariance. Its second derivative is defined as [21]:

∇
2 f (x, y) =

∂2 f
∂x2 +

∂2 f
∂y2 (6)

The Laplace template is:

G11 =


0 1 0
0 −4 1
0 1 0

 G21 =


1 1 1
1 −8 1
1 1 1

 (7)

This approach is sensitive to singular and boundary points and is often applied to image
sharpening. Edge detection results for the Laplace method are shown in Figure 6.

Edge detection was used in this study to identify the left and right edges of the scale and liquid tube,
which are both vertical boundaries. As seen in the figures, the Roberts, Sobel (vertical), and Laplace
operators caused information loss along the Y direction, which does not meet the requirements
of the study. In contrast, the Prewitt and Canny operators preserved edge information but failed
to eliminate unneeded structures, which complicated subsequent processing. The Sobel operator
preserved valuable information in the X direction (such as the left edge of the liquid tube), but did
not distinguish between weak edges and noise. As such, an improved edge detection methodology,
suitable for image segmentation in this study, was developed by combining the advantages of the
Sobel and Canny techniques. The block diagram of the algorithm is shown in Figure 7.
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Figure 7. Improved block diagram of edge detection algorithm.

This algorithm is designed to detect the edges of the caliper and indicator tube. As such, it only
needs to consider vertical edge information, while ignoring horizontal structures. In the first step,
the gradient is calculated in the X direction and the influence of horizontal edge elements is eliminated.
Noise resulting from nontarget edges detected by the Sobel algorithm is reduced using K-convolution
and a Gaussian smoothing filter. The amplitude and square of the image gradient are then acquired
with the Canny operator template (Gx1 and Gy1) approximation. Nonmaximum value suppression was
then performed as gray values were set to the value of background pixels. Edges were identified using
local optimal values in the neighborhood satisfaction gradient. Nonmaximum values were suppressed,
other edge pixels were removed, and (as a result) only fine lines were retained. Hough linear detection
was used to transform the problem of finding collinear points in the original image into the task of
finding peak points in a parameter space, using coordinate space conversion relationships. The edges
detected by a Hough line transform [20] are shown in Figure 8.

It is evident from the image that the proposed algorithm can effectively detect edges on both sides
of the liquid tube and the scale. Linear information was also acquired for the target edge and straight
lines were ignored in nonedge regions. However, a jagged line was formed on the edge of the scale and
liquid tube, due to the influence of other noise elements (such as interference from uneven lighting).
Therefore, a new algorithm is needed to automatically classify these lines and accurately divide the
two effective regions in the original image.
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3.3. K-Means Clustering of Edge Information

Once image segmentation is complete, the disorganized line sets must be accurately classified
to identify the left and right edges of the scale and liquid tube indicator. After the original image
is divided into liquid tube and scale regions, K-means clustering is used to identify structures of
interest [22]. Given a random dataset X = {x1, x2, . . . ,xn}, the algorithm randomly selects K objects as
initial clustering centers and a corresponding subset of data C = {ci, I = 1,2, . . . ,K}. Each cluster object
corresponds to a cluster center µi. The Euclidean distance from this center to a given point mi can then
be calculated using:

J(ci) =

mi∑
xk∈ci

‖Xi − µi‖
2 (8)

The K-means clustering algorithm can be iteratively repeated to minimize the square of the
distance from a given data set to the clustering center as follows [23]:

J(C) =
k∑

i=1

J(ci) (9)

The accurate clustering of multidimensional data requires an optimal value for K. In order to
separate the two effective regions, the liquid tube and the scale, four straight lines are required (left
edge of the scale, right edge of the scale, left edge of the liquid tube, and right edge of the liquid tube),
so the value of K is 4 in this study. Segmented lines were classified by identifying the peripheral
edges of the scale and indicator tube, rather than the clustering centers. The x coordinates detected
by the Hough transform were selected as a test data set, for the convenience of representing a fixed
y coordinate in a 2D image. Clustering results are shown in Figure 9, where it is evident that the
combination of edge detection and clustering produced an accurate segmentation, with edges of the
scale and liquid tube being clearly identified. This approach is simple and efficient when provided
with an optimal value for K.

After processing and segmentation, the original image is divided into scale and indicator tube
regions. The following section discusses the scale image and the corresponding relationship between
scale digits and pixel coordinate positions. The location of the concave meniscus in the liquid tube is
then used to calculate the true height h of the liquid level.
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4. A recognition Algorithm for Scale Image

This section discusses the techniques used to extract effective information (i.e., scale line and
increment digits) from segmented images. In this process, the liquid level was digitally identified and
a correspondence between scale and position coordinates was established.

Recognition of Scale Numbers and Scale Lines

In order to realize the identification of the scale, the edge position search method is used to
accurately identify the pixel position of the scale line, a binary tree multiclass support vector machine
(MCSVM) classifier was chosen to identify scale numbers, and the correspondence between the scale
and the position coordinates of the pixel is obtained.

As is shown in Figure 10, for the scale line of scale image, according to the characteristics of
different types of scale line length, we used edge features to detect the number of edges in each column
of scale image, clustered and counted the number of edge features and edge coordinates under each
classification according to the different number of edges in each column of 1 cm, 5 mm and 1 mm scale
lines, and then recognized the 1 cm scale line.
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Figure 10. Upper and lower edge features in scale image.

The edge identification steps for an M × N input image can be summarized as follows:

(1) The number of upper and lower edge features were counted in each column.
(2) These features were then divided into 1 cm, 1 cm + 5 mm, and 1 cm + 5 mm + 1 mm scale

categories using K-means clustering. The column containing only 1 cm tick marks was identified
as the scale edge.

(3) Corresponding pixel coordinates for upper and lower edge features were sequentially detected
and stored in the matrices E1 and E2, respectively.
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(4) The pixel coordinates corresponding to specific edge features in each column were acquired by
averaging E1 and E2.

(5) The corresponding element in the matrix Ei was used as the y coordinate corresponding to 1 cm
tick marks.

In this way, the number of columns and the characteristic coordinates were collected for all vertical
edges. The column that met the required edge feature number was then identified, as demonstrated
by the yellow line in Figure 11. The corresponding coordinates for the vertical edge were used as
the y coordinates of the 1 cm scale, as shown in Figure 12. This technique was used to identify scale
lines and a support vector machine (SVM) was included to read scale numbers [24]. A sample matrix
containing digital scale and pixel coordinates is shown in Table 2.
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Table 2. A relationship table between the scale indicator and pixel values.

Scale Reading (n) 21 20 19 18 17 16 15 14 13

Pixel Coordinate (l) 59 157 255 353 451 549 647 745 843

5. Extraction and Reconstruction of the Concave Meniscus

The influence of gravity and surface tension causes the liquid in the tube to form a concave
meniscus, which can be identified in the images from the sudden change in pixel values. After applying
an adaptive graying method, Sobel edge detection was used to extract the liquid level, as shown in
Figure 13. This adaptive approach, demonstrated in Figure 13c, can effectively improve the accuracy of
liquid level detection beyond conventional techniques (see Figure 13d). The resulting image after edge
detection and removal of smaller connected domains is shown in Figure 13e).
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original image, (b) the adaptive gray image, (c) edge detection results for the adaptive grayscale image,
(d) results for the traditional grayscale image, and (e) the removal of smaller connected domains.
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Although the tube edges are clear, the meniscus boundaries are obscured by factors such as
lighting and latent fluid on the tube walls. As such, a fitting reconstruction was performed to determine
precise liquid level coordinates. The liquid level curve equation is fixed by the constraint that hardware
and environmental conditions in the verification system remain constant. An image was acquired in
standard test conditions and a leveling curve was produced by data fitting. Inaccurate data in the
conventional test process were then calibrated using the known standard level curve, as shown in
Figure 14.
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Figure 14. A block diagram for the curve fitting and reconstruction algorithms applied to modeling the
concave meniscus.

The liquid level was collected and extracted multiple times at a temperature of 25 ◦C, a relative
humidity of 50%, an atmospheric pressure of 101 kPa, and sufficient lighting, according to volume
verification regulations [25]. The best image was selected after processing and used for fitting, as shown
in Figure 15e. The lower edge of the extracted region provided the ‘C’ line for meniscus measurements
and the data were fitted to the level curve using a least squares algorithm.
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Figure 15. The extraction of standard concave liquid level images, including (a) the adaptive gray
image, (b) the edge detection image, (c) the outline image, (d) the maximum outline, and (e) the
smoothness processing image.

This process can be described as follows. For a given set of data
{
(xi, yi), i = 0, 1, 2 . . .m

}
,

the interpolating function f (x) is defined as the sum of the squared errors for the fitted model
and the original data:

S(a0,a1, a2 . . . an) =
m∑

i=0

[ f (x) − yi]

2

(10)

The optimal approximation to the original data, the least squares fitting curve f(x), is then found
by minimizing the sum of squared errors [26].

Polynomial fitting involves the use of a model function defined as f (x) = a0 + a1x + . . . anxn.
Input coordinates were collected from the lower edge of the standard concave meniscus image and
used to calculate the quadratic function:

f (x) = −0.003367(x + a)2 + 0.4137(x + a) + b (11)

The resulting fitting curve for the concave meniscus, in which a = 0 and b = 625.6, is shown in
Figure 16. The results of using this function to reconstruct a liquid level line are shown in Figure 17.
The white curve in Figure 17b represents the measured level and the red curve defines the reconstructed
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meniscus surface. The sum of pixels is denoted by N1 in the overlapping region and by N2 on the
actual level curve. The evaluation score for the fitted function is given by:

T =
N1

N2
(12)

where higher values of T indicate a more accurate fit. The function f(x) can be used to represent the
liquid level curve and its minimum value can denote the pixel height coordinate l. After identifying
the lowest point on the curve and the corresponding relationship between scale numbers and pixels,
the neck liquid level h2 can be calculated as follows:

h2 = na +
l1 − l0
l1 − l2

(13)

where l0 is the pixel coordinate of the liquid level, l2 and l1 are the pixel coordinate values corresponding
to the upper and lower 1 cm scale lines (respectively), and na is the actual scale value corresponding
to l1. Pixel coordinate values for the concave liquid level and scale numbers were then determined
automatically, as shown in Figure 18. In the sample images shown above, the pixel coordinate value
was determined to be 561 for the neck liquid level, corresponding to a scale height of 17–18 cm.
The corresponding value of h2 was determined to be 171.22 mm.
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6. Experimental Verification

The proposed algorithm for measuring liquid neck levels using image recognition was assessed
using a pipe prover verification system in actual working conditions. Automated measurements were
compared to manual readings collected with Vernier calipers, the results of which are shown in Table 3.
It is evident that the image recognition results are close to the manual readings, with an absolute
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error of ±0.1 mm. The recognition time, including follow-up control, was less than 10 s, which meets
industry requirements.

Table 3. A comparison between the proposed liquid level recognition algorithm and manual readings
with Vernier calipers.

Serial Number Image Recognition (mm) Reading of Vernier Caliper (mm) Absolute Error (mm)

1 96.54 96.49 0.05
2 100.84 100.92 −0.08
3 105.93 105.87 0.06
4 112.76 112.78 −0.02
5 121.41 121.44 −0.03
6 130.85 130.91 −0.06
7 134.96 134.89 0.07
8 145.45 145.50 −0.05
9 152.28 152.31 −0.03
10 165.44 165.39 0.05

7. Conclusions

In this study, an automated technique for measuring liquid gauge neck levels using image
recognition was proposed and validated. The accuracy of the proposed system was within 0.1 mm of
manual measurements, which meets the 0.2 mm industry requirement. The entire follow-up control,
collection, processing, and recognition time for liquid level was less than 10 s, which is significantly lower
than the required switching time between measurement tanks. As such, the proposed system satisfies
both accuracy and speed requirements for the reading of gauge neck levels in pipe prover verification
systems. The proposed method can effectively overcome long collection times, tedious measurements,
and large errors associated with manual liquid level readings. It can also improve both the efficiency
of verification and the degree of automation for a pipe prover system.
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