Different Pressures, Low Temperature, and Short-Duration Supercritical Carbon Dioxide Treatments: Microbiological, Physicochemical, Microstructural, and Sensorial Attributes of Chill-Stored Chicken Meat
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Microbiological Quality Evaluation
2.4. Lipid Peroxidation Measurement
2.5. Color Analysis
2.6. PH Analysis
2.7. Determination of Water Holding Capacity
2.8. Cooking Loss
2.9. Texture Profile Analysis
2.10. Microstructural Analysis
2.11. Sensory Evaluation
2.12. Statistical Analysis
3. Results and Discussion
3.1. Microbiological Quality
3.2. Lipid Peroxidation
3.3. Color Properties
3.4. The pH, Water Holding Capacity (WHC), and Cooking Loss
3.5. Texture Properties
3.6. Microstructure of Chicken Meat
3.7. Sensory Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United States Department of Agriculture, Foreign Agricultural Service. Livestock and Poultry: World Markets and Trade. 2006. Available online: https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf (accessed on 27 August 2020).
- Chmiel, M.; Roszko, M.; Hać-Szymańczuk, E.; Adamczak, L.; Florowski, T.; Pietrzak, D.; Cegiełka, A.; Bryła, M. Time evolution of microbiological quality and content of volatile compounds in chicken fillets packed using various techniques and stored under different conditions. Poult. Sci. 2020, 99, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Dave, D.; Ghaly, A.E. Meat spoilage mechanisms and preservation techniques: A critical review. Am. J. Agric. Biol. Sci. 2011, 6, 486–510. [Google Scholar]
- Xiong, Q.; Zhang, M.; Wang, T.; Wang, D.; Sun, C.; Bian, H.; Li, P.; Zou, Y.; Xu, W. Lipid oxidation induced by heating in chicken meat and the relationship with oxidants and antioxidant enzymes activities. Poult. Sci. 2020, 99, 1761–1767. [Google Scholar] [CrossRef] [PubMed]
- El-Nashi, H.B.; Fattah, A.F.A.K.A.; Rahman, N.R.A.; El-Razik, M.M.A. Quality characteristics of beef sausage containing pomegranate peels during refrigerated storage. Ann. Agric. Sci. 2015, 60, 403–412. [Google Scholar] [CrossRef] [Green Version]
- Aminzare, M.; Hashemi, M.; Azar, H.H.; Hejazi, J. The use of herbal extracts and essential oils as a potential antimicrobial in meat and meat products: A review. J. Hum. Environ. Health Prom. 2016, 1, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.M.; Bae, Y.Y.; Kim, K.H.; Kim, B.C.; Rhee, M.S. Effects of supercritical carbon dioxide treatment against generic Escherichia coli, Listeria monocytogenes, Salmonella typhimurium, and E. coli O157: H7 in marinades and marinated pork. Meat Sci. 2009, 82, 419–424. [Google Scholar] [CrossRef]
- Erkmen, O. Antimicrobial effects of pressurised carbon dioxide on Brochothrix thermosphacta in broth and foods. J. Sci. Food Agric. 2000, 80, 1365–1370. [Google Scholar] [CrossRef]
- Budisa, N.; Schulze-Makuch, D. Supercritical carbon dioxide and its potential as a life-sustaining solvent in a planetary environment. Life 2014, 4, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.M.; Ryu, Y.C.; Lee, S.H.; Go, G.W.; Shin, H.G.; Kim, K.H.; Rhee, M.S.; Kim, B.C. Effects of supercritical carbon dioxide treatment for sterilization purpose on meat quality of porcine longissimus dorsi muscle. LWT Food Sci Technol. 2008, 41, 317–322. [Google Scholar] [CrossRef]
- Choi, Y.M.; Lee, S.H.; Choe, J.H.; Kim, K.H.; Rhee, M.S.; Kim, B.C. Effects of supercritical carbon dioxide treatment on meat quality and sensory evaluation in soy sauce and hot-pepper paste marinated pork. Korean J. Food Sci. Anim. 2013, 33, 581–586. [Google Scholar] [CrossRef] [Green Version]
- Rawson, A.; Tiwari, B.K.; Brunton, N.; Brennan, C.; Cullen, P.J.; O’Donnell, C.P. Application of supercritical carbon dioxide to fruit and vegetables: Extraction, processing, and preservation. Food Rev. Int. 2012, 28, 253–276. [Google Scholar] [CrossRef]
- Murphy, R.Y.; Marks, B.P. Effect of meat temperature on proteins, texture, and cook loss for ground chicken breast patties. Poult. Sci. 2000, 79, 99–104. [Google Scholar] [CrossRef] [PubMed]
- González-Alonso, V.; Cappelletti, M.; Bertolini, F.M.; Lomolino, G.; Zambon, A.; Spilimbergo, S. Microbial inactivation of raw chicken meat by supercritical carbon dioxide treatment alone and in combination with fresh culinary herbs. Poult. Sci. 2020, 99, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Jauhar, S.; Ismail-Fitry, M.R.; Chong, G.H.; Nor-Khaizura, M.A.R.; Ibadullah, W.Z.W. Application of supercritical carbon dioxide (SC-CO2) on the microbial and physicochemical quality of fresh chicken meat stored at chilling temperature. Int. J. Food Res. 2020, 27, 103–110. [Google Scholar]
- Vaithiyanathan, S.; Naveena, B.M.; Muthukumar, M.; Girish, P.S.; Kondaiah, N. Effect of dipping in pomegranate (Punica granatum) fruit juice phenolic solution on the shelf life of chicken meat under refrigerated storage (4 °C). Meat Sci. 2011, 88, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wu, J.; Guo, X. Effects of antimicrobial and antioxidant activities of spice extracts on raw chicken meat quality. Food Sci. Hum. Wellness 2016, 5, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.B.; Han, M.Y.; Yang, H.J.; Xu, X.L.; Zhou, G.H. The effect of pressure-assisted heating on the water holding capacity of chicken batters. Innov. Food Sci. Emerg. Technol. 2018, 45, 280–286. [Google Scholar] [CrossRef]
- Komoltri, P.; Pakdeechanuan, P. Effects of marinating ingredients on physicochemical, microstructural and sensory properties of golek chicken. Int. Food Res. J. 2012, 19, 1449–1455. [Google Scholar]
- Zheng, H.; Xiong, G.; Han, M.; Deng, S.; Xu, X.; Zhou, G. High pressure/thermal combinations on texture and water holding capacity of chicken batters. Innov. Food Sci. Emerg. Technol. 2015, 30, 8–14. [Google Scholar] [CrossRef]
- Bae, Y.Y.; Choi, Y.M.; Kim, M.J.; Kim, K.H.; Kim, B.C.; Rhee, M.S. Application of supercritical carbon dioxide for microorganism reductions in fresh pork. J. Food Saf. 2011, 31, 511–517. [Google Scholar] [CrossRef]
- Choi, Y.M.; Kim, O.Y.; Kim, K.H.; Kim, B.C.; Rhee, M.S. Combined effect of organic acids and supercritical carbon dioxide treatments against nonpathogenic Escherichia coli, Listeria monocytogenes, Salmonella typhimurium and E. coli O157: H7 in fresh pork. Lett. Appl. Microbiol. 2009, 49, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gonzalez, L.; Geeraerd, A.H.; Spilimbergo, S.; Elst, K.; Van Ginneken, L.; Debevere, J.; Van Impe, J.F.; Devlieghere, F. High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and the future. Int. J. Food Microbiol. 2007, 117, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Liu, B.; Ge, D.; Dai, J. Effect of combined treatment with supercritical CO2 and rosemary on microbiological and physicochemical properties of ground pork stored at 4 °C. Meat Sci. 2017, 125, 114–120. [Google Scholar] [CrossRef]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Omana, D.A.; Plastow, G.; Betti, M. Effect of different ingredients on color and oxidative characteristics of high pressure processed chicken breast meat with special emphasis on use of β-glucan as a partial salt replacer. Innov. Food Sci. Emerg. Technol. 2011, 12, 244–254. [Google Scholar] [CrossRef]
- Min, B.; Ahn, D.U. Sensory properties of packaged fresh and processed poultry meat. In Advances in Meat, Poulty and Seafood Packaging; Kerry, J.P., Ed.; Woodhead Publishing: Cambridge, UK, 2012; pp. 112–153. [Google Scholar]
- Purslow, P.P.; Oiseth, S.; Hughes, J.; Warner, R.D. The structural basis of cooking loss in beef: Variations with temperature and ageing. Food Res. Int. 2016, 89, 739–748. [Google Scholar] [CrossRef]
Parameters | Treatments | Day 0 | Day 3 | Day 7 |
---|---|---|---|---|
Total Plate Count (log CFU/g) | Control | 6.72 ± 0.25 Aa | 7.35 ± 1.17 Aa | 7.32 ± 0.13 Aa |
7.4 MPa | 6.68 ± 0.17 Aa | 6.4 ± 0.47 Aa | 6.66 ± 0.49 Aa | |
11.4 MPa | 4.02 ± 0.55 Bb | 5.92 ± 0.47 Aa | 7.00 ± 0.48 Aa | |
15.4 MPa | 2.00 ± 0.00 Cc | 5.8 ± 0.40 Ab | 6.98 ± 0.28 Aa | |
Total Yeast and Mold (log CFU/g) | Control | 5.98 ± 0.53 Ab | 6.06 ± 0.72 Aab | 7.40 ± 0.40 Aa |
7.4 MPa | 5.72 ± 0.63 Aa | 5.56 ± 0.51 Aa | 6.20 ± 0.31 Ba | |
11.4 MPa | 3.58 ± 0.09 Bb | 5.69 ± 0.81 Aa | 5.82 ± 0.08 Ba | |
15.4 MPa | 2.00 ± 0.00 Cc | 5.19 ± 0.18 Ab | 5.77 ± 0.09 Ba | |
Lipid Peroxidation (mg/kg) | Control | 0.29 ± 0.05 Aa | 0.20 ± 0.01 Ab | 0.23 ± 0.01 Aab |
7.4 MPa | 0.27 ± 0.03 Aa | 0.23 ± 0.01 Aa | 0.24 ± 0.03 Aa | |
11.4 MPa | 0.25 ± 0.01 Aa | 0.25 ± 0.04 Aa | 0.28 ± 0.03 Aa | |
15.4 MPa | 0.24 ± 0.01 Aa | 0.25 ± 0.04 Aa | 0.23 ± 0.01 Aa |
Parameters | Treatments | Day 0 | Day 3 | Day 7 |
---|---|---|---|---|
L* | Control | 56.78 ± 0.79 Ca | 55.84 ± 0.63 Ba | 56.50 ± 3.50 Ba |
7.4 MPa | 62.02 ± 0.72 Ba | 61.97 ± 1.55 Aa | 58.51 ± 1.32 ABb | |
11.4 MPa | 67.09 ± 2.1 Aa | 64.89 ± 1.77 Aa | 63.62 ± 2.03 Aa | |
15.4 MPa | 63.41 ± 0.91 Ba | 62.55 ± 0.72 Aa | 61.53 ± 0.74 ABa | |
a* | Control | 12.23 ± 0.67 Aa | 12.64 ± 0.29 Aa | 10.72 ± 1.31 Aa |
7.4 MPa | 10.00 ± 0.28 Ba | 10.98 ± 0.92 ABa | 9.81 ± 0.34 ABa | |
11.4 MPa | 8.28 ± 0.15 Ca | 8.70 ± 1.22 Ca | 8.21 ± 1.10 Ba | |
15.4 MPa | 9.68 ± 0.50 Ba | 10.02 ± 0.72 BCa | 9.29 ± 0.78 ABa | |
b* | Control | 12.52 ± 0.39 Aa | 12.38 ± 0.52 ABa | 9.57 ± 2.05 Aa |
7.4 MPa | 11.59 ± 0.72 Aab | 13.30 ± 0.32 Aa | 11.18 ± 1.12 Ab | |
11.4 MPa | 13.18 ± 0.63 Aa | 10.80 ± 0.97 Bb | 11.95 ± 1.10 Aab | |
15.4 MPa | 12.87 ± 1.73 Aa | 11.61 ± 1.13 ABa | 12.33 ± 1.61 Aa |
Parameters | Treatments | Day 0 | Day 3 | Day 7 |
---|---|---|---|---|
pH | Control | 6.12 ± 0.06 Aa | 5.96 ± 0.24 Aa | 6.19 ± 0.10 Aa |
7.4 MPa | 5.88 ± 0.06 Bb | 6.26 ± 0.05 Aa | 6.17 ± 0.01 Aa | |
11.4 MPa | 5.87 ± 0.01 Bb | 6.13 ± 0.02 Aa | 6.15 ± 0.03 Aa | |
15.4 MPa | 6.07 ± 0.02 Aa | 6.14 ± 0.02 Aa | 6.42 ± 0.43 Aa | |
Water Holding Capacity (%) | Control | 21.55 ± 3.52 Aa | 18.5 ± 2.18 Aa | 26.76 ± 5.84 Aa |
7.4 MPa | 22.19 ± 0.38 Aa | 21.27 ± 0.59 Aa | 23.34 ± 1.50 Aa | |
11.4 MPa | 27.29 ± 5.35 Aa | 25.77 ± 5.80 Aa | 29.24 ± 4.84 Aa | |
15.4 MPa | 20.98 ± 2.72 Aa | 19.03 ± 4.44 Aa | 24.39 ± 0.28 Aa | |
Cooking Loss (%) | Control | 52.2 ± 2.18 Aa | 54.23 ± 4.84 Aa | 50.79 ± 0.78 Aa |
7.4 MPa | 50.98 ± 2.40 Aa | 55.11 ± 3.21 Aa | 48.49 ± 3.69 Aa | |
11.4 MPa | 52.25 ± 1.43 Aa | 52.61 ± 0.82 Aa | 51.88 ± 2.49 Aa | |
15.4 MPa | 48.8 ± 5.10 Aa | 47.20 ± 5.57 Aa | 50.18 ± 4.76 Aa |
Treatment | Day | Hardness (g) | Adhesiveness (g s) | Springiness (mm) | Cohesiveness | Gumminess (g) | Chewiness (g mm) | Resilience |
---|---|---|---|---|---|---|---|---|
Control | 0 | 2030 ± 629 Ca | −136 ± 83 Aa | 0.70 ± 0.08 Aa | 0.79 ± 0.05 Aa | 1578 ± 398 Ba | 1190 ± 410 BCa | 0.55 ± 0.06 Aa |
3 | 1186 ± 92 Ba | −187 ± 1.8 Aa | 0.73 ± 0.08 Aa | 0.80 ± 0.05 Aa | 957 ± 93 Aa | 710 ± 127 Aa | 0.55 ± 0.09 Aa | |
7 | 1350 ± 381 Ba | −127 ± 54 Aa | 0.76 ± 0.08 Aa | 0.76 ± 0.06 Aa | 1025 ± 263 Ba | 780 ± 221 Aa | 0.53 ± 0.09 Aa | |
7.4 MPa | 0 | 1473 ± 281 Ca | −93 ± 8 Aa | 0.8 ± 0.04 Aa | 0.80 ± 0.04 Aba | 1125 ± 172 Ba | 870 ± 116 Ca | 0.50 ± 0.05 Aba |
3 | 2788 ± 1754 Aba | −150 ± 32 Aab | 0.72 ± 0.05 Aa | 0.74 ± 0.05 Aa | 2061 ± 1296 Aa | 1460 ± 813 Aa | 0.48 ± 0.02 Aa | |
7 | 3030 ± 1388 Ba | −161 ± 32 Ab | 0.78 ± 0.08 Aa | 0.78 ± 0.01 Aa | 2400 ± 1103 ABa | 1902 ± 1011 Aa | 0.53 ± 0.03 Aa | |
11.4 MPa | 0 | 6360 ± 846 Aa | −19 ± 5 Aa | 0.63 ± 0.04 Ab | 0.60 ± 0.04 Ca | 3663 ± 741 Aa | 2356 ± 603 Aa | 0.33 ± 0.04 Ca |
3 | 4989 ± 658 Aa | −163 ± 49 Ab | 0.63 ± 0.01 Ab | 0.55 ± 0.19 Aa | 2841 ± 1289 Aa | 1825 ± 849 Aa | 0.35 ± 0.15 Aa | |
7 | 5250 ± 1374 ABa | −156 ± 53 Ab | 0.78 ± 0.08 Aa | 0.61 ± 0.04 Ba | 3228 ± 811 ABa | 2511 ± 634 Aa | 0.39 ± 0.02 Ca | |
15.4 MPa | 0 | 4646 ± 650 Ba | −98 ± 69 Aa | 0.70 ± 0.03 Aa | 0.65 ± 0.05 BCa | 2996 ± 194 Aa | 2118 ± 211 Aba | 0.37 ± 0.06 BCa |
3 | 4761 ± 1345 Aa | −196 ± 52 Aa | 0.65 ± 0.01 Aa | 0.61 ± 0.04 Aa | 2886 ± 668 Aa | 1810 ± 433 Aa | 0.36 ± 0.05 Aa | |
7 | 6357 ± 2446 Aa | −214 ± 83 Aa | 0.63 ± 0.10 Aa | 0.65 ± 0.03 Ba | 4093 ± 1426 Aa | 2679 ± 1183 Aa | 0.40 ± 0.01 BCa |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jauhar, S.; Ismail-Fitry, M.R.; Chong, G.H.; Nor-Khaizura, M.A.R.; Ibadullah, W.Z.W. Different Pressures, Low Temperature, and Short-Duration Supercritical Carbon Dioxide Treatments: Microbiological, Physicochemical, Microstructural, and Sensorial Attributes of Chill-Stored Chicken Meat. Appl. Sci. 2020, 10, 6629. https://doi.org/10.3390/app10196629
Jauhar S, Ismail-Fitry MR, Chong GH, Nor-Khaizura MAR, Ibadullah WZW. Different Pressures, Low Temperature, and Short-Duration Supercritical Carbon Dioxide Treatments: Microbiological, Physicochemical, Microstructural, and Sensorial Attributes of Chill-Stored Chicken Meat. Applied Sciences. 2020; 10(19):6629. https://doi.org/10.3390/app10196629
Chicago/Turabian StyleJauhar, Safiullah, Mohammad Rashedi Ismail-Fitry, Gun Hean Chong, Mahmud Ab Rashid Nor-Khaizura, and Wan Zunairah Wan Ibadullah. 2020. "Different Pressures, Low Temperature, and Short-Duration Supercritical Carbon Dioxide Treatments: Microbiological, Physicochemical, Microstructural, and Sensorial Attributes of Chill-Stored Chicken Meat" Applied Sciences 10, no. 19: 6629. https://doi.org/10.3390/app10196629
APA StyleJauhar, S., Ismail-Fitry, M. R., Chong, G. H., Nor-Khaizura, M. A. R., & Ibadullah, W. Z. W. (2020). Different Pressures, Low Temperature, and Short-Duration Supercritical Carbon Dioxide Treatments: Microbiological, Physicochemical, Microstructural, and Sensorial Attributes of Chill-Stored Chicken Meat. Applied Sciences, 10(19), 6629. https://doi.org/10.3390/app10196629