Chlamydomonas reinhardtii Is a Potential Food Supplement with the Capacity to Outperform Chlorella and Spirulina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Stock Solutions
2.2. Growth Curve Establishment
2.3. Sample Preparations for Transmission Electron Microscope (TEM)
2.4. Microalgae Biomass Preparation
2.5. Ash and Residual Moisture
2.6. Total Lipid
2.7. Fatty Acids Profile Analysis
2.8. Chlorophyll and Carotenoids Analysis
2.9. Total Protein Content Analysis
2.10. Amino Acids Analysis
2.11. Minerals Analysis
2.12. Statistical Analysis
3. Results and Discussion
3.1. Growth and Ultrastructure of C. reinhardtii
3.2. Macronutrient Content
3.3. Amino Acids Profile
3.4. Fatty Acids Profile of C. reinhardtii
3.5. Chlorophylls and Total Carotenoids
3.6. Minerals and Heavy Metals Composition
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gedi, M.A.; Di Bari, V.; Ibbett, R.; Darwish, R.; Nwaiwu, O.; Umar, Z.; Agarwal, D.; Worrall, R.; Gray, D.; Foster, T. Upcycling and valorisation of food waste. In Routledge Handbook of Food Waste; Routledge: London, UK, 2020; pp. 413–427. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaky, A.S.; French, C.E.; Tucker, G.A.; Du, C. Improving the productivity of bioethanol production using marine yeast and seawater-based media. Biomass Bioenergy 2020, 139, 105615. [Google Scholar] [CrossRef]
- Monroig, Ó.; Tocher, D.R.; Navarro, J.C. Biosynthesis of polyunsaturated fatty acids in marine invertebrates: Recent advances in molecular mechanisms. Mar. Drugs 2013, 11, 3998–4018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, W. Microalgae in human and animal nutrition. In Handbook of Microalgal Culture; Blackwell Publishing Ltd.: Oxford, UK, 2007; pp. 312–351. [Google Scholar] [CrossRef]
- Pulz, O.; Gross, W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as nutritional and functional food sources: Revisiting our understanding. Environ. Biol. Fishes 2016, 29, 949–982. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef]
- Taelman, S.E.; De Meester, S.; Van Dijk, W.; Da Silva, V.; Dewulf, J. Environmental sustainability analysis of a protein-rich livestock feed ingredient in The Netherlands: Microalgae production versus soybean import. Resour. Conserv. Recycl. 2015, 101, 61–72. [Google Scholar] [CrossRef]
- Greetham, D.; Zaky, A.S.; Du, C. Exploring the tolerance of marine yeast to inhibitory compounds for improving bioethanol production. Sustain. Energy Fuels 2019, 3, 1545–1553. [Google Scholar] [CrossRef] [Green Version]
- Zaky, A.S.; Greetham, D.; Tucker, G.A.; Du, C. The establishment of a marine focused biorefinery for bioethanol production using seawater and a novel marine yeast strain. Sci. Rep. 2018, 8, 12127. [Google Scholar] [CrossRef] [Green Version]
- Harris, E.H. Chlamydomonasas amodelorganism. Annu. Rev. Plant. Biol. 2001, 52, 363–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almaraz-Delgado, A.L.; Flores-Uribe, J.; Pérez-España, V.H.; Manjarrez, E.S.; Badillo-Corona, J.A. Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii. AMB Express 2014, 4, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, E. Micro-algae as a source of protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Dreesen, I.A.; Hamri, G.C.-E.; Fussenegger, M. Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection. J. Biotechnol. 2010, 145, 273–280. [Google Scholar] [CrossRef]
- Yoon, S.-M.; Kim, S.Y.; Li, K.F.; Yoon, B.H.; Choe, S.; Kuo, M.M.-C. Transgenic microalgae expressing Escherichia coli AppA phytase as feed additive to reduce phytate excretion in the manure of young broiler chicks. Appl. Microbiol. Biotechnol. 2011, 91, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Qiu, S.; Liu, Q.; Tian, J.; Hu, Z.; Ni, J. Selenoprotein-Transgenic Chlamydomonas reinhardtii. Nutrients 2013, 5, 624–636. [Google Scholar] [CrossRef]
- Guedes, A.C.; Amaro, H.M.; Malcata, F.X. Microalgae as sources of carotenoids. Mar. Drugs 2011, 9, 625–644. [Google Scholar] [CrossRef]
- Davies, J.P.; Grossman, A.R. The use of chlamydomonas (chlorophyta: Volvocales) as a model algal system for genome studies and the elucidation of photosynthetic processes. J. Phycol. 1998, 34, 907–917. [Google Scholar] [CrossRef]
- Taghavi, N.; Robinson, G. Improving the optimum yield and growth of Chlamydomonas reinhardtii CC125 and CW15 using various carbon sources and growth regimes. Afr. J. Biotechnol. 2016, 15, 1083–1100. [Google Scholar]
- Naturya.com. Chlorella and Spirulina. Available online: https://naturya.com/vegan-protein (accessed on 17 September 2020).
- Zhou, W.; Lu, Q.; Han, P.; Li, J. Chapter 3—Microalgae cultivation and photobioreactor design. In Microalgae Cultivation for Biofuels Production; Yousuf, A., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 31–50. [Google Scholar] [CrossRef]
- Gorman, D.S.; Levine, R.P. Photosynthetic electron transport chain of chlamydomonas reinhardi VI. Electron transport in mutant strains lacking either cytochrome 553 or plastocyanin. Plant. Physiol. 1966, 41, 1648–1656. [Google Scholar] [CrossRef] [Green Version]
- Godoy-Hernández, G.; Vázquez-Flota, F.A. Growth measurements: Estimation of cell division and cell expansion. In Plant Cell Culture Protocols; Loyola-Vargas, V.M., Ochoa-Alejo, N., Eds.; Humana Press: Totowa, NJ, USA, 2012; pp. 41–48. [Google Scholar] [CrossRef]
- Godoy-Hernández, G.; Vázquez-Flota, F.A. Growth measurements: Estimation of cell division and cell expansion. Methods Mol Biol 2006, 318, 51–58. [Google Scholar]
- Gedi, M.A. Nutrient Composition and Digestibility of Chloroplast Rich Fractions from Green Leaf Materials. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2017. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Dron, J.; Linke, R.; Rosenberg, E.; Schreiner, M. Trimethylsulfonium hydroxide as derivatization reagent for the chemical investigation of drying oils in works of art by gas chromatography. J. Chromatogr. A 2004, 1047, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Lourenço, S.O.; Barbarino, E.; De-Paula, J.C.; Pereira, L.O.d.S.; Marquez, U.M.L. Amino acid composition, protein content and calculation of nitrogen-to-protein conversion factors for 19 tropical seaweeds. Phycol. Res. 2002, 50, 233–241. [Google Scholar] [CrossRef]
- Lourenço, S.O.; Barbarino, E.; Lavin, P.; Marquez, U.M.L.; Aidar, E. Distribution of intracellular nitrogen in marine microalgae: Calculation of new nitrogen-to-protein conversion factors. Eur. J. Phycol. 2004, 39, 17–32. [Google Scholar] [CrossRef]
- Windham, W. AOAC official method 994.12, amino acids in feeds, alternative III, acid hydrolysis method. In Official Methods of Analysis of AOAC International; 1995; Available online: https://ci.nii.ac.jp/naid/10018325012/ (accessed on 25 September 2020).
- FAO/WHO/UNU. Expert Consultation on Energy and Protein Requirements (1981: Rome, Italy), Food and Agriculture Organisation of the United Nations, World Health Organisation and United Nations University. Energy and Protein Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation [held in Rome from 5 to 17 October 1981]. World Health Organisation; FAO/WHO/UNU, 1985; Available online: https://apps.who.int/iris/handle/10665/39527 (accessed on 25 September 2020).
- Damodaran, S.P.; Eberhard, S.; Boitard, L.; Rodriguez, J.G.; Wang, Y.; Bremond, N.; Baudry, J.; Bibette, J.; Wollman, F.A. A Millifluidic Study of Cell-to-Cell Heterogeneity in Growth-Rate and Cell-Division Capability in Populations of Isogenic Cells of Chlamydomonas reinhardtii. PLoS ONE 2015, 10, e0118987. [Google Scholar] [CrossRef] [Green Version]
- Oldenhof, H.; Zachleder, V.; Ende, H.V.D. The cell cycle ofChlamydomonas reinhardtii: The role of the commitment point. Folia Microbiol. 2007, 52, 53–60. [Google Scholar] [CrossRef]
- Rochaix, J.D.; Tzafrir, I.; McElver, J.A.; Liu, C.M.; Yang, L.J.; Wu, J.Q.; Martinez, A.; Patton, D.A.; Meinke, D. Assembly, function, and dynamics of the photosynthetic machinery in chlamydomonas reinhardtii. Plant. Physiol. 2001, 127, 1394–1398. [Google Scholar] [CrossRef]
- Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant. J. 2008, 54, 621–639. [Google Scholar] [CrossRef]
- Kent, M.; Welladsen, H.M.; Mangott, A.; Li, Y. Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS ONE 2015, 10, e0118985. [Google Scholar] [CrossRef] [PubMed]
- Kliphuis, A.M.J.; Klok, A.J.; Martens, D.E.; Lamers, P.P.; Janssen, M.; Wijffels, R.H. Metabolic modeling of Chlamydomonas reinhardtii: Energy requirements for photoautotrophic growth and maintenance. Environ. Biol. Fishes 2011, 24, 253–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyle, N.R.; Morgan, J.A. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst. Biol. 2009, 3, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batista, A.P.; Gouveia, L.; Bandarra, N.M.; Franco, J.M.; Raymundo, A. Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Res. 2013, 2, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Rupérez, P. Mineral content of edible marine seaweeds. Food Chem. 2002, 79, 23–26. [Google Scholar] [CrossRef]
- Siaut, M.; Cuiné, S.; Cagnon, C.; Fessler, B.; Nguyen, H.M.; Carrier, P.; Beyly-Adriano, A.; Beisson, F.; Triantaphylidès, C.; Li-Beisson, Y.; et al. Oil accumulation in the model green alga Chlamydomonas reinhardtii: Characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 2011, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Laurens, L.M.L.; Dempster, T.A.; Jones, H.D.T.; Wolfrum, E.; Van Wychen, S.; McAllister, J.S.P.; Rencenberger, M.; Parchert, K.J.; Gloe, L.M. Algal Biomass constituent analysis: Method uncertainties and investigation of the underlying measuring chemistries. Anal. Chem. 2012, 84, 1879–1887. [Google Scholar] [CrossRef]
- Pellett, P.L.; Young, V.R. Commentary: Joint FAO/WHO expert consultation on protein quality evaluation Bethesda, MD, USA, 4–8 December 1989. Ecol. Food Nutr. 1990, 24, 297–303. [Google Scholar] [CrossRef]
- Bleakley, S.; Hayes, M. Algal proteins: Extraction, application, and challenges concerning production. Foods 2017, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Lang, I.; Hodač, L.; Friedl, T.; Feussner, I. Fatty acid profiles and their distribution patterns in microalgae: A comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant. Biol. 2011, 11, 124. [Google Scholar] [CrossRef] [Green Version]
- Quoc, K.P.; Dubacq, J.P. Effect of growth temperature on the biosynthesis of eukaryotic lipid molecular species by the cyanobacterium Spirulina platensis. Biochim. Biophys. Acta 1997, 1346, 237–246. [Google Scholar] [CrossRef]
- Ronda, S.R.; Lele, S. Culture Conditions stimulating high γ-Linolenic Acid accumulation by Spirulina platensis. Braz. J. Microbiol. 2008, 39, 693–697. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.M.; Cuiné, S.; Beyly-Adriano, A.; Légeret, B.; Billon, E.; Auroy, P.; Beisson, F.; Peltier, G.; Li-Beisson, Y. The green microalga chlamydomonas reinhardtii has a single ω-3 fatty acid desaturase that localizes to the chloroplast and impacts both plastidic and extraplastidic membrane lipids. Plant. Physiol. 2013, 163, 914–928. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Casas, L.; Serrano, C.M.; Rodríguez, M.R.; De La Ossa, E.J.M.; Lubián, L.M. Extraction of carotenoids and fatty acids from microalgae using supercritical technology. Am. J. Anal. Chem. 2012, 3, 877–883. [Google Scholar] [CrossRef] [Green Version]
- Masojıdek, J.; Koblızek, M.; Torzillo, G. Photosynthesis in microalgae. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2004; p. 20. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118567166.ch2 (accessed on 25 September 2020).
- Gedi, M.A.; Briars, R.; Yuseli, F.; Zainol, N.; Darwish, R.; Salter, A.M.; Gray, D.A. Component analysis of nutritionally rich chloroplasts: Recovery from conventional and unconventional green plant species. J. Food Sci. Technol. 2017, 54, 2746–2757. [Google Scholar] [CrossRef]
- Tabarsa, M.; Rezaei, M.; Ramezanpour, Z.; Waaland, J.R. Chemical compositions of the marine algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a potential food source. J. Sci. Food Agric. 2012, 92, 2500–2506. [Google Scholar] [CrossRef]
- Campbell, S. Dietary reference intakes: Water, potassium, sodium, chloride, and sulfate. Clin. Nutr. Insight 2004, 30, 1–4. [Google Scholar]
- Monsen, E.R. Dietary reference intakes for the antioxidant nutrients: Vitamin C, vitamin E, selenium, and carotenoids. J. Am. Diet. Assoc. 2000, 100, 637–640. [Google Scholar] [CrossRef]
- Nelson, H.K.; Shi, Q.; Van Dael, P.; Schiffrin, E.J.; Blum, S.; Barclay, D.; Levander, O.A.; Beck, M.A.; Brough, G.H.; Wu, S.; et al. Host nutritional selenium status as a driving force for influenza virus mutations. FASEB J. 2001, 15, 1846–1848. [Google Scholar] [CrossRef]
- Jarup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [Green Version]
- FAO/WHO. FAO/WHO Expert Committee on Food Additives. Meeting ( 61st: 2003, Rome, Italy), International Programme on Chemical Safety. In Safety Evaluation of Certain Food Additives and Contaminants/Prepared by the Sixty-First Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JEFCA); World Health Organization, 2004; Available online: https://apps.who.int/iris/handle/10665/43038 (accessed on 25 September 2020)ISBN 9241209224.
C. reinhardtii | EAAS | Chlorella | EAAS | Spirulina | EAAS | †FAO/WHO/UNU | |
---|---|---|---|---|---|---|---|
Cyst | 12.7 ± 0.8 c | - | 21.6 ± 0.5 a | 15.4 ± 0.1 b | - | ||
Asp A | 100.5 ± 0.7 b | 99.1 ± 0.1 c | 103.5 ± 0.1 a | - | |||
* Met | 26.8 ± 0.3 a | ‡ 1.6 | 26.3 ± 0.1 b | ‡ 1.5 | 25.2 ± 0.2 c | ‡ 1.5 | ‡ 25 |
* Thr | 52.8 ± 0.3 a | 1.6 | 49.3 ± 0.4 b | 1.5 | 49.6 ± 0.3 b | 1.5 | 34 |
Ser | 44.9 ± 0.7 b | 42.6 ± 0.3 c | 50.1 ± 0.8 a | - | |||
Glu A | 112.8 ± 0.4 c | 120.7 ± 0.2 b | 137.7 ± 0.3 a | - | |||
Gly | 59.5 ± 0.8 a | 58.3 ± 0.2 a | 49 ± 0.2 b | - | |||
Ala | 79.5 ± 1.3 a | 77.1 ± 0.3 b | 73 ± 0.2 c | - | |||
* Val | 63 ± 1.1 b | 1.8 | 66.5 ± 0.7 a | 1.9 | 66.3 ± 0.6 a | 1.9 | 35 |
* Iso | 45.5 ± 0.8 b | 1.6 | 43 ± 0.5 c | 1.5 | 58.3 ± 0.7 a | 2.1 | 28 |
* Leu | 105.5 ± 1.1 a | 1.6 | 100.9 ± 0.5 b | 1.5 | 96.7 ± 0.2 c | 1.5 | 66 |
Tyr | 33.4 ± 1.5 c | 36 ± 0.4 b | 41 ± 0.3 a | - | |||
* Phe | 63.1 ± 1.1 a | § 1.5 | 56.7 ± 0.1 b | § 1.5 | 49.3 ± 0.4 c | § 1.4 | § 63 |
* Lys | 55.6 ± 0.6 b | 1.0 | 68.7 ± 0.9 a | 1.2 | 47.9 ± 0.4 c | 0.8 | 58 |
His | 20.6 ± 0.3 b | 21.3 ± 0.2 a | 16.6 ± 0.1 c | - | |||
Arg | 62.5 ± 0.1 c | 63.9 ± 0.3 b | 71.9 ± 0.2 a | - | |||
Pro | 61.4 ± 7.9 a | 48 ± 2.7 b | 48.3 ± 1.1 b | - | |||
* Trp | ND | ND | ND | - | |||
∑EAA | 458.4 b | 468.9 a | 449.8 b | - | |||
EAAS | 1.49 | 1.55 | 1.48 | - |
Fatty Acid (DW) | C. reinhardtii | Chlorella | Spirulina | |||
---|---|---|---|---|---|---|
(mg/g−) | (%) | (mg/g) | (%) | (mg/g) | (%) | |
C16:0 | 16.7 ± 0.8 b | 23.8 ± 0.2 | 11.0 ± 0.3 b | 22.2 ± 0.1 | 25.9 ± 4.6 a | 57.9 ± 0.4 |
C16:1 n-7 | 1.9 ± 0.1 b | 2.7 ± 0.1 | 6.5 ± 0.1 a | 13.0 ± 0.1 | 0.1 ± 0.0 c | 0.1 ± 0.0 |
C16:4 n-3 | 3.9 ± 0.1 a | 5.5 ± 0.3 | 0.0 ± 0.0 b | 0.1 ± 0.0 | 0.0 ± 0.0 b | 0.1 ± 0.0 |
C18:0 | 1.6 ± 0.2 a | 2.3 ± 0.3 | 1.4 ± 0.0 a | 2.8 ± 0.1 | 0.7 ± 0.0 b | 1.5 ± 0.1 |
C18:1 n-9c | 10.3 ± 1.1 c | 14.7 ± 1.6 | 3.5 ± 0.1 a | 7.0 ± 0.2 | 0.9 ± 0.2 b | 2.0 ± 0.2 |
C18:2 n-6c | 2.7 ± 0.2 b | 3.8 ± 0.2 | 15.6 ± 0.3 c | 31.4 ± 0.3 | 8.5 ± 1.6 a | 19.0 ± 0.2 |
C18:3 n-6 (GLA) | 2.9 ± 0.2 a | 4.1 ± 0.3 | 0.0 ± 0.0 b | 0.1 ± 0.0 | 8.7 ± 1.6 c | 19.5 ± 0.2 |
C18:3 n-3 | 29.8 ± 1.9 a | 42.4 ± 1.2 | 11.6 ± 0.2 c | 23.4 ± 0.1 | 0.1 ± 0.0 a | 0.1 ± 0.1 |
C20:4 n- 6 | 0.6 ± 0.1 a | 0.9 ± 0.0 | 0.0 ± 0.0 b | 0.1 ± 0.0 | 0.0 ± 0.0 c | 0.0 ± 0.0 |
∑SFA | 18.3 | 26.02 | 12.4 | 25.0 | 26.6 | 59.4 |
∑USFA | 52.1 | 74.0 | 37.3 | 75.0 | 18.5 | 40.6 |
∑n-3 FA | 33.7 | 47.9 | 11.6 | 23.4 | 0.1 | 0.2 |
∑n-6 FA | 6.2 | 8.7 | 15.7 | 31.6 | 17.2 | 38.3 |
n-6/n-3 | 0.2 | 0.2 | 1.4 | 1.4 | und | und |
Mineral | C. reinhardtii | Chlorella | Spirulina | RNI M/F(mg/d) | %RNI* M/F |
---|---|---|---|---|---|
Macro mg/g DW | |||||
Na+ | 0.13 ± 0.00 | 0.95 ± 0.04 | 9.97 ± 0.55 | ||
Mg2+ | 4.95 ± 0.22 | 9.17 ± 0.27 | 7.49 ± 0.39 | 300/270 | 8.3/9.2 |
p | 15.69 ± 0.65 | 34.12 ± 4.05 | 23.05 ± 4.15 | 550/550 | 14.3/14.3 |
S | 6.55 ± 0.55 | 19.39 ± 0.92 | 21.03 ± 1.05 | - | - |
K+ | 2.85 ± 0.65 | 21.30 ± 0.75 | 36.48 ± 2.02 | - | - |
Ca2+ | 10.29 ± 0.21 | 3.46 ± 0.14 | 4.76 ± 0.23 | 700/700 | 7.4/7.4 |
Micro mg/g DW | |||||
Mn2+ | 0.05 ± 0.00 | 0.13 ± 0.00 | 0.12 ± 0.01 | - | |
Fe | 0.96 ± 0.09 | 1.34 ± 0.05 | 3.73 ± 0.21 | 8.7/14.8 | 55.2/32.4 |
Cu2+ | 0.08 ± 0.01 | 0.06 ± 0.00 | 0.01 ± 0.00 | 1.2/1.2 | 33.3/33.3 |
Zn2+ | 0.08 ± 0.00 | 0.06 ± 0.00 | 0.07 ± 0.00 | 9.5/7.0 | 4.2/5.7 |
Se2+ | 0.01 ± 0.0 | ND | ND | 0.075/0.06 | 66.7/83.3 |
Heavy mg/kg DW | |||||
Cd2+ | 0.01 ± 0.00 | 0.19 ± 0.00 | 0.06 ± 0.00 | - | - |
As3+ | 0.02 ± 0.00 | 0.85 ± 0.03 | 0.89 ± 0.06 | - | - |
Ag2+ | 0.03 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | - | - |
Pb2+ | 0.09 ± 0.00 | 1.85 ± 0.11 | 2.97 ± 0.20 | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darwish, R.; Gedi, M.A.; Akepach, P.; Assaye, H.; Zaky, A.S.; Gray, D.A. Chlamydomonas reinhardtii Is a Potential Food Supplement with the Capacity to Outperform Chlorella and Spirulina. Appl. Sci. 2020, 10, 6736. https://doi.org/10.3390/app10196736
Darwish R, Gedi MA, Akepach P, Assaye H, Zaky AS, Gray DA. Chlamydomonas reinhardtii Is a Potential Food Supplement with the Capacity to Outperform Chlorella and Spirulina. Applied Sciences. 2020; 10(19):6736. https://doi.org/10.3390/app10196736
Chicago/Turabian StyleDarwish, Randa, Mohamed A. Gedi, Patchaniya Akepach, Hirut Assaye, Abdelrahman S. Zaky, and David A. Gray. 2020. "Chlamydomonas reinhardtii Is a Potential Food Supplement with the Capacity to Outperform Chlorella and Spirulina" Applied Sciences 10, no. 19: 6736. https://doi.org/10.3390/app10196736
APA StyleDarwish, R., Gedi, M. A., Akepach, P., Assaye, H., Zaky, A. S., & Gray, D. A. (2020). Chlamydomonas reinhardtii Is a Potential Food Supplement with the Capacity to Outperform Chlorella and Spirulina. Applied Sciences, 10(19), 6736. https://doi.org/10.3390/app10196736