A Discriminative Multi-Output Gaussian Processes Scheme for Brain Electrical Activity Analysis
Abstract
:1. Introduction
2. Material and Methods
2.1. EEG Databases
- DEAP dataset
- “A Database for Emotional Analysis using Physiological data” (DEAP) contains EEG data from 32 subjects acquired under 40 emotion elicitation experiments, with one-minute recordings at 128 Hz and 32 channels distributed over the scalp [25]. Each participant rated the emotional stimulus at the end of a video, following two dimensions: arousal and valence. Other scores, such as dominance and liking, were also reported, although arousal and valence are the most prominent dimensions for affective computing works. These dimensions characterize a more extensive range of emotions than just the classical categorical description in six basic emotions. For our experiments, we consider the classification valence dimension as either low (ranging from one to five) or high (from five to nine) valence.
- MI dataset
- The “Brain Computer Interface (BCI) competition 2008-Graz data set A” contains motor imagery experiments from nine subjects performing four specific tasks involving movements of hands and feet [26] under the motor imagery (MI) paradigm. The set of 22 EEG channels was band-pass filtered between 0.5 Hz and 100 Hz, and further down-sampled at 128 Hz. Each subject performed two experiment sessions, consisting of six runs and 48 six second-long trials per run and task. From the BCI dataset, we select the left- and right-hand movement imagination tasks for evaluating the proposed discriminative framework in a subject-wise scheme.
2.2. Cross-Spectral Estimation from Kernel Mixtures
2.3. Multi-Output Spectral Mixture Gaussian Process
2.4. Discriminative Scheme Using MOSM-GP
2.5. Implementation Details
3. Results
3.1. Parameter Tuning and Spectral Modeling
3.2. Discriminative MOSM-GP
3.3. Results Comparison
4. Discussion and Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BEA | Brain Electrical Activity |
EEG | Electroencephalography |
BCI | Brain-Computer Interface |
GP | Gaussian Process |
MOGP | Multi-output Gaussian Process |
MI | Motor Imagery |
MAE | Mean Absolute Error |
References
- Sanei, S. Adaptive Processing of Brain Signals; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Fadlallah, B.; Seth, S.; Keil, A.; Principe, J. Quantifying Cognitive State From EEG Using Dependence Measures. IEEE Trans. Biomed. Eng. 2012, 59, 2773–2781. [Google Scholar] [CrossRef] [Green Version]
- Soleymani, M.; Pantic, M.; Pun, T. Multimodal Emotion Recognition in Response to Videos. IEEE Trans. Affect. Comput. 2012, 3, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Torres-Valencia, C.; Álvarez-López, M.; Orozco-Gutiérrez, Á. SVM-based feature selection methods for emotion recognition from multimodal data. J. Multimodal User Interfaces 2017, 11, 9–23. [Google Scholar] [CrossRef]
- Horwitz, B. The elusive concept of brain connectivity. NeuroImage 2003, 19, 466–470. [Google Scholar] [CrossRef]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 2010, 52, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Babiloni, C.; Barry, R.J.; Başar, E.; Blinowska, K.J.; Cichocki, A.; Drinkenburg, W.H.; Klimesch, W.; Knight, R.T.; da Silva, F.L.; Nunez, P.; et al. International Federation of Clinical Neurophysiology (IFCN)–EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies. Clin. Neurophysiol. 2020, 131, 285–307. [Google Scholar] [CrossRef] [PubMed]
- Rominger, C.; Papousek, I.; Perchtold, C.M.; Weber, B.; Weiss, E.M.; Fink, A. The creative brain in the figural domain: Distinct patterns of EEG alpha power during idea generation and idea elaboration. Neuropsychologia 2018, 118, 13–19. [Google Scholar] [CrossRef]
- Akiyama, M.; Tero, A.; Kawasaki, M.; Nishiura, Y.; Yamaguchi, Y. Theta-alpha EEG phase distributions in the frontal area for dissociation of visual and auditory working memory. Sci. Rep. 2017, 7, 42776. [Google Scholar] [CrossRef] [PubMed]
- Babiloni, C.; Del Percio, C.; Lizio, R.; Noce, G.; Lopez, S.; Soricelli, A.; Ferri, R.; Pascarelli, M.T.; Catania, V.; Nobili, F.; et al. Abnormalities of resting state cortical EEG rhythms in subjects with mild cognitive impairment due to Alzheimer’s and Lewy body diseases. J. Alzheimers Dis. 2018, 62, 247–268. [Google Scholar] [CrossRef]
- Pan, C.; Shi, C.; Mu, H.; Li, J.; Gao, X. EEG-Based Emotion Recognition Using Logistic Regression with Gaussian Kernel and Laplacian Prior and Investigation of Critical Frequency Bands. Appl. Sci. 2020, 10, 1619. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, Y.; Liu, X. Analysis of feature fatigue EEG signals based on wavelet entropy. Int. J. Pattern Recognit. Artif. Intell. 2018, 32, 1854023. [Google Scholar] [CrossRef]
- Friston, K.J. Functional and effective connectivity: A review. Brain Connect. 2011, 1, 13–36. [Google Scholar] [CrossRef] [PubMed]
- Jian, W.; Chen, M.; McFarland, D.J. EEG based zero-phase phase-locking value (PLV) and effects of spatial filtering during actual movement. Brain Res. Bull. 2017, 130, 156–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Tong, Y.; Heng, X. Phase-locking value based graph convolutional neural networks for emotion recognition. IEEE Access 2019, 7, 93711–93722. [Google Scholar] [CrossRef]
- Bakhshali, M.A.; Ebrahimi-Moghadam, A.; Khademi, M.; Moghimi, S. Coherence-based correntropy spectral density: A novel coherence measure for functional connectivity of EEG signals. Measurement 2019, 140, 354–364. [Google Scholar] [CrossRef]
- Padilla-Buritica, J.I.; Martinez-Vargas, J.D.; Castellanos-Dominguez, G. Emotion Discrimination Using Spatially Compact Regions of Interest Extracted from Imaging EEG Activity. Front. Comp. Neurosci. 2016, 10, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aghaei, A.S.; Mahanta, M.S.; Plataniotis, K.N. Separable Common Spatio-Spectral Patterns for Motor Imagery BCI Systems. IEEE Trans. Biomed. Eng. 2016, 63, 15–29. [Google Scholar] [CrossRef]
- Shahidi Zandi, A.; Tafreshi, R.; Javidan, M.; Dumont, G.A. Predicting Epileptic Seizures in Scalp EEG Based on a Variational Bayesian Gaussian Mixture Model of Zero-Crossing Intervals. IEEE Trans. Biomed. Eng. 2013, 60, 1401–1413. [Google Scholar] [CrossRef]
- Alvarez, M.A.; Rosasco, L.; Lawrence, N.D. Kernels for vector-valued functions: A review. Found. Trends Mach. Learn. 2012, 4, 195–266. [Google Scholar] [CrossRef]
- Gómez-González, S.; Álvarez, M.A.; García, H.F.; Ríos, J.I.; Orozco, A.A. Discriminative Training for Convolved Multiple-Output Gaussian Processes. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications; Pardo, A., Kittler, J., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 595–602. [Google Scholar]
- Desai, R.; Porob, P.; Rebelo, P.; Edla, D.R.; Bablani, A. EEG Data Classification for Mental State Analysis Using Wavelet Packet Transform and Gaussian Process Classifier. Wirel. Pers. Commun. 2020, 1–21. [Google Scholar] [CrossRef]
- Remes, S.; Heinonen, M.; Kaski, S. Latent Correlation Gaussian Processes. Stat 2017, 1050, 27. [Google Scholar]
- Parra, G.; Tobar, F. Spectral mixture kernels for multi-output Gaussian processes. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30, pp. 6681–6690. [Google Scholar]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A Database for Emotion Analysis; Using Physiological Signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Brunner, C.; Leeb, R.; Müller-Putz, G.; Schlögl, A.; Pfurtscheller, G. BCI Competition 2008–Graz data set A. In Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces); Graz University of Technology: Graz, Austria, 2008; Volume 16. [Google Scholar]
- Alotaiby, T.; El-Samie, F.E.A.; Alshebeili, S.A.; Ahmad, I. A review of channel selection algorithms for EEG signal processing. EURASIP J. Adv. Signal Process. 2015, 2015, 66. [Google Scholar] [CrossRef] [Green Version]
- Torres-Valencia, C.; Alvarez-Meza, A.; Orozco-Gutierrez, A. Emotion Assessment Based on Functional Connectivity Variability and Relevance Analysis. In Proceedings of the Natural and Artificial Computation for Biomedicine and Neuroscience: International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2017, Corunna, Spain, 19–23 June 2017; Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 353–362. [Google Scholar]
- De G. Matthews, A.G.; van der Wilk, M.; Nickson, T.; Fujii, K.; Boukouvalas, A.; Le‘on-Villagr‘a, P.; Ghahramani, Z.; Hensman, J. GPflow: A Gaussian process library using TensorFlow. J. Mach. Learn. Res. 2017, 18, 1–6. [Google Scholar]
- Gupta, R.; ur Rehman Laghari, K.; Falk, T.H. Relevance Vector Classifier Decision Fusion and EEG Graph-theoretic Features for Automatic Affective State Characterization. Neurocomputing 2016, 174, 875–884. [Google Scholar] [CrossRef]
- Daimi, S.N.; Saha, G. Classification of emotions induced by music videos and correlation with participants’ rating. Expert Syst. Appl. 2014, 41, 6057–6065. [Google Scholar] [CrossRef]
- Qureshi, M.N.I.; Cho, D.; Lee, B. EEG classification for motor imagery BCI using phase-only features extracted by independent component analysis. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Seogwipo, Korea, 11–15 July 2017; pp. 2097–2100. [Google Scholar] [CrossRef]
- Li, D.; Zhang, H.; Khan, M.S.; Mi, F. A self-adaptive frequency selection common spatial pattern and least squares twin support vector machine for motor imagery electroencephalography recognition. Biomed. Signal Process. Control 2018, 41, 222–232. [Google Scholar] [CrossRef]
- Liang, S.; Choi, K.S.; Qin, J.; Wang, Q.; Pang, W.M.; Heng, P.A. Discrimination of motor imagery tasks via information flow pattern of brain connectivity. Technol. Health Care 2016, 24, S795–S801. [Google Scholar] [CrossRef] [Green Version]
- Elasuty, B.; Eldawlatly, S. Dynamic Bayesian Networks for EEG motor imagery feature extraction. In Proceedings of the 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), Montpellier, France, 22–24 April 2015; pp. 170–173. [Google Scholar]
- Gómez, V.; Álvarez, A.; Herrera, P.; Castellanos, G.; Orozco, A. Short Time EEG Connectivity Features to Support Interpretability of MI Discrimination. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications; Vera-Rodriguez, R., Fierrez, J., Morales, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 699–706. [Google Scholar]
Level | Low Models | High Models | True | Predicted |
---|---|---|---|---|
A | A | |||
A | A | |||
A | B | |||
A | A | |||
A | A | |||
A | A | |||
A | A | |||
A | A | |||
B | B | |||
B | B | |||
B | A | |||
B | B | |||
B | A | |||
B | A | |||
B | B | |||
One-Fold Average Accuracy |
Side | Left Models | Right Models | Predicted |
---|---|---|---|
L | L | ||
L | L | ||
L | R | ||
L | L | ||
L | L | ||
L | L | ||
L | L | ||
L | L | ||
R | R | ||
R | L | ||
R | R | ||
R | R | ||
R | R | ||
R | R | ||
R | R | ||
One-Fold Average Accuracy |
Subject ID | Accuracy | Subject ID | Accuracy |
---|---|---|---|
17 | 2 | ||
18 | 16 | ||
22 | 19 | ||
29 | 31 | ||
30 | Average |
Subject ID | Accuracy | Subject ID | Accuracy |
---|---|---|---|
1 | 6 | ||
2 | 7 | ||
3 | 8 | ||
4 | 9 | ||
5 | Average |
Reference | Approach | Accuracy |
---|---|---|
Koelstra et al. [25] | PSD-SVM | |
Soleymani et al. [3] | PSD-SVM | |
Gupta et al. [30] | PSD-HJORT-SVM | |
Padilla-Buritica et al. [17] | MSP-SVM | |
Daimi and Saha [31] | Wavelet-SVM | |
Torres-Valencia et al. [28] | RFCV-KNN | |
Pan et.al. [11] | PSD-LORSAL | |
Pan et.al. [11] | DE-LORSAL | |
This work | DMOSM-GP |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Valencia, C.; Orozco, Á.; Cárdenas-Peña, D.; Álvarez-Meza, A.; Álvarez, M. A Discriminative Multi-Output Gaussian Processes Scheme for Brain Electrical Activity Analysis. Appl. Sci. 2020, 10, 6765. https://doi.org/10.3390/app10196765
Torres-Valencia C, Orozco Á, Cárdenas-Peña D, Álvarez-Meza A, Álvarez M. A Discriminative Multi-Output Gaussian Processes Scheme for Brain Electrical Activity Analysis. Applied Sciences. 2020; 10(19):6765. https://doi.org/10.3390/app10196765
Chicago/Turabian StyleTorres-Valencia, Cristian, Álvaro Orozco, David Cárdenas-Peña, Andrés Álvarez-Meza, and Mauricio Álvarez. 2020. "A Discriminative Multi-Output Gaussian Processes Scheme for Brain Electrical Activity Analysis" Applied Sciences 10, no. 19: 6765. https://doi.org/10.3390/app10196765
APA StyleTorres-Valencia, C., Orozco, Á., Cárdenas-Peña, D., Álvarez-Meza, A., & Álvarez, M. (2020). A Discriminative Multi-Output Gaussian Processes Scheme for Brain Electrical Activity Analysis. Applied Sciences, 10(19), 6765. https://doi.org/10.3390/app10196765