Spectrum Decision-Making in Collaborative Cognitive Radio Networks
Abstract
:1. Introduction
1.1. General Context
1.2. Literature Review
1.3. Contributions and Scope
1.4. Organization of the Document
2. Materials and Methods
2.1. Input Variables
2.2. Collaborative Model
2.2.1. Functions of the Collaborative Model
2.2.2. Input Variables
2.2.3. Output Variables
2.2.4. Operation of the Collaborative Model
2.3. Decision-Making Models
2.3.1. Feedback Fuzzy Analytical Hierarchical Process (FFAHP)
2.3.2. Simple Additive Weighting (SAW)
Algorithm 1: MATLAB implementation Feedback Fuzzy Analytical Hierarchical Process (FFAHP). | |
1 | Average = [AP; AAT; PSINR; ABW]; |
2 | Ranking = W*Average; |
3 | [ ~ , Columns] = size(Ranking); |
4 | if Feedback == 0 |
5 | %Vector Initial Ranking |
6 | ScoreF = sort( Ranking , ‘descend’ ); |
7 | for i = 1 : Columns |
8 | [Position]=find(Ranking == ScoreF(i)); |
9 | RankingF(1, i)= Position; |
10 | end |
11 | Feedback = 1; |
12 | elseif Feedback == 1 |
13 | % Updated Ranking Vector |
14 | Ranking = 0.6*Ranking + 0.4* Ranking _Last; |
15 | ScoreF = sort(Ranking , ‘descend’) ; |
16 | for i = 1 : Columns |
17 | [Position] = find(Ranking == ScoreF(i)); |
18 | RankingF(1 , i) = Position; |
19 | end |
20 | end |
21 | Ranking _Last = RankingF; |
Algorithm 2: MATLAB implementation Simple Additive Weighting (SAW). | |
1 | Average = [AP; AAT; PSINR; ABW]; |
2 | [Row, ~] = size(Average); |
3 | for f = 1 : Row |
4 | X_m = max(Average(f, :)); |
5 | r(f, :) = Average(f, :) ./X_m; |
6 | end |
7 | Ranking = W*r; |
8 | [ ~ , Columns] = size(Ranking); |
9 | ScoreF = sort(Ranking , ‘descend’) ; |
10 | for i = 1 : Columns |
11 | [Position] = find(Ranking == ScoreF(i)); |
12 | RankingF(1, i) = Position; |
13 | end |
2.4. Performance Metrics
2.4.1. Search Algorithm
2.4.2. Failed Handoff
3. Results
3.1. Number of Failed Handoffs
3.2. Percentage Analysis of the Collaboration
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mitola, J.; Maguire, G.Q., Jr. Cognitive radio: Making software radios more personal. IEEE Wirel. Commun. 1999, 6, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Federal Communications Commission. Facilitating Opportunities for Flexible, Efficient, and Reliable Spectrum Use Employing Cognitive Radio Technologies, Authorization and Use of Software Defined Radios. nprm 03-322.; 2003. Available online: https://www.fcc.gov/document/facilitating-opportunities-flexible-efficient-and-reliable-spectrum-1 (accessed on 23 August 2015).
- Khalifa, A.H.; Shehata, M.K.; Gasser, S.M.; El-Mahallawy, M.S. Enhanced cooperative behavior and fair spectrum allocation for intelligent IoT devices in cognitive radio networks. Phys. Commun. 2020, 43, 101190. [Google Scholar] [CrossRef]
- Akyildiz, I.; Lee, W.-Y.; Vuran, M.C.; Mohanty, S. A survey on spectrum management in cognitive radio networks. IEEE Commun. Mag. 2008, 46, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Abbas, N.; Nasser, Y.; El Ahmad, K. Recent advances on artificial intelligence and learning techniques in cognitive radio networks. EURASIP J. Wirel. Commun. Netw. 2015, 2015, 13. [Google Scholar] [CrossRef] [Green Version]
- Rajaguru, R.; Devi, K.V.; Marichamy, P. A hybrid spectrum sensing approach to select suitable spectrum band for cognitive users. Comput. Netw. 2020, 180, 107387. [Google Scholar] [CrossRef]
- Ibnkahla, M. Cooperative Cognitive Radio Networks: The Complete Spectrum Cycle; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar] [CrossRef]
- Masonta, M.T.; Mzyece, M.; Ntlatlapa, N. Spectrum Decision in Cognitive Radio Networks: A Survey. IEEE Commun. Surv. Tutor. 2012, 15, 1088–1107. [Google Scholar] [CrossRef] [Green Version]
- Bernal, C.; Hernández, C. Modelo de Decisión Espectral Para Redes de Radio Cognitiva, 1st ed.; UD, Ed.; Universidad Distrital Francisco José de Caldas: Bogotá, Colombia, 2019. [Google Scholar]
- Tripathi, S.; Upadhyay, A.; Kotyan, S.; Yadav, S. Analysis and Comparison of Different Fuzzy Inference Systems Used in Decision Making for Secondary Users in Cognitive Radio Network. Wirel. Pers. Commun. 2018, 104, 1175–1208. [Google Scholar] [CrossRef] [Green Version]
- Rizk, Y.; Awad, M.; Tunstel, E.W. Decision Making in Multiagent Systems: A Survey. IEEE Trans. Cogn. Dev. Syst. 2018, 10, 514–529. [Google Scholar] [CrossRef]
- Banerjee, J.S.; Chakraborty, A.; Chattopadhyay, A.; Kalam, A.; Das, S.; Sharma, K. Relay Node Selection Using Analytical Hierarchy Process (AHP) for Secondary Transmission in Multi-user Cooperative Cognitive Radio Systems. Lect. Notes Electr. Eng. 2017, 443, 745–754. [Google Scholar] [CrossRef]
- López, D.A.; Trujillo, E.R.; Guerrero, O.E.G. Elementos Fundamentales que Componen la Radio Cognitiva y Asignación de Bandas Espectrales. Inf. Tecnol. 2015, 26, 23–40. [Google Scholar] [CrossRef] [Green Version]
- Oyewobi, S.S.; Hancke, G.P. A survey of cognitive radio handoff schemes, challenges and issues for industrial wireless sensor networks (CR-IWSN). J. Netw. Comput. Appl. 2017, 97, 140–156. [Google Scholar] [CrossRef] [Green Version]
- Hernández, C.; López, D.; Giral, D. Modelo de Decisión Espectral Colaborativo Para Mejorar El Desempeño de Las Redes de Radio Cognitiva, 1st ed.; UD, Ed.; Universidad Distrital Francisco José de Caldas: Bogotá, Colombia, 2020. [Google Scholar]
- Salgado, C.; Mora, S.; Giral-Ramírez, D.A. Collaborative Algorithm for the Spectrum Allocation in Distributed Cognitive Networks. Int. J. Eng. Technol. 2016, 8, 2288–2299. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Han, T.; Ansari, N. On Green-Energy-Powered Cognitive Radio Networks. IEEE Commun. Surv. Tutorials 2015, 17, 827–842. [Google Scholar] [CrossRef] [Green Version]
- Thakur, P.; Kumar, A.; Pandit, S.; Singh, G.; Satashia, S. Spectrum mobility in cognitive radio network using spectrum prediction and monitoring techniques. Phys. Commun. 2017, 24, 1–8. [Google Scholar] [CrossRef]
- Ghanem, M.; Sabaei, M.; Dehghan, M. A novel model for implicit cooperation between primary users and secondary users in cognitive radio-cooperative communication systems. Int. J. Commun. Syst. 2018, 31, e3524. [Google Scholar] [CrossRef]
- Roy, A.; Midya, S.; Majumder, K.; Phadikar, S.; Dasgupta, A. Optimized secondary user selection for quality of service enhancement of Two-Tier multi-user Cognitive Radio Network: A game theoretic approach. Comput. Netw. 2017, 123, 1–18. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, B.; Yu, J.-L.; Chen, Y.; Han, Z. An indirect reciprocity based incentive framework for cooperative spectrum sensing. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar]
- Banerjee, J.S.; Chakraborty, A.; Chattopadhyay, A.; Bhattacharya, I.; Chakrabarti, S.; Reehal, H.S.; Lakshminarayanan, V. Fuzzy Based Relay Selection for Secondary Transmission in Cooperative Cognitive Radio Networks. In Springer Proceedings in Physics; Springer Science and Business Media LLC: Singapore, 2017; Volume 194, pp. 279–287. [Google Scholar] [CrossRef]
- Hernández, C.; Giral-Ramírez, D.A.; Martínez, F. Benchmarking of Algorithms to Forecast Spectrum Occupancy by Primary Users in Wireless Networks. Int. J. Eng. Technol. 2018, 10, 1611–1620. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Suárez, C.A.; De Caldas, U.D.F.J.; Martínez, L.F.P.; De La Colina, E.R.; De Colombia, U.N.; Metropolitana, U.A. Fuzzy feedback algorithm for the spectral handoff in cognitive radio networks. Rev. Fac. Ing. Univ. Antioq. 2016, 80, 47–62. [Google Scholar] [CrossRef] [Green Version]
- Pinto, L.R.M.; Correia, L.H.A. Analysis of Machine Learning Algorithms for Spectrum Decision in Cognitive Radios. In Proceedings of the 2018 15th International Symposium on Wireless Communication Systems (ISWCS), Lisbon, Portugal, 28–31 August 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Digham, F.F.; Alouini, M.-S.; Simon, M.K. On the Energy Detection of Unknown Signals Over Fading Channels. IEEE Trans. Commun. 2007, 55, 21–24. [Google Scholar] [CrossRef]
- Lehtomaki, J.; Juntti, M.; Saarnisaari, H.; Koivu, S. Threshold setting strategies for a quantized total power radiometer. IEEE Signal Process. Lett. 2005, 12, 796–799. [Google Scholar] [CrossRef]
- Hernández, C.; Pedraza Martínez, L.F.; Martínez Sarmiento, F.H. Algoritmos Para Asignación de Espectro En Redes de Radio Cognitiva. Tecnura 2016, 20, 69–88. [Google Scholar] [CrossRef]
- Yang, S.-F.; Wu, J.-S. A IEEE 802.21 Handover design with QOS provision across WLAN and WMAN. In Proceedings of the 2008 International Conference on Communications, Circuits and Systems, Fujian, China, 25–27 May 2008; pp. 548–552. [Google Scholar] [CrossRef]
- Yang, S.-J.; Tseng, W.-C. Design novel weighted rating of multiple attributes scheme to enhance handoff efficiency in heterogeneous wireless networks. Comput. Commun. 2013, 36, 1498–1514. [Google Scholar] [CrossRef]
- Stevens-Navarro, E.; Lin, Y.; Wong, V. An MDP-Based Vertical Handoff Decision Algorithm for Heterogeneous Wireless Networks. IEEE Trans. Veh. Technol. 2008, 57, 1243–1254. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, L.; Leghris, C.; Adib, A. A Hybrid Approach for Network Selection in Heterogeneous Multi-Access Environments. In Proceedings of the 2011 4th IFIP International Conference on New Technologies, Mobility and Security, Paris, France, 7–10 February 2011; pp. 1–5. [Google Scholar] [CrossRef]
- Zapata, J.A.; Arango, M.D.; Adarme, W. Applying Fuzzy Extended Analytical Hierarchy (FEAHP) for Selecting Logistics Software. Ing. Investig. 2012, 32, 94–99. [Google Scholar]
- Zhang, W. Handover decision using fuzzy MADM in heterogeneous networks. In Proceedings of the 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No.04TH8733), Atlanta, GA, USA, 21–25 March 2004; pp. 653–658. [Google Scholar]
- Martínez, L.F.P.; Hernandez, C.; Paez, I.P.; Triviño, J.E.O.; Rodriguez-Colina, E. Linear Algorithms for Radioelectric Spectrum Forecast. Algorithms 2016, 9, 82. [Google Scholar] [CrossRef] [Green Version]
- Jayakumar, L.; Janakiraman, S. A novel need based free channel selection scheme for cooperative CRN using EFAHP-TOPSIS. J. King Saud Univ. Comput. Inf. Sci. 2019. [Google Scholar] [CrossRef]
- Rodriguez-Colina, E.; Ramirez, C.P.; Carrillo, C.E.A. Multiple attribute dynamic spectrum decision making for cognitive radio networks. In Proceedings of the 2011 Eighth International Conference on Wireless and Optical Communications Networks, Paris, France, 24–26 May 2011; pp. 1–5. [Google Scholar] [CrossRef]
- Ramirez-Perez, C.; Ramos, V. On the Effectiveness of Multi-criteria Decision Mechanisms for Vertical Handoff. In Proceedings of the 2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA), Barcelona, Spain, 25–28 March 2013; pp. 1157–1164. [Google Scholar] [CrossRef]
Frequency Band | Quantity of Data Captured | ||
---|---|---|---|
GSM | Rows | Columns | Total Data |
8,937,216 | 500 | 4,468,608,000 |
Frequency Band. | Traffic | Traffic Level | Rows | Columns |
---|---|---|---|---|
GSM | Power Evaluation | HT: High | 1800 | 500 |
LT: Low | ||||
Power Training | HT: High | 10,800 | 500 | |
LT: Low |
Variable | Element | Description |
---|---|---|
Segmentation | Random Zone | The percentage of users selected for simulation is chosen at random. |
Continuous Zone | The percentage of users selected for simulation is taken in an orderly manner, row-wise or column-wise. | |
Division | Column | If the number of users is greater than 10, the rows of the power matrix are divided into 10 equal parts, and the columns are split into n parts until the number of users is completed. If the number of users is less than 10, the rows of the power matrix are divided into 2 equal parts, and the columns are split into n parts until the number of users is completed. |
Row | If the number of users is greater than 10, the columns of the power matrix are divided into 10 equal parts, and the rows are divided into n parts until the number of users is completed. If the number of users is less than 10, the columns of the power matrix are divided into 2 equal parts, and the columns are split into n parts until the number of users is completed. | |
User Percentage | 10–100 | Percentage of users participating in the training. |
Variable | Element | Description |
---|---|---|
Number of Users | 1–1000 Users | Number of users used to divide the power matrix for the training |
Variable | Element | Description |
---|---|---|
Power Training | High | Traffic power matrix for the training |
Low |
Variable | Description |
---|---|
Power Segmentation Training | The power matrix segmented according to the number of users participating in the training |
User Full | Total number of users used to divide the power matrix |
User Simulation | Number of users participating in the training |
Case Study 1 | ||
---|---|---|
Input data | Disponibility matrix | |
Number of Users | 6 | |
User relation | Division | Row |
User percentage | 50% | |
Segmentation | Random |
Case Study 2 | ||
---|---|---|
Input data | Disponibility matrix | |
Number of Users | 6 | |
User relation | Division | Column |
User percentage | 67% | |
Segmentation | Continuous |
Variable | Average | Description |
---|---|---|
AP | Availability probability | Average of each column of the availability matrix |
AAT | Average availability time | Average of some consecutives of the availability matrix |
PSINR | Average SINR | Average of each column of the SINR matrix without including zeros |
ABW | Average bandwidth | Average of each column of the bandwidth matrix |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giral, D.; Hernández, C.; Rodríguez-Colina, E. Spectrum Decision-Making in Collaborative Cognitive Radio Networks. Appl. Sci. 2020, 10, 6786. https://doi.org/10.3390/app10196786
Giral D, Hernández C, Rodríguez-Colina E. Spectrum Decision-Making in Collaborative Cognitive Radio Networks. Applied Sciences. 2020; 10(19):6786. https://doi.org/10.3390/app10196786
Chicago/Turabian StyleGiral, Diego, Cesar Hernández, and Enrique Rodríguez-Colina. 2020. "Spectrum Decision-Making in Collaborative Cognitive Radio Networks" Applied Sciences 10, no. 19: 6786. https://doi.org/10.3390/app10196786
APA StyleGiral, D., Hernández, C., & Rodríguez-Colina, E. (2020). Spectrum Decision-Making in Collaborative Cognitive Radio Networks. Applied Sciences, 10(19), 6786. https://doi.org/10.3390/app10196786