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Abstract: Almost every industrial and service enterprise adopts some form of Environmental Health
and Safety (HSE) practices. However, there is no unified measurement implementation framework to
resist losses exacerbated due to the “lack of safety precautions”, which must be considered one of the
most dangerous Lean wastes because it jeopardizes the investment in the Hex-Bottom-Line (HBLs).
Despite the widespread nature of the Lean approach, there no unified and collected framework to
track and measure the effectiveness of the safety measures’ progress. Therefore, the enterprises
resort to establishing their own tailored safety framework that maintains their competitiveness
and sustainability. The enterprises must provide insight into safety deficiencies (i.e., faults and
losses suffered) that have been measured via downtime spans and costs (Lean waste), reflecting the
poor Lean Safety Performance Level (LSPL). This paper aims to shed light on two issues: (1) the
adverse impact of the “lack of safety precautions” on LSPL caused by the absence of (2) a Lean
Safety framework included in the Measurement and Analysis phases of Define Measure Analyze
Identify Control (DMAIC). This framework is based on forecasting losses and faults according to their
consumption time. The proposed framework appreciates the losses’ severity (time consumption and
costs) via Fault Mode and Effect Forecasting (FMEF) aided by Artificial Neural Networks through
sequential steps known as Safety Function Deployment (SFD).

Keywords: safety procedures; Lean management; loss function; Fault Tree Analysis (FTA)

1. Introduction

Sustainability in competitiveness is the main objective of industrial engineering philosophies,
especially “the Lean”, in providing better waste disposal results. The scientific interdisciplinary
community resort to drawing attention to the consequences of neglecting to follow safety procedures
(i.e., lack of safety precautions), which is considered the most dangerous Lean waste that must be
tracked and controlled. The research mimics Pudar’s [1] interest in cyber fault activities via modeling
its cyber-attacks (faults/wastes) and countermeasures. Pudar’s research considered looking at the
faults due to the lack of safety leading to working disruption (i.e., downtime spans) due to workers’
faults. This work adopts a stochastic tree approach [2] aided by dynamic Petri-net as one of the
most intuitive tools in detecting the nature of periodic faults based on their costs and reparability
(i.e., Lean Safety Performance Level). Pudar resorted to measuring its model’s performance via
validated quantitative metrics used to describe a vulnerable/threatened system due to the lack of safety

Appl. Sci. 2020, 10, 6851; doi:10.3390/app10196851 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-5315-3850
https://orcid.org/0000-0002-8447-198X
http://www.mdpi.com/2076-3417/10/19/6851?type=check_update&version=1
http://dx.doi.org/10.3390/app10196851
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 6851 2 of 28

procedures. Therefore, the Lean has been nominated for its statistical ability to predict and analyze
all potential faults leading to the downtime spans and valuation of its costs through two sequential
methods. The first method is based on the test of the process sequence and its workers’ execution time,
according to the approach of Novak and other researchers [3,4], which use a sequential fault diagnostic
tool. The second method focuses on watching the processes and workers continuously executing their
work to detect any faults that violate the safety precautions in time.

The OSHA enacted the regulation for Processes Safety Management (PSM) of hazards in 1992,
which highlighted management controls by mitigating the risks related to the use of hazardous
materials [5]. This was later manipulated by DuPont in 2016 [6]. The OSHA instructions are considered
an approved approach aiming to combat faults. Nevertheless, it missed proactive or unified actions
to create control steps to hazardous workers’ activity faults leading to disastrous consequences.
The proposed framework has a pivotal role in the management of workplace-related health and safety,
similar to how the Energy Institute [7] recommended. Previous approaches have been based on
monitoring processes’ symptoms to the standard deviation of its executing time (i.e., causing dangerous
deviations). Other researchers tend to use heuristic algorithms to analyze the most effective costs,
for example, those by Pattipati and Alexandridis [8] and Price [9], who used a loss function analysis.
However, these methods are limited to processes in which only a single fault is expected to exist at a
specific time. Rao [10] developed two algorithms for extracting data from directed graphs to diagnose
single failures at a specific time. Shakeri et al. [8] focused on developing a series of tests to document
and diagnose the causes of multiple malfunctions but encountered a problem in its lengthy diagnosing
time. Another manner used by Price et al. [11], Paash and Mocko [12] analyzed multiple faults that
appear in Value-Added (VA) or Necessary Non-Value-Added (NNVA) activities but do not affect
the process’ continuity when they occur. Therefore, they revamped their analysis using Fault Tree
Analysis (FTA) to develop a fault matrix manipulation method according to Yue [13]. Failure Modes
and Effect Analysis (FMEA) is a well-known form of qualitative analysis of malfunctions that can be
used to identify potential failure processing modes and their causes to evaluate their severity level
according to Anvari [14], and the effects on functional stability that are associated with the occurrence
of these failure modes. The proposed framework was inspired by FMEA by replacing the analysis
stage with an effect forecast stage to become Fault Mode and Effect Forecasted (FMEF), paving the
way for the establishment of fault elimination scenarios and control processes. Methods proposed by
Papadopoulos [2] and Underwood et al. [15] depend on FTA charts to provide continuous monitoring
and rectification of the functions’ path in time. Many function failures are not due to one single fault
but result from multiple related faults as Shakeri states. Therefore, it is important to predict and
diagnose them promptly [16,17] after determining their severity and occurrence frequency. Ikuma
decided to combine Lean strategies and traditional safety analysis tools (e.g., using Safety and Lean
Integrated Kaizen (SLIK)) as recommended by Anvari et al. [14] and Ikuma [18]. This integration is
based on analyzing an improving the current processes (as-is) situation, which is driven by DMAIC.
In 2015, Ikuma claimed that VA activities increased by 16% and the framing crew’s overall output
by 55%.

In this sense, this work proposes a roadmap that includes the same previous frameworks with
another optimization tool, Neural Networks (NN). The proposed approach is named the Sustainable
Lean Safety Map (LSPL) derived from the DMAIC. It tracks the LSPL value by establishing one
Hex-Bottom-Line (HBLs) element’s paradigm by generating a conceptual framework to understand
Lean Safety HBL profoundly, reducing losses from the wasteful practices (i.e., risk and hazard issues).
The unified Lean Safety framework works with LSPL stages, which are diachronic closely with HBL’s
investments (e.g., society, environment, economy, policy, technology, and enlightenment). The main
characteristic of safety is a resistance to any risks threatening the survival situation (to-be) and then
mitigating them to achieve optimum use of resources in all respects (Lean’s motto). This resistance
should avoid causing any adverse effects on the coherence of the workplace process (i.e., without
leading to depleting or endangering the HBL resources) without compromising the ability of the
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to-be situation, leading to survival or sustainable development (Rio Summit), as cited by Hartini [19].
The cost has been selected in this paper as a criterion to track the advances or setbacks of HBL elements.
Lack of safety procedures is a modern type of Lean thinking that pursues to eliminate workplace waste.
Therefore, positive safety culture has been deployed to help people (workers) in devoting themselves to
participate in sustainable safety development by improving and controlling the influencing variables,
as advocated by Andrews et al. [14]. Furthermore, there is a lack of safety metrics and adaptation of
improvement methods to push enterprises’ operational performance. Accordingly, pushing people to
enhance their performance and systems will lead to the development of roadmaps. This paper aims to
show the relationship between Lean sustainability and the safety concept via selecting the cost as a
criterion measurement variable, as recommended by Kurdve [20].

Unfortunately, previous studies were conducted on the basic Triple Bottom Line (TBL) and
omitted three elements of the modern world: enlightenment, oriented politics (management, planning,
and strategy), and technology (e.g., process improvement tools), which contribute to maintaining
sustainable development. The proposed framework is based on possessing jobs’ proficiency through
higher and safer performance, and understanding the subtle nuances of their jobs’ implementation, by
truly internalizing the reasons of risks associated with these jobs [21]. The managers give the ability to
track their employees’ jobs as professionals vigilantly. Proficiency is based on sensing the hazard’s
events. Hazard identification, containment, and correction collectively are the keystones of any safety
effort. Hazard management begins with a job propounding description, which is initiated by basic
skills training and continued through holistic knowledge of a process that can only come from work
experience. It is essential to assess the risk of injuries, which requires sufficient data for analysis [22].
Therefore, all risks and hazards need to be collected and tracked in a local database and reviewed to look
for patterns and trends that provide insights into the overall robustness of the process. To some workers,
“safety is not everything, but without safety, everything nothing”, which is Sakouhi’s motto [23].
Therefore, a sustainable safety roadmap is an urgent issue that underpins the construction of LSPL in
this study. Kumar is interested in evaluating earlier work done on sustainable lean manufacturing
(SLM), which includes varied integration and correlation of variables in the industry. Researchers
explained the SLM as a socioeconomic and environmental relationship. In the continuation of gaps, 97
key research papers were reviewed extensively to explore the research gap of SLM as advocated by
Kumar [24]. The fifth baseline element is a policy framework (strategy) based on looking at the bigger
picture (i.e., to provide deeper insight into the workplace via periodic VSM, discussed by Brown [25]
and based on Ibrahim et al. [26]) that does not jeopardize any of the HBL elements, especially for
people (workers). Effective incident investigation has a strong impact on injuries that may lead to a
hasty conclusion qualifying the enterprises to make proactive scenarios via read-across to confront the
risk of injuries in workers due to faults in their processes. Table 1 illustrates all costs’ waste that must
be tracked to follow the losses and faults events. Additionally, Table 2 illustrates the sustainable Lean
Safety Map (LSPL) approach, which reviews the relationship between the HBL elements and their
related costs accentuating the HBL due to fault opportunities. Therefore, Lean accentuates its rules’
importance in diagnosing the causes of faults quickly with a direct impact on the time consumption
to correct the fault and save workers’ lives, reduce costs, and increase company proficiency and,
ultimately, profits. This objective requires a unified framework to help in determining the starting step
of risk and cause analysis quickly. Safety aims to holistic approaches create a lifestyle [27] with the
message “do the right things right for the first time, every time”. The implementation of a suitable
framework that has been tailored to certain activities must be ensured, as argued by Yue [13] and can
be inferred from Nawaz et al.’s [28] claim. This exhaustive review was conducted to illustrate the
up-to-date relations among Lean’s sustainability and maintenance procedures to guarantee a safer
workplace by following the FCFS recommended by EsaHyytia [29]. Economic organizations are based
on cost-saving heeding with developing their safety procedures and maintenance processes through
renewal look to sustainability, according to Fraser [30]. Maintenance processes are some of the safety
aspects that show high productivity by eliminating all non-value-added activities from their processes
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at upstream stages, as cited by Faccio et al. [31]. The two main objectives of this paper are: (1) to
identify and document maintenance activities’ roadmap and (2) integrate safety procedures with Lean
maintenance. To reach these objectives, maintenance classifies the faults into two categories, by process
or by a human based on the time consumed of reparability activities, such as corrective (i.e., after the
failure occurrence) or preventive (i.e., before the failure occurrence) [31]. The purpose of the Fairbanks
article is to provide an overview of resilience engineering to stimulate innovations in safety and reflect
the importance more of robust tools in the application of resilience engineering are needed [32].

Table 1. Costs types manipulating in the Lean Safety Performance Level (LSPL) approach.

Source: Deduced from Kaner, 1996:6 and Heizer and Render, 2001:179 Cost of Poor
Performance (CoPP) HBL Investment’s Elements

1. Direct costs High NNVA

1.1. Equipment Economical, technology
1.2. Workers (people) social
1.3. Raw material Environmental, economical
1.4. Waste treatment

2. Indirect costs Moderate NNVA
2.1. Reporting Technology
2.2. Monitoring
2.3. Regulatory (e.g., operating
permits and fees) Economical

3. Contingent Costs Very Low NNVA

3.1. Liabilities Social, economic, and policy
3.2. Lawsuit
3.3. Damage to resource Social, economic, and

environmental3.4. Mishap/injury/accidents

4. Internal intangible costs Commitment NNVA

4.1. Company or Brand image Social, economic
4.2. Enterprise loyalty Policy, technology,
4.3. People (labor) morale Social, enlightenment
4.4. People (labor) relations
4.5. Community relations Social

5. External intangible costs

Customer burden

5.1. Handicap

Social, environmental, and
economical

5.2. Depression leads to neglecting
5.3. Time waste
5.4. Replacement
5.5. Jobless

Enterprise burden

5.6. Increase of housing
Economical5.7. Reputation loss

5.8. Guarantee Social, economical
5.9. Discounts

Economical5.10. Degradation of resources

The paper highlights that “lack of safety precautions” must be at the forefront of the waste
list. The proposed framework strives to improve processes against safety hazards and accidents;
the money spent on compensation claims is a waste. Therefore, the cost element is considered the main
measurement of the Lean Safety Performance Level. In recent decades, the LM (lean manufacturing) [33]
system neglects human resource management as a keystone of improvement, resulting in negative
consequences in industrial performance [14]. On the contrary, the strength and skill set of workers leads
to industrial growth and development, according to Narkhede and Gardas [34]. Waste is the other side
of “lack of safety precautions” and is determined by identifying Non-Value-Added (NVA) activities
and increased engagement of tools, equipment, workers, and materials that require simplification of
processes, according to Wright. Sustainability is required to meet benchmarking figures that contribute
towards optimum usage and conservation of natural resources, according to Nehete et al. [35]. In the
lack of safety precautions, production performance is affected by integrated manufacturing systems
without control [36]. Therefore, it should be covered in a defined interval of time as recommended by
Khalil [37] and Ramesh et al. [38].

LSPL, measured by FMEF = f RPN (Occurrence, Severity Downtime, Detection Rate, Cost) where
predicted by the NN based on some influence factors extracted from SFD.
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Table 2. Lean Safety Performance Level (LSPL) and Safety Function Deployment elements.

Lean Safety Performance Level SFD Elements Indicators Type

Sustainability
impacts

Social
Improved

Workers moral and
commitments

Via
focuses

on

People Saving
needs for

Individual and
community Diversity

C1.2,
C4.5Standards of

livings Equity

Working conditions
Resources of

education and
jobs

Education
and skills

C5.2,
C3.3

Awareness about
Environmental Health
and Safety procedures

empowerment Employment

Healthy and
safety

Roles and
responsibilities C4.3

Environmental

Improved resource
efficiency and
effectiveness

planet

Examines
activities

and
practices
related to

use of

Natural
resources and

material

Failure in
efficient use

C1.3,
C3.3,
C5.2

Reduced risks for
noncompliance safety

procedures

Energy
consumption

Violation and
mistakes

C1.4

Reduced
environmental impacts Pollution Prevention

emissions to

Reduce nonorganic or
harmful material

Irradiate Air

Smut Water

Folklore Land

Ecological health
Use of

renewable
energy

C5.1,
C5.2

Economical

Improved profit
(cost-effective)

profit Strategies
that

Promote
economic growth

Distribution
of wealth C5.1

Complete cycle
time (impact on

MLT)

Consumption
patterns C2.3

Increase process and
equipment Lean

Sustainability
Cost-saving Revenue

generation

meeting manufacturer
expectation (business

impact)
R&D OEE C1.1

Enlightenment deployed
Innovation

People increased

Communication
without

embarrassment

Efficient use
of ERP

systems C2.1,
C2.2Rapid

communication
interface

Overprocess
maturity

Data validation

Training (rapid
responsiveness)

Proficiency Maintenance
and

skill-based
errors

C3.1,
C3.2

Corrective action
acceleration

Oriented politics

Hazard management

Planet and People

Fault
identification

Fault Mode
and Effect
Forecasted

(FMEF)

C2.1,
C2.2,
C3.4

Assess and
besiege the faults

Risk management Review and
document

Poor design
of equipment

Strategy framework Database
Documentation Benchmarking C2.2

Technology

Process improvement
(timely)

Profit sustain

Kaizen/Lean Productivity C4.1

Process fault Poka-yoke

FMEF

C3.4Function
capability

Incident investigation
(timely)

Procedures
(cause and effect,

action plan)

Verification
of safety data
procedures C4.2

Local ERP
system

Lean +/−
sustainability

2. The LSPL Measurement and Analysis Stages

The LSPL is integral to the DMAIC (i.e., at Measurement and Analysis phases) that are tackled
through a unified framework (i.e., consisting of sequential stages) and has many functions, as illustrated
in Figure 1, related to its costs, as discussed in Tables 1 and 2, and draws on some of the Lean rules
discussed in Table 3:
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Identify: Risks that have untoward effects on HBL elements safety.
Analyze: Evaluate the probability of the risk consequences by analyzing its priority as

recommended by Sumant et al. [39]. The analysis stage was quoted by Prescott et al. [40].
Plan: Plan to remove the risks, via adequate programs (i.e., proposed stages) that have a reputation

to eliminate risk causes.
Test and Track: Proposed stages performance compared to the plan.
Control: Focus on understanding all risk causes throughout the proposed stages, which reveals

emergent risk issues, taking into account the control action, and verify its performance.
There is a “triplet” concept of outline risk, which is useful because it clarifies how to avoid, assess,

and outline risk to produce three components of risk: undesired scenarios, their probability, and their
consequences. Therefore, risk = f (mishap scenario, occurrence frequency, and consequence severity).

Table 3. Lean Safety Performance Level (LSPL) and their implementation tools’ definition.

Lean Safety Rules Suggested Implementation Tool

Specifying value: Value is realized by the end-user or the next
requirement’s step in some of the sequential processes, to meet its needs
at a specific cost, time, and quality, and with fewer people’s efforts (i.e.,
eliminate overprocessing)

Gemba or workplace is a Japanese term meaning “the
actual place”, where value-creating occurs to look for
waste and opportunities to practice workplace kaizen
or practical shop-floor improvement.Identify and create a value stream: In a value stream, all activities are

required to bring a specific goal (supplier–producer–customer).

Making value flow: It flows through a Lean enterprise at the rate that
the next or customer needs, and just in the amount needed without
excess inventory.

Kanban is the name given to inventory control via
using a pull system, which determines the suitable
moving quantities in every process, between
upstream processes.Pull not push: Only make as required. Pull the value according to the

end-user’s demand.

Striving for perfection: perfection does not just mean quality. It means
producing exactly what the end-user wants, exactly when required.
Therefore, must focus on tackling six major losses: failure (1),
adjustment (2), minor stoppages (3), reduced operating speeds (4),
scrap (5), and rework (6).

Jidoka can be defined as automation with a human
touch, as opposed to a device that simply moves
under the monitoring of an operator.

OEE is defined as the effect implying, how effectively
planned time was used for producing good parts.

Table 1 shows the different elements of the cost of poor proficiency that represent Lean Safety
Performance Level (LSPL) clearly and appeared in the last column of Table 2 to obtain an ideality index
that helps in forecasting faults according to their cost types (direct or indirect and internal or external).

Table 2 illustrates the KPI of the proposed LSPL as recommended by the NSC at the future work
section [41] and its related costs. The last column in Table 2 indicates the cost indicator types, which are
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related to the HBL elements. The LSPL aims to save the Lean implementation via some concepts
discussed in Table 3.

All indicators reviewed in Table 2 are guided and tackled by using a proposed Safety Function
Deployment (SFD) as mimicking to the QFD steps [42], which is based on the enterprises’ expectations
and safety-critical factors.

The research findings show a proven between Lean Safety and sustainability (i.e., HBL elements
in a stationary and safe case), mainly because the enterprises focused on the value concept. The tools
of LSPL are illustrated in Table 3, which focuses on reducing the variation of VA during its progress,
by following a proven approach for gaining significant improvement in performance (DMAIC).
There are five rules for implementing Lean Safety via SFD to gain desirable values as illustrated
in Table 4.

Table 4. Safety Function Deployment (SFD).

SFD Title or Process Name Sustainable Safety Process (Functions), While VA/NNVA Activities

Ys (WHATs) Imp. Xs (HOWs)
Enterprises expectation (HBL elements) 5 Critical to Safety (CTS)

Process reliability (economic impact) 3 Within less than 1% variance in process deviation
Timely (technological impact) 3 Local ERP analysis

Business Impact (policy and technological impact) 4 All corrective actions within “1” min of faults appear.
Rapid Responsiveness (enlightenment and social impact) 4 Respond to fault identification and LSPL stage cycle

Cost-effectiveness (economic impact) 5 Less expensive than the cost listed Table 1
Safety procedures (social, economic, and environment impact) 5 100% inspection implementation (continuous tracking actions) aided by NN

The LSPL tackles safety frameworks as a remedy against a lack of implementation strategies,
to present SM that stimulates the DMAIC by improving its Lean sustainability features. The LSPL
focuses on pursuing radical changes in the people’s enlightenment about faults classification,
as illustrated in Figure 2, and its impact on HBL, thereby enhancing the profitability and urged
them to improve their performance (proficiency level), the proven tool used in fault analysis is the
Ishikawa or fishbone diagram.

It is used to find and derive all possible causes or root causes behind any uncertainty factor.
The researchers believe that improving performance relies on forecasting mishaps via determining the
famous and related causes leading to it. This diagram will be managed via the proposed reliable tool
that has the ability to perform its intended objectives over a long time from the first time and every
time, called Fault Mode and Effect Forecasted (FMEF).Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 30 
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3. Research Methodology

This paper aims to measure the LSPL via some influencing variables according to safety
considerations extracting from SFD, which is based on the ideality of each activity executed in
the workplace and has a direct correlation with HBL elements vs. loss function costs based on
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the magnitude of the costs that have been spent to correct its deviation paths aided by NN model.
Therefore, it is proposed to establish the House of Safety (HoS) modeled on House of Quality (HoQ),
which consists of five sequential steps filled out via 185 questionnaires about tackling safety tackled.
(1) monitoring all processes to maintain the deviation of processes within less than 1%. (2) Establish a
feasibility study on corrective actions for faults’ causes at the moment it appeared (i.e., in time). (3) All
processes uploaded and data monitored and updated via the ERP information system). (4) All faults
have been identified in a tailored safety list illustrated in Figure 1. (5) Trying to be less expensive
within 100% implementation of safety procedures in the enterprise. These steps were tackled through
Safety Function Deployment (SFD) to extract the influencing factors, which must be forecasted and
controlled as illustrated in Tables 5–8.

Step 1 of the SFD indicates the importance of LSPL in industrial society, which ranked first by 25%
to the variables used to increase the safety case in the industry.

Step 2 of the SFD indicates the importance of formulating unified framework interests with the
full inspection with time based on the Local ERP system analysis.

Step 3 of the SFD indicates the importance of faults’ documenting throughout cycle time to
maintain health and safety with respect to failure in efficient use. This target needs to construct an
implementation sequential step based on valid data collected.

Step 4 of the SFD indicates the importance of statistical validation by respecting technology,
especially in evaluating the equipment efficiency and the importance of proficiency value. Figure 3
discusses the dynamic process identification and using FMEA to evaluate the fault severity,
while Figures 4 and 5 illustrate the flowchart of FMEF that used to track and predict the sustainable
performance level via the safety tip-off of six sequential steps.
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(1) Identify the safety instructions related to Fault Modes before they happen for every Value-Added
(value-added) or Non-Value-Added (NVA) activities

(2) Determines the effect and severity of these faults according to consuming time and its costs.
(3) Identifies the causes and probability of occurrence of the Fault Modes (historical data).
(4) Identifies the sustainable safety actions and their effectiveness.
(5) Quantifies and prioritizes the risks associated with the Fault Modes.
(6) Develops and documents action plans that will occur to reduce risk.
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Table 5. Safety Function Deployment (Step 1).

Xs (HOWs)

Ys (WHATs) Importance
Within Less than 1%
variance in process

deviation

All corrective actions
within “1” min of faults

appear (processes
deviation monitor timely)

Local ERP
analysis

Respond to fault
identification and
LSPL stage cycle

Less expensive than
cost listed Table 1

100% inspection
implementation

(continuous tracking
actions)

Total

Process reliability (economic
impact) 5 H – H M – H 150

Timely (technological impact) 3 L H M H – L 66
Business impact (policy and

technological impact) 3 – L H H – M 66

Rapid responsiveness
(enlightenment and social

impact)
4 H L H H – – 112

Cost-effectiveness (economic
impact) 4 – – L M H M 64

Safety procedures (social,
economic, and environment

impact)
5 H H M H L H 195

Total 126 79 136 162 36 114 653
Detection weight (priority) 19.30% 12.10% 20.83% 24.81% 5.51% 17.46%

Table 6. Safety Function Deployment (Step 2).

Xs (HOWs) Functional Requirement

Ys (WHATs) Relative
Weight

Complete
Cycle Time

injection Fault data into
Local ERP system
(Documentation)

Data Validation
Procedures (Cause
and Effect, Action

Plan)

Ecological
health Healthy and safety Efficient use of

ERP systems Total

Respond to fault
identification and LSPL

stage cycle
19.03 H H L H – H – 713.94

All corrective actions
within “1” min of faults

appear (processes
deviation monitor timely)

12.1 L L M L – M 108.88

Local ERP analysis 20.83 – M L – H – M 333.23
Less than 1% variance in

process deviation 24.81 – L L – M – H 347.32

Less expensive than cost
that listed Table 1 5.51 L L – M L L – 38.59

100% inspection
implementation

(continuous tracking
actions)

17.46 H L H H L L – 523.74

Total 348.4 296.018 258.4 359.4 284.8 232.9 285.8 2065.7
Detection weight (priority) 16.87% 14.33% 12.51% 17.40% 13.79% 11.28% 13.83%
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Table 7. Safety Function Deployment (Step 3).

Xs (HOWs) Design Requirements

Ys (WHATs) Relative
Weight

Statistical
validation

Function
capability

Automated
verification

of safety
data

procedures

VA
capability

Reliability
+/−

Poor design
of equipment OEE

Failure in
Efficient use

FMEA

Maintenance
and skill-based

errors
(proficiency)

Roles and
responsibilities Total

Complete cycle time 12.51 H H – M – M H H H L 650.4
Injection fault data into

a Local ERP system
(documentation)

14.33 H H L – – L H H – – 544.6

Data validation 16.87 – L H L M – – L H 404.8
Procedures (cause and

effect, action plan) 17.40 L – M M L – – – – – 135

Ecological health 13.79 L – – L L H – H – – 289.6
Healthy and safety 11.28 – – – H – H H L H – 417.2
Efficient use of ERP

systems 13.83 – – – – – – M H – H 290.5

Total 272.2 241.53 64.93 203.4 30.65 277.4 384.5 501.4 214 137. 2327.1
Detection weight

(priority) 11.7% 10.4% 2.8% 8.7% 1.3% 11.9% 16.5% 21.5% 9.2% 5.9%

Table 8. Safety Function Deployment (Step 4).

Xs (HOWs) Key Process Variables

Ys (WHATs) Relative Weight Social/People Environmental Economic/profit Enlightenment Oriented politics Technology Total
Statistical validation 11.7 H H L M – L 269.02
Function capability 10.38 – H – – – H 186.82

Automated verification of safety data
procedures 2.79 – M – L H L 39.1

VA capability 8.74 M L – H – – 113.62
Reliability +/− 1.317 – – H M H 27.66

Poor design of equipment 11.92 – – L H L 131.14
OEE 16.5 – M H M – M 297.42

Maintenance and skill-based errors
(proficiency) 21.55 L H H L – M 211.55

Failure in efficient use FMEA 9.20 – – – – M H 258.56
Roles and responsibilities 5.89 H – – M H H 176.63

Total 193.67 348.1 255 204.9 254 455.75 1711.48
Detection weight (priority) 11% 20% 15% 12% 14% 27%
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Figure 5. Track the plan phase activities in the proposed LSPL stages.

A preliminary stage of adopting (undertaking) LSPL embeds a sustainability constraint to ass the
identification and prioritization with respect to modern HBL and the common Lean Six Sigma (LSS)
tools are exposed in Table 9.
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Table 9. The common tools between Lean Six Sigma (LSS) and the proposed LSPL.

Lean Six Sigma (LSS) Roadmap

Define and Measures Analysis Improve Control

Lean Safety
Performance
Level (LSPL)

Identify Project charter VSM
Spaghetti

diagram for
functions

Poka-Yoke Proficiency
level

Analysis
Function/process/activities

map
Run charts Regression

analysis

Risk analysis Dashboard

Prioritization
matrix

Audit plans
Plan

Track

Critical to poor safety tree

KPI
ANOVA to

DOE

6′ S Performance
management

Control Process
capability FMEF

SIPOC Histograms 5′ Why FMEA

Critical to quality tree Management system analysis Embedding sustainability

House of Quality

Kano analysis

4. Failure Mode and Effect Forecasting (FMEF) Formulation

Sustainable Lean is equivalent to system reliability R(t) against fault occurrence, availability,
and maintainability, which are important factors to guarantee the safety level. Sustainable Lean is
affected by faults and malfunctions occur in the workplace. Therefore, the prediction and diagnosis
of the faults are the core of this paper. Faults related to deviation behavior according to their form
whether systematic or random, time behavior appears from draft to permanent path through noise and
extent appears in local or global VSM. The Lean sustainability of many identical activities is defined
by Equation (1).

Fault Occurrence = 1−R(t) = ω = 1−
f ault f ree activities

number o f all activities at a certain f unction
(1)

The fault occurrence rate defined as the instantaneous rate of malfunction or unplanned downtime
at emergency case is defined by the Equation (2):

dn

dt
= λt =

1
#o f f unction activities

(
#o f f aults

time interval

)
(2)

The severity Sv level proportion to a maintenance level (the repairability consuming time),
whether planned or not as illustrated in Figure 6 to repair specific fault, is defined by the Equation (3)
as follows:

Sv = E{TR} = lim
N→∞

1
N

N∑
i=1

TRi (3)

where TRi is time to repair the malfunction.
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Figure 6. The types of maintenance causes.

The concept of Ideality is introduced in the methodology of creative problem solving, which is
very close to the value in value analysis. One variant is known as the “Theory of Inventive Problem
Solving”. While stipulating that a proposed framework has the main “VA activity function”.

The delivery of it is necessarily accompanied by loss functions (i.e., NNVA and NVA costs and
time) that can be controlled via the proposed roadmap embeds with an effective framework. The better
is the framework the fewer are the number of the loss functions (i.e., any undesired costs or downtimes)
that addressed via ideality index_Pyi_ as defined by the Equation (4). This value is considered a seed
of using the Neural Networks of the optimization stage of fault tracking and forecasting based on
specific scenarios (i).

Pyi =
RPN×

∑
i(VA)i∑

i(NNVA)i + (NVA)i
=

∑
i(VACosts, time)i∑

i(NNVACosts, time)i
=

RPN×
∑

i(VACosts, time)i∑
i(CoPP)i

(4)

The question should be: how to execute the VA in a way that is not minimalist (NNVA). An Ideality
defined by Equation (5) indicates the effectiveness of the proposed framework is calculated using the
ratio of the number of valid causes to the total number of potential causes and averaged over the
tackling scenarios for data collected in Tables 9 and 10.

Ideality(HBLVA)i =
1
N

i∑
i=1

Pyi

Ci × ni
×wi (5)

where

N = number of correction scenarios investigated to reduce losses and faults opportunities in
certain activity.
ni = number of potential causes of malfunction due to fault identified by the framework for scenario i.
Ci = cost of potential causes of malfunction due to fault identified by the framework for scenario i.
wi = weight of potential causes of malfunction under scenario I consideration extracted from SFD
result in Table 8 (Step 4).
Idealityi = number of correct potential causes of malfunctions due to fault obtained by the framework
for scenario i.
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Table 10. FMEF terminology suggestion.

(1) Fault Opportunities: (Specific loss of any of HBL functions), related to opportunities aforementioned in
Table 1.

(2) Fault mode “effect”: A description of the
consequence and ramification of any HBL faults, to
rank these faults according to a severity scale. A
typical Fault Mode may have several “effects”
depending on a review of which manufacturer,
manufacturer, or any of stakeholders are considered
(i.e., analyzed and tailored according to needs via
brainstorming recommendations).

(3) Severity rating η: (seriousness of the effect)
Severity is the numerical rating (e.g., 1:10) of the
impact on customers, manufacturer or any of HBL
elements, related with loss function (i.e., nonideality,
which use expenses indicator as a costs’ reference
estimated according to Table 1). Severity against the
maintainability level or mean time to repair the fault
MTTR.

(4) Fault mode “causes”: A description of the
proficiency’ losses (high ramifications of direct and
root causes) that results in the Fault Mode, which can
be formulated via classical cause and effect diagram.

(5) Occurrence ratingω: An estimated number of
tenfold relative frequencies of the cumulative number
of specific causes over the intended period
“threatening the sustainability of the safety case” (i.e.,
frequency codification and tracked out via mining in
the local dataset).

This step needs for creating a time schedule for predicted faults and codify via closely monitoring its behavior
at a specified period using any of forecasting procedures, such as ARIMA or using the codes of artificial
intelligent as Neural Network (e.g., time of the birth of the fault: t, fault’s lifespan: δt, severity: η, occurrence:
ω and loss cost estimations: θ)

(6) Fault Mode “(safety investigation)”: The methods,
tests, procedures, or controls used to prevent the
cause of the Fault Mode or detect the Fault Mode or
cause should it occur.

(7) Detection rating (forecasted via ARIMA) [45]: A
numerical rating (i.e., 1:10, 1 being detectable via
forecasting every time, 10 being impossible to detect
via forecasting) of the probability that a given set of
the investigation will discover a specific cause of
Fault Mode to resist consequences.

(8) Risk Priority Number (RPN; descending Order): = Severity × Occurrence × Detecting is a response

(9) Action planning: A high-risk framework that is not followed with corrective actions has little or no value,
other than having a chart for an audit. Therefore, the FMEF is created. If ignored, you have probably wasted
much of your valuable time. A good action plan focused on reducing the RPN by adopting the obvious safety
roadmap has many VA functions.

The main result of the design stage of the proposed LSPL framework is to obtain RPN from FMEF
steps and record it in time to calculate the consuming repair time and document that with its expenses
deduced from Table 1.

5. Lean Safety Performance Level (LSPL) Case Study

The costs and consuming maintainability time were classified according to Tables 1 and 2.
The experts according to questionnaire analysis decided that the performance level should be among
65% to 99.9% [46], and distributed according to the illustration Table 11. The proposed LSPL
framework stages were adopted via U.S.C.C (a consultant office owned by Zagazig University, Egypt).
The losses and costs data for the medium and small industrial organization’s scale has been collected
from 495 departments belongs 18 ERP’s enterprise systems of different industries from July 2014 to
November 2019 in some industrial Egyptian cities through physical visits and the online questionnaires
that oriented to the safety’s managers who participated in this survey voluntarily.

Table 11. The Lean Safety Performance Level reference [47].

Limits 60–70% >70–80% >80–94% >94–96% >96–99.99996%
Risk level Under Risk Moderate Adequate Near Safe Completely Safe
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The influencing measurement variables for the planning (i.e., Measuring and Analysis) for the
Lean Safety LSPL framework as illustrated in Table 12. These variables have been tackled as illustrated
in Table 13, which are related to HBL abuses.

Table 12. Questionnaire outlines that activate the LSPL framework stages.

LSPL Stages Influencing Requirements

Identify and Planning Stage

IPS1: Prevention plan safety deployment among all workers
IPS2: Identify risks in all manufacturing processes stations
IPS3: Work procedures based on risk standard evaluation

IPS4: Respect the periodic checks of prevention activities execution and compliance with
regulations

IPS5: Ensuring that all risks are measured their severity, investigated, analyzed, and
documented

Design Stage Instruments

DSI1: Control the impact of our manufacturing processes on safety
DSI2: A systematic framework to identify the safety targets
DSI3: A systematic framework to achieve the safety targets

DSI4: A systematic framework to demonstrate that safety targets have been met
DSI5: Control Lean influencing of manufacturing processes

DSI6: A systematic framework to adjust and achieve the Lean targets
DSI7: A systematic framework to demonstrating that Lean targets have been met

Tracking and Test Stage

TaTS1: The occurrence scale of accidents at the participated enterprises
TaTS2: Lean’s health and safety long-term precautions at participated enterprises

TaTS3: Energy and water consumptions in participating enterprises
TaTS4: Waste reutilization at participating enterprises

Work safety and Control
Performance

WSCP1: Reduced the number of incidents at participating enterprises
WSCP 2: Reduced the number of injuries at participating enterprises

WSCP 3: Reduced the number of ill health at participating enterprises
WSCP 4: Reduced the number of insurance claims at participating enterprises

Expected Lean
Performance

ELP1: Reduced losses costs at participating enterprises (review Table 1)
ELP2: Reduced the NNVA Occurrence Ratingω in participating enterprises (review Table 10

and Equation (1))
ELP3: Reduced the NNVA Severity Rating η level in participating enterprises (review Table 10)

ELP4: Increased the ideality value (review Equation (4)) to deploy the performance
level/monthly

ELP5: Measure the cost of poor proficiency that generated due to NNVA faults to be controlled

Out of 495 questionnaires, 197 (40.2%) responses were received. Incomplete questionnaires
were discarded. The final study sample consisted of 185 (37.7%) valid returned questionnaires that
were implemented in different 18 enterprises. The characteristics summarized of the respondent’s
enterprises indicate that the majority of them are cartons’ industries (48.3%), metal industry (19.1%),
textile industries (15.4%), bathtubs fabrications (9.4%), electronics and other electrical equipment (4.2%),
and others factories represent (3.4%). Reliability has been tested based on Cronbach’s alpha value
illustrated in Table 13. For the reliability test, Cronbach’s alpha value for safety precautions activities
performance had the highest (0.936) while the Lean performance was the lowest (0.861). Thus, all of
the Cronbach’s alpha values (extracted from R statistical software) were significant at p < 0.05.

The principal component analysis (PCA) and the confirmatory factor analysis (CFA) used to
identify the most meaningful basis and to check the similarities and differences of the data validation.
Eigenvalues and percent of variance explained for each stage at the LSPL framework are illustrated
for 185 enterprises’ sectors interests in the implementation of LSPL, and the cumulative percentages
of explained variance were 66.509 for the stages illustrated in Table 13. The loading values of each
influence variable ranged from 0.619 to 0.889 as illustrated in Table 13 and deduced from SFD (Table 8,
Step 4). However, all variables that appeared at any stage of Table 12, and had a loading value less
than 0.5, were removed from the implementation illustrated in Table 14.

The recorded “102,592 ” activities for a VA and NNVA of one from participated enterprises
from July 2014 to November 2019 are around the whole safety practices illustrated in Table 14,
which illustrates the costs related with potential incidents or injuries (i.e., The cost is the summation
of maintainability costs plus the cost of consuming downtime associated with fault opportunity).
There are some questions to be answered to determine the performance level of implemented LSPL.
These questions are listed below :



Appl. Sci. 2020, 10, 6851 16 of 28

1. How many Fault occurrences for a single function? (19).
2. How much is the enterprise cost on Faults identified? (3041.13).
3. How much is the average cost of faults per function? (3041.13/102,592 = 0.0296).
4. What is the FPMO? _1560.16_ = (1,000,000*3041.13)/(19*102,592) _� Cpk 1.5 and 99.8650% yield.
5. What is the (approximate) LSPL for LSPL implementation? (4.5 marks over 6 (75%)).

Table 13. Results of principal component analysis (PCA) and confirmatory factor analysis (CFA) for
LSPL framework validations.

PCA CFA

Questions Outlines of LSPL
Variables Stages Eigenvalue

Percent of
Variance

Explained

Variables
Loading

Expected
Loading t-Value p-Value Cronbach’s

Alphas

Identify and
planning stage

IPS 1

2.901 8.431

0.795 0.861 15.111 0.000

0.904
IPS 2 0.862 0.923 16.610 0.000
IPS 3 0.885 0.958 17.744 0.000
IPS 4 0.876 0.930 16.839 0.000
IPS 5 0.794 0.822 - -

Design stage
instruments

DSI 1

13.079 43.502

0.727 0.709 10.953 0.000

0.897

DSI 2 0.689 0.675 10.247 0.000
DSI 3 0.478 0.496 10.670 0.000
DSI 4 0.717 0.879 15.074 0.000
DSI 5 0.734 0.838 13.999 0.000
DSI 6 0.742 0.862 18.382 0.000
DSI 7 0.760 0.841 - -

Tracking and
test stage

TaTS 1

1.936 8.412

0.619 0.755 13.079 0.000

0.899
TaTS 2 0.637 0.783 13.722 0.000
TaTS 3 0.741 0.778 10.824 0.000
TaTS 4 0.818 0.754 12.696 0.000

Work safety
and control

performance

WSCP 1

1.596 3.339

0.822 0.913 22.445 0.000

0.936
WSCP 2 0.832 0.944 24.953 0.000
WSCP 3 0.817 0.935 24.140 0.000
WSCP 4 0.829 0.929 - 0.000

Expected Lean
performance

ELP 1

1.148 2.825

0.741 0.774 11.492 0.000

0.861
ELP 2 0.840 0.864 13.204 0.000
ELP 3: 0.848 0.884 13.565 0.000
ELP 4 0.841 0.872 13.214 0.000
ELP 5 0.871 0.863 - -

Table 14. Recording the downtimes of violating the LSPL instructions and its related costs.

Fault
Opportunity Cost Type ($) 7/2014 10/2015 3/2016 8/2017 1/2018 11/2019 Time (h) Ideality

IPS 1 C1.1, C5.1 168 346 224 321 153 113 220.83 0.22
IPS 2 C1.2, C2.2 474 279 34 37 82 71 162.83 0.16
IPS 3 C1.1, C3.3 = $3871 for example 757.2 284.1 168.9 129 173 114 271.03 0.27
IPS 4 453 493 117 229 86 18 232.67 0.23
IPS 5 C1.4 318 49 129.6 196 24 19 122.6 0.12

TaTS 1 C1.3, C1.4 432 208 139 313 613 128 305.5 0.35
TaTS 2 C2.1 483 284 125 169 287 69 236.17 0.21
TaTS 3 C1.3, C1.4, C5.10 21 552 106 328 183 71 210.17 0.20
TaTS 4 345 413 148 663 74 55 283 0.28
DSI 1

C1.1, C2.3, C3.1, C3.3, C5.7

252 305 24 64 2 157 134 0.135
DSI 2 6 17 41 110 244 18 72.67 0.073
DSI 4 ——- 100 ——- ——- 15 61 29.33 0.029
DSI 5 135 51 ——- 35 ——- 61 47 0.047
DSI 6 438 54 89 78 30 15 117.33 0.12
DSI 7 348 33 18 55 66 13 88.83 0.089

WSCP 1 C1.4, C3.1, C3.4 150 22 57 253 187 143 135.33 0.136
WSCP 2 C4.3, C4.4 655 33 115 40 52 57 158.67 0.15
WSCP 3 C3.2 78 1 108 135 47 4 62.17 0.06
WSCP 4 C4.2, C4.5, C5.9 516 56 87 39 105 103 151 0.151

Total consumed downtime and costs of poor proficiency 3041.1

The decision: This industry is in a moderate risk situation according to Table 11.
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The main issue from implementing the proposed framework is finding a safety scale for different
industries modeled on the defect scale that is named by DPMO tables. The last two columns in
Table 14 illustrate the consumption of repair time and the ideality according to cost types appeared
in the second column of the same table according to a specific case study. The performance of the
enterprises in following and implementing special instruction recommended by the LSPL stages is an
audit by ideality multiple by the time consumption of the repairing activities (i.e., downtime), which is
considered a representative point for the enterprise evaluation according to this variable and start
tracking it via using NN. The non-proficiency/year (faults) are illustrated in Table 15.

Table 15. Non-proficiency/year (faults) due to the 102,592 maintainability process for 18 enterprises.

Former
Year

Vacuum Pump
Malfunction

Blockage in Air
Stream Air Cavity Close Damage Cavity Incomplete Air

Conduit

Incident injury Incident injury Incident injury Incident injury Incident injury

28 35 32 12 36 21 38 32 38 35

2014 23 29 19 3 17 10 15 12 1 3

2015 4 24 4 14 25 4 1 4 1 5

2016 1 5 5 1 4 4 4 16 17 2

2017 3 12 12 10 17 19 15 11 1 9

2018 5 7 27 5 3 1 5 5 2 27

2019 5 1 1 11 22 15 25 11 15 11

38 32 21 21 32 14 35 28 38 35 Upper level
[U]

1 4 3 1 1 1 1 1 1 2 Lower level
[L]

0 0 0 0 0 0 0 0 0 0 Target [T]

38 32 5 21 32 14 35 28 38 35 U-T

1 4 3 1 1 1 1 1 1 2 T-L

38 32 2 21 32 14 35 28 38 35 Deviation
about [T]

5 16 1 5 5 16 16 16 30 14 C

0.57143 0.457 1.14286 0.156 0.23809 0.5 0.5 0.131 0.78948 0.4 K=C/D

9.85714 16.14 8 14.29 10.5714 17.715 13 14.71 10.7143 13.15 Avg.

118.144 172.8 24.6667 145.2 62.9523 135.24 87.3334 174.2 193.571 164.2 Variance

1301 123.03 198.1 101.33 54.58 41.6 224.52 128.17 51.41 243.45 134.7 Loss

1300.97 321.16 155.91 266.12 179.58 378.2 Total Loss

Figure 7 illustrates the significance of HBL elements via measure ideality response value discussed
in Equation (5) to instruct the Neural Networks at the tracking and controlling stages of the proposed
LSPL framework. The figure further demonstrates the high impact of the interaction between
environment and enterprise culture toward the Lean Safety approach, as illustrated in Figure 8,
which is more than a social policy interference and affects the technology on management modeled
on [47].

Figure 9 illustrates the interference of social and policy on ideality value for the Lean Safety
approach, while Figure 10 illustrates the interference of the environment with technology.

The results illustrated in Table 16 for the goodness of fit of the test stage for the measurement
performance for the LSPL implementation are summarized. The values of SRMR, RMSEA, x2, and the
p-value were satisfactory, while the values of GFI and AGFI were not.
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Table 16. Results of fit indices for CFA.

LSPL x2 d.f x2/d.f GFI AGFI CFI SRMR RMSEA

Measurement
values 562.175 237 2.030 0.831 0.820 0.974 0.071 0.074

Recommended
values ≤ 0.30 ≥ 0.90 ≥ 0.90 ≥ 0.90 ≤ 0.08 ≤ 0.08

GFI: Goodness of Fit Index [0:1], AGFI: Adjusted Goodness of Fit Index [0:1], CFI: Comparative Fit Index. SRMR:
Standardized Root Mean Square Residual, RMSEA: Root Mean Square Error of Approximation.

Table 17 illustrates the correlations between influencing variables, while the off-diagonal elements
represent the eigenvalue. The mean square roots of variances should be greater than the correlation
between a particular influencing variable and other influencing variables. The statistics illustrated in
Table 15 satisfied the overall requirement as lending to discriminant validity and evidence to construct
validity [46].

Table 17. Correlation matrix and average variance extracted (AVE).

LSPL Stages
Identify and

Planning
Stage

Design Stage
Instruments

Tracking and
Test Stage

Work Safety
and Control
Performance

Expected Lean
Performance

Identify and Planning
stage 0.881

Design stage
instruments 0.608 ** 0.787

Tracking and Test stage 0.534 ** 0.693 ** 0.819
Work safety and control

performance 0.397 ** 0.657 ** 0.638 ** 0.949

Expected Lean
performance 0.429 ** 0.449 ** 0.540 ** 0.640 ** 0.851

CR 0.946 0.919 0.924 00.974 0.913
AVE 0.777 0.620 0.671 0.902 0.725

The second derivative of the variance, where ** means p ≤ 0.01, While ns means p > 0.05.

6. Sustainable Lean Safety Performance Enhancement

The improvement was done by tracking the activities in time-at-risk cases during the studying
interval. This work resorted to using an optimization tool such as Artificial Neural Networks (ANN)
because there are no linear dependencies between input and output data (i.e., evaluate all possible
values of a certain “unknown” function) by solely establishing the nonlinear relations between input
or output datasets, based on the learning process itself. The ANN has the ability to force using the
Simple Moving Average (SMA) to monitor the VA and NNVA activities with time. Finally, at the end
of the run, will obtain the array of SMA values for each time-cost at a moment t.

Table 18 illustrates the Neural Network input data. The number of neurons is 21, while the second
layer of network models has 19 neurons. The regression analysis was implemented on a specific
training data set loaded on the local dataset to determine highly accuracy running performance with
correlation coefficient R, which approximates a value of 0.999. The performance of tracking the faults
interval via MSE of 0.027 at Epoch 3 and the R between the target and output for validation data was
0.9744. The results of testing for ANN used in this work illustrated in Figure 11, where the convergence
becomes valid when the R between standard values calculated from Table 13 and predicted output is >

80%, to reduce the defects related with faults similar to the Lindstrom et al. approach to reach zero
faults [47].
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Table 18. Limits of input variables in the Neural Network model.

Parameters Down Up

X1 Neuron number 2 25
X2 Learning rate 0.01 0.4
X3 Training epoch 100 2500
X4 Momentum constant 0.1 0.9
X5 Number of training runs 3 7
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Figure 12 illustrates the standard value deduced from Table 13 vs. the output plot for the trained
ANN simulated by all training dataset stored on the ERP’s enterprise system via running the code
in Appendix A. The performance of the network can be improved if training data increasingly take
into account the effect of Fault Tree Analysis (FTA), as discussed by Shafiee [48], where authors
suffered from collecting the data, where it is collected in the manufacturing environment, not a
laboratory environment.
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The entire process of SMA computation for the functions that have high influence values and appear
in Table 13 (i.e., the TaTS1 variable) are illustrated in Figure 11 and tracked closely. When considered
other influencing variables, the performance is enhanced as illustrated in Figure 12. Before creating
and training an ANN to predict future values of process deviation according to time that modeled on
SMA steps. Some portion of the dataset generated and trained the proposed Neural Network on the
dataset being generated. The statement’s code snippets that perform training samples generation are
listed below. This code was modeled on the steps of Abed et al. at IEOM 2018 [43].

7. Conclusions

The paper aims at establishing a unified safety procedures framework works through the proposed
roadmap that derivative of DMAIC and enhance its Measurement and Analysis phases and called
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the Sub-Road-Map (LSPL), which activating through a proposed framework named the LSPL that
follows the Lean for its excellence in cost controlling due to fault tracking. The proposed framework
needs extra efforts from the workers and their enterprise’s enlightenment, to audit the relationship of
costs (e.g., maintainability costs plus consuming downtime) as articulated in Table 12 and their costs,
articulated in Table 1. The triggering of the proposed algorithm by forecasting the precise faults of
the performance level of the Lean Safety approach via an ideality value extracting from FMEF steps
to determine their severity, occurrence, and detecting it as discussed in Table 10 to feed the Neural
Network code to predict the behavior of the enterprises toward their faults control before exacerbate in
a timely fashion via followed process deviation as illustrated in Figures 11 and 12.

Oddly enough, it was found in the analysis of the questionnaire’s data collected from 2014 to 2019,
the enterprises’ behaviors tend to be more task-oriented (Theory N) [46], as illustrated in Figures 4 and 5,
emanating from Figure 1. The LSPL and its LSPL framework reduce the enterprise’s costs related to
downtimes to 0.037%. Consequently, the fault per million opportunities that corresponding FPMO
table is 5.78/6, which declares the Lean Safety Performance Level to 96.333%, which according to
Table 11 illustrates that the enterprise becomes near safe and under ongoing control.
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Appendix A

The Neural Network training code
function ComputeSMA(downtime_s, Cost_track)
{

const input_layer_shape = Cost_track;
const input_layer_neurons = 100;
model.add (tf.layers.dense({units: input_layer_neurons, inputShape: [input_layer_shape]}));

var r_avgs = [ ], avg_prev = 0;
for (let i = 0; i <= downtime_s.length * Cost_track; i++)
{

var curr_avg = 0.00, t = i + Cost_track;
for (let k = i; k < t andand k <= downtime_s.length; k++)
curr_avg += downtime_s[k][‘price’]/Cost_track;
r_avgs.push({ set: downtime_s.slice(i, i + Cost_track), avg: curr_avg });
avg_prev = curr_avg;
}
return r_avgs;
}
var input_dataset = [], result = [];
var data_raw = []; var sma_vec = [];
function Init() {
initTabs(‘Dataset’); initDataset();
document.getElementById(“n-items”).value = “50”;
document.getElementById(“window-size”).value = “12”;
document.getElementById(‘input-data’).addEventListener(‘change’, readInputFile, false);
}
function initTabs(tab) {
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var navbar = document.getElementsByClassName(“nav navbar-nav”);
navbar[0].getElementsByTagName(“li”)[0].className += “active”;
document.getElementById(“dataset”).style.display = “none”;
document.getElementById(“graph-plot”).style.display = “none”;

setContentView(tab);
}
function setTabActive(event, tab) {
var navbar = document.getElementsByClassName(“nav navbar-nav”);
var tabs = navbar[0].getElementsByTagName(“li”);
for (var index = 0; index < tabs.length; index++)
if (tabs[index].className == “active”)
tabs[index].className = ““;
if (event.currentTarget != null) {
event.currentTarget.className += “active”;
}
var callback = null;
if (tab == “Neural Network”) {
callback = function () {
document.getElementById(“train_set”).innerHTML = getSMATable(1);
}
}
setContentView(tab, callback);
}
function setContentView(tab, callback) {
var tabs_content = document.getElementsByClassName(“container”);
for (var index = 0; index < tabs_content.length; index++)
tabs_content[index].style.display = “none”;
if (document.getElementById(tab).style.display == “none”)
document.getElementById(tab).style.display = “block”;
if (callback != null) {
callback();
}
}
function readInputFile(e) {
var file = e.target.files[0];
var reader = new FileReader();
reader.onload = function(e) {
var contents = e.target.result;
document.getElementById(“input-data”).value = ““;
parseCSVData(contents);
};
reader.readAsText(file);
}
function parseCSVData(contents) {
data_raw = []; sma_vec = [];
var rows = contents.split(“\n”);
var params = rows[0].split(“,”);
var size = parseInt(params[0].split(“=“)[1]);
var window_size = parseInt(params[1].split(“=“)[1]);
document.getElementById(“n-items”).value = size.toString();
document.getElementById(“window-size”).value = window_size.toString();
for (var index = 1; index < size + 1; index++) {
var cols = rows[index].split(“,”);
data_raw.push({ id: cols[0], timestamp: cols[1], price: cols[2] });
}
sma_vec = ComputeSMA(data_raw, window_size);
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onInputDataClick();
}

function initDataset() {
var n_items = parseInt(document.getElementById(“n-items”).value);
var window_size = parseInt(document.getElementById(“window-size”).value);
data_raw = GenerateDataset(n_items);
sma_vec = ComputeSMA(data_raw, window_size);
onInputDataClick();
}
async function onTrainClick() {
var inputs = sma_vec.map(function(inp_f) {
return inp_f[‘set’].map(function(val) { return val[‘price’]; })});
var outputs = sma_vec.map(function(outp_f) { return outp_f[‘avg’]; });
var n_epochs = parseInt(document.getElementById(“n-epochs”).value);
var window_size = parseInt(document.getElementById(“window-size”).value);
var lr_rate = parseFloat(document.getElementById(“learning-rate”).value);
var n_hl = parseInt(document.getElementById(“hidden-layers”).value);
var n_items = parseInt(document.getElementById(“n-items-percent”).value);
var callback = function(epoch, log) {
var log_nn = document.getElementById(“nn_log”).innerHTML;
log_nn += “<div>Epoch: “ + (epoch + 1) + “ Loss: “ + log.loss + “</div>“;
document.getElementById(“nn_log”).innerHTML = log_nn;
document.getElementById(“training_pg”).style.width = ((epoch + 1) * (100/n_epochs)).toString() + “%”;
document.getElementById(“training_pg”).innerHTML = ((epoch + 1) * (100/n_epochs)).toString() + “%”;
}
result = await trainModel(inputs, outputs,
n_items, window_size, n_epochs, lr_rate, n_hl, callback);
alert(‘Your model has been successfully trained...’);
}

function onPredictClick(view) {
var inputs = sma_vec.map(function(inp_f) {
return inp_f[‘set’].map(function (val) { return val[‘price’]; }); });
var outputs = sma_vec.map(function(outp_f) { return outp_f[‘avg’]; });
var n_items = parseInt(document.getElementById(“n-items-percent”).value);
var outps = outputs.slice(Math.floor(n_items/100 * outputs.length), outputs.length);
var pred_vals = Predict(inputs, n_items, result[‘model’]);
var data_output = ““;
for (var index = 0; index < pred_vals.length; index++) {
data_output += “<tr><td>“ + (index + 1) + “</td><td>“ +

outps[index] + “</td><td>“ + pred_vals[index] + “</td></tr>“;
}
document.getElementById(“pred-res”).innerHTML = “<table class=\”table\”><thead><tr><th
scope=\”col\”>#</th><th scope=\”col\”>Real Value</th> \

<th scope=\”col\”>Predicted Value</th></thead><tbody>“ + data_output + “</tbody></table>“;

var window_size = parseInt(document.getElementById(“window-size”).value);
var timestamps_a = data_raw.map(function (val) { return val[‘timestamp’]; });
var timestamps_b = data_raw.map(function (val) {
return val[‘timestamp’]; }).splice(window_size, data_raw.length);
var timestamps_c = data_raw.map(function (val) {
return val[‘timestamp’]; }).splice(window_size + Math.floor(n_items/100 * outputs.length), data_raw.length);
var sma = sma_vec.map(function (val) { return val[‘avg’]; });
var prices = data_raw.map(function (val) { return val[‘price’]; });
var graph_plot = document.getElementById(‘graph-pred’);
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Plotly.newPlot( graph_plot, [{ x: timestamps_a, y: prices, name: “Series” }], { margin: { t: 0 } } );
Plotly.plot( graph_plot, [{ x: timestamps_b, y: sma, name: “SMA” }], { margin: { t: 0 } } );
Plotly.plot( graph_plot, [{ x: timestamps_c, y: pred_vals, name: “Predicted” }], { margin: { t: 0 } } );
}
function getInputDataTable() {
var data_output = ““;
for (var index = 0; index < data_raw.length; index++)
{
data_output += “<tr><td>“ + data_raw[index][‘id’] + “</td><td>“ +

data_raw[index][‘timestamp’] + “</td><td>“ + data_raw[index][‘price’] + “</td></tr>“;
}
return “<table class=\”table\”><thead><tr><th scope=\”col\”>#</th><th scope=\”col\”>Timestamp</th> \

<th scope=\”col\”>Feature</th></thead><tbody>“ + data_output + “</tbody></table>“;
}
function getSMATable(view) {
var data_output = ““;
if (view == 0) {
for (var index = 0; index < sma_vec.length; index++)
{
var set_output = ““;
var set = sma_vec[index][‘set’];
for (var t = 0; t < set.length; t++) {
set_output += “<tr><td width=\”30px\”>“ + set[t][‘price’] +

“</td><td>“ + set[t][‘timestamp’] + “</td></tr>“;
}

data_output += “<tr><td width=\”20px\”>“ + (index + 1) +

“</td><td>“ + “<table width=\”100px\” class=\”table\”>“ + set_output +

“<tr><td><b>“ + “SMA(t) = “ + sma_vec[index][‘avg’] + “</b></tr></td></table></td></tr>“;
}
return “<table class=\”table\”><thead><tr><th scope=\”col\”>#</th><th scope=\”col\”>Time Series</th>\

</thead><tbody>“ + data_output + “</tbody></table>“;
}
else if (view == 1) {
var set = sma_vec.map(function (val) { return val[‘set’]; });

for (var index = 0; index < sma_vec.length; index++)
{
data_output += “<tr><td width=\”20px\”>“ + (index + 1) +

“</td><td>[ “ + set[index].map(function (val) {
return (Math.round(val[‘price’] * 10000)/10000).toString(); }).toString() +

“ ]</td><td>“ + sma_vec[index][‘avg’] + “</td></tr>“;
}

return “<table class=\”table\”><thead><tr><th scope=\”col\”>#</th><th scope=\”col\”>\

Input</th><th scope=\”col\”>Output</th></thead><tbody>“ + data_output + “</tbody></table>“;
}
}
function onInputDataClick() {
document.getElementById(“dataset”).style.display = “block”;
document.getElementById(“graph-plot”).style.display = “block”;
document.getElementById(“data”).innerHTML = getInputDataTable();
var timestamps = data_raw.map(function (val) { return val[‘timestamp’]; });
var prices = data_raw.map(function (val) { return val[‘price’]; });
var graph_plot = document.getElementById(‘graph’);
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Plotly.newPlot( graph_plot, [{ x: timestamps, y: prices, name: “Stocks Prices” }], { margin: { t: 0 } } );
}
function onSMAClick() {
document.getElementById(“data”).innerHTML = getSMATable(0);

var sma = sma_vec.map(function (val) { return val[‘avg’]; });
var prices = data_raw.map(function (val) { return val[‘price’]; });
var window_size = parseInt(document.getElementById(“window-size”).value);
var timestamps_a = data_raw.map(function (val) { return val[‘timestamp’]; });
var timestamps_b = data_raw.map(function (val) {
return val[‘timestamp’]; }).splice(window_size, data_raw.length);
var graph_plot = document.getElementById(‘graph’);
Plotly.newPlot( graph_plot, [{ x: timestamps_a, y: prices, name: “Series” }], { margin: { t: 0 } } );
Plotly.plot( graph_plot, [{ x: timestamps_b, y: sma, name: “SMA” }], { margin: { t: 0 } } );
}
function ComputeSMA(time_s, window_size)
{
var r_avgs = [], avg_prev = 0;
for (let i = 0; i <= time_s.length - window_size; i++)
{
var curr_avg = 0.00, t = i + window_size;
for (let k = i; k < t andand k <= time_s.length; k++)
curr_avg += time_s[k][‘price’]/window_size;
r_avgs.push({ set: time_s.slice(i, i + window_size), avg: curr_avg });
avg_prev = curr_avg;
}
return r_avgs;
}
function GenerateDataset(size)
{
var dataset = [];
var dt1 = new Date(), dt2 = new Date();
dt1.setDate(dt1.getDate() - 1);
dt2.setDate(dt2.getDate() - size);
var time_start = dt2.getTime();
var time_diff = new Date().getTime() - dt1.getTime();
let curr_time = time_start;
for (let i = 0; i < size; i++, curr_time+=time_diff) {
var curr_dt = new Date(curr_time);
var hours = Math.floor(Math.random() * 100 % 24);
var minutes = Math.floor(Math.random() * 100 % 60);
var seconds = Math.floor(Math.random() * 100 % 60);
dataset.push({ id: i + 1, price: (Math.floor(Math.random() * 10) + 5) + Math.random(),
timestamp: curr_dt.getFullYear() + “-” + ((curr_dt.getMonth() > 9) ? curr_dt.getMonth() : (“0” +

curr_dt.getMonth())) + “-” +

((curr_dt.getDate() > 9) ? curr_dt.getDate() : (“0” + curr_dt.getDate())) + “ [“ + ((hours > 9) ? hours : (“0” + hours))
+

“:” + ((minutes > 9) ? minutes : (“0” + minutes)) + “:” + ((seconds > 9) ? seconds : (“0” + seconds)) + “]” });
}
return dataset;
}
async function trainModel(inputs, outputs, size, window_size, n_epochs, learning_rate, n_layers, callback)
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{
const input_layer_shape = window_size;
const input_layer_neurons = 100;
const rnn_input_layer_features = 10;
const rnn_input_layer_timesteps = input_layer_neurons/rnn_input_layer_features;
const rnn_input_shape = [ rnn_input_layer_features, rnn_input_layer_timesteps ];
const rnn_output_neurons = 20;
const rnn_batch_size = window_size;
const output_layer_shape = rnn_output_neurons;
const output_layer_neurons = 1;
const model = tf.sequential();
inputs = inputs.slice(0, Math.floor(size/100 * inputs.length));
outputs = outputs.slice(0, Math.floor(size/100 * outputs.length));
const xs = tf.tensor2d(inputs, [inputs.length, inputs[0].length]).div(tf.scalar(10));
const ys = tf.tensor2d(outputs, [outputs.length, 1]).reshape([outputs.length, 1]).div(tf.scalar(10));
model.add(tf.layers.dense({units: input_layer_neurons, inputShape: [input_layer_shape]}));
model.add(tf.layers.reshape({targetShape: rnn_input_shape}));
var lstm_cells = [];
for (let index = 0; index < n_layers; index++) {
lstm_cells.push(tf.layers.lstmCell({units: rnn_output_neurons}));
}
model.add(tf.layers.rnn({cell: lstm_cells,
inputShape: rnn_input_shape, returnSequences: false}));
model.add(tf.layers.dense({units: output_layer_neurons, inputShape: [output_layer_shape]}));
const opt_adam = tf.train.adam(learning_rate);
model.compile({ optimizer: opt_adam, loss: ‘meanSquaredError’});
const hist = await model.fit(xs, ys,
{ batchSize: rnn_batch_size, epochs: n_epochs, callbacks: {
onEpochEnd: async (epoch, log) => { callback(epoch, log); }}});
return { model: model, stats: hist };
}
function Predict(inputs, size, model)
{
var inps = inputs.slice(Math.floor(size/100 * inputs.length), inputs.length);
const outps = model.predict(tf.tensor2d(inps, [inps.length, inps[0].length]).div(tf.scalar(10))).mul(10);
return Array.from(outps.dataSync());
}
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