Physico-Chemical Features of Sangiovese Wine as Affected by a Post-Fermentative Treatment with Chitosan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Chitosan Solutions
2.2. Wine Samples
2.3. Oenological Parameters
2.4. Analysis of Phenolic Compounds
2.5. Chromatic Parameters
2.6. Identification and Quantification of Anthocyanins
2.7. Volatile Compounds
2.8. Identification of Phenolics Absorbed onto Chitosan
2.9. Sensory Analysis
2.10. Statistical Treatment
3. Results and Discussion
3.1. General Parameters
3.1.1. pH and Total Acidity
3.1.2. Total Phenolics
3.1.3. Abs 420, 520, 620 nm
3.2. Phenolic Acids
3.3. Effect of Chitosan on Color Features and Anthocyanins Composition of Wine
3.4. Volatile Profile
3.5. Visual and Aroma Profile of Volatile Phenols-Spiked Wines after Treatments with Solid and Dissolved Chitosan
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
C | KT | KTS | |
---|---|---|---|
Alcohols | |||
n-butanol | 131.48 b | 177.89 a | 152.54 ab |
3-penten-2-ol | 888.86 a | 993.05 a | 878.29 a |
2-methyl-1-penten-3-ol | 30.18 a | 36.21 a | 31.95 a |
1-pentanol | 42.06 a | 42.63 a | 41.14 a |
3-methyl-1-penten-3-ol | 24.98 a | 28.95 a | 23.96 a |
2-hexanol | 282.74 a | 295.10 a | 259.25 a |
4-methyl-1-pentanol | 18.42 a | 22.36 a | 21.36 a |
3-methyl-1-pentanol | 42.54 a | 49.63 a | 49.48 a |
n-hexanol | 833.58 ab | 852.77 a | 795.30 b |
diacetone alcohol | 72.65 a | 102.87 a | 89.12 a |
3-ethoxy-1-propanol | 138.91 a | 130.63 a | 126.35 a |
3-hexen-1-ol | 26.79 a | 27.23 a | 25.90 a |
2-hexen-1-ol | 8.75 a | 11.63 a | 11.54 a |
butane-2,3-diol | 6027.26 a | 5763.97 a | 5690.64 a |
1-octanol | 29.58 a | 25.14 a | 21.61 a |
1-methoxy-2-butanol | 63.84 a | 59.45 a | 55.09 a |
3-(methylthio)-1-propanol | 555.91 a | 541.36 a | 484.97 a |
3-(ethyltio)-1-propanol | 30.09 a | 21.71 a | 20.60 a |
2,7-dimethyl-4,5-Octanediol | 84.28 a | 67.58 a | 61.33 a |
benzyl Alcohol | 607.51 a | 718.50 a | 656.56 a |
benzene ethanol | 41,839.71 a | 43,546.65 a | 41,945.85 a |
2,2-dimethyl-3-octanol | 44.87 b | 129.14 a | 83.82 ab |
4-ethyl-2-methoxyphenol* | 704.68 a | 663.59 b | 659.22 b |
4-methyl-phenol | 19.45 a | 15.91 a | 18.07 a |
4-ethylphenol* | 1749.32 a | 1738.24 b | 1696.44 c |
Sum alcohol | 54,960.91 a | 56,563.91 a | 54,382.46 a |
Esters | |||
isoamyl acetate | 445.74 a | 389.41 ab | 344.64 b |
ethyl caproate | 85.14 b | 102.31 a | 60.31 c |
ethyl lactate | 5867.17 a | 5805.26 a | 5403.47 a |
ethyl octanoate | 13.39 a | 11.82 a | 12.54 a |
ethyl 3-hydroxy butanoate | 221.77 a | 232.53 a | 222.26 a |
linalyl acetate | 40.22 ab | 54.92 a | 29.20 b |
diethyl butanedioate | 4331.40 a | 4243.50 a | 4033.41 a |
1,3-Propanediol, diacetate | 444.05 a | 430.85 a | 411.71 a |
methyl-4-hydroxybutanoate | 51.09 a | 29.07 a | 43.70 a |
ethyl 4-hydroxybutanoate | 3575.26 a | 3805.39 a | 3594.69 a |
β-phenylethyl acetate | 92.83 a | 111.59 a | 134.01 a |
pentanoic acid, 2-methyl- pentyl ester | 117.49 ab | 141.38 a | 108.60 b |
diethyle 2-hydroxypentanedioate | 372.02 ab | 443.15 a | 344.12 b |
glycine, N-acetyl-, ethyl ester | 0.00 b | 20.91 a | 17.02 a |
methyl hexadecanoate | 152.22 a | 122.82 a | 150.46 a |
ethyl 2-hydroxy-3-phenylpropanoate | 526.35 a | 583.11 a | 527.07 a |
methyl hydrogen succinate | 91.85 a | 85.58 a | 60.48 a |
ethyl cinnamate | 628.91 a | 416.33 b | 350.10 b |
ethyl vanillate | 221.43 a | 234.30 a | 211.84 a |
Sum esters | 17,984.41 a | 17,958.84 a | 16,737.05 a |
Acids | |||
butanoic acid | 197.39 a | 105.75 b | 93.41 b |
isobutyric acid | 678.60 a | 656.93 a | 629.77 a |
pentanoic acid | 1120.04 a | 1044.36 a | 1014.48 a |
hexanoic acid | 874.99 a | 900.37 a | 854.28 a |
octanoic acid | 613.80 a | 609.98 a | 588.10 a |
decanoic acid | 73.46 a | 108.89 a | 91.08 a |
benzoic acid | 35.80 a | 49.63 a | 36.35 a |
hexadecanoic acid | 374.62 a | 362.08 a | 300.44 a |
octadecanoic acid | 308.40 a | 339.53 a | 227.47 a |
Sum acids | 3598.49 a | 3520.59 a | 3205.60 a |
Others | |||
2-hydroxy-3-pentanone | 24.50 a | 25.72 a | 29.06 a |
Furfural | 10.04 b | 28.77 a | 23.55 a |
cis-5-hydroxy-2-methyl-1,3-dioxane | 47.47 a | 43.75 a | 44.12 a |
benzaldehyde | 46.22 a | 52.57 a | 43.08 a |
linalyl acetate | 40.22 ab | 54.92 a | 29.20 b |
β-citronellol | 23.72 a | 18.61 ab | 12.04 b |
butyrolactone | 417.15 a | 457.09 a | 397.76 a |
4-ethoxybutanolide | 127.88 a | 111.08 ab | 99.84 b |
benzothiazole | 5.48 a | 9.39 a | 13.19 a |
2H-pyran-2,6(3H)-dione | 65.54 a | 70.38 a | 66.49 a |
pantolactone | 53.58 a | 43.35 a | 45.55 a |
5-oxotetrahydrofuran-2-carboxylic acid, ethyl ester | 412.39 a | 367.09 a | 347.28 a |
dihydro-5-(1-hydroxyethyl)-2(3H)-furanone | 374.57 b | 493.04 a | 405.37 ab |
thiophene, 2,3-dihydro- | 413.42 a | 375.67 a | 76.58 b |
2-furancarboxylic acid | 66.93 a | 73.59 a | 62.23 a |
vanillin | 136.62 a | 107.07 a | 94.64 a |
acetamide, N-(2-phenylethyl)- | 43.71 a | 46.02 a | 44.72 a |
acetovanillone | 90.06 a | 92.10 a | 99.67 a |
References
- Luo, Y.; Wang, Q. Recent advances of chitosan and its derivatives for novel applications in food science beverages. J. Food Process. Beverages 2013, 1, 1–12. [Google Scholar]
- Food and Drug Administration GRAS Notice GRN 397. Available online: https://www.accessdata.fda.gov/scripts/fdcc/?set=GRASNotices&id=397 (accessed on 24 August 2020).
- Commission Regulation (EU) 53/2011 of 21 January 2011. Off. J. Eur. Union 2011, L19/1–L19/6.
- Bornet, A.; Teissedre, P.L. Chitosan, chitin-glucan and chitin effects on minerals (iron, lead, cadmium) and organic (ochratoxin A) contaminants in wines. Eur. Food Res. Technol. 2007, 226, 681–689. [Google Scholar] [CrossRef]
- Petrova, B.; Cartwright, Z.M.; Edwards, C.G. Effectiveness of chitosan preparations against Brettanomyces bruxellensis grown in culture media and red wines. OENO One 2016, 50, 49. [Google Scholar] [CrossRef]
- Nardi, T.; Vagnoli, P.; Minacci, A.; Gautier, S.; Sieczkowski, N. Evaluating the impact of a fungal-origin chitosan preparation on Brettanomyces bruxellensis in the context of wine aging. Wine Stud. 2014, 3, 13–15. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, D.; Moreira, D.; Costa, E.M.; Silva, S.; Pintado, M.M.; Couto, J.A. The Antimicrobial action of chitosan against the wine spoilage yeast Brettanomyces/Dekkera. J. Chitin. Chitosan Sci. 2013, 1, 240–245. [Google Scholar] [CrossRef]
- Blateyron, L.; Bornet, A.; Brandam, C.; Jentzer, J.B. Le chitosane d’origine fongique Un nouvel outil de choix pour lutter contre Brettanomyces dans les vins. Rev. des oenologues des Tech. Vitivinic. oenologiques Mag. Trimest. d’information Prof. 2012, 39, 27–28. [Google Scholar]
- Filipe-Ribeiro, L.; Cosme, F.; Nunes, F.M. Reducing the negative sensory impact of volatile phenols in red wine with different chitosans: Effect of structure on efficiency. Food Chem. 2018, 242, 591–600. [Google Scholar] [CrossRef]
- Milheiro, J.; Filipe-Ribeiro, L.; Cosme, F.; Nunes, F.M. A simple, cheap and reliable method for control of 4-ethylphenol and 4-ethylguaiacol in red wines. Screening of fining agents for reducing volatile phenols levels in red wines. J. Chromatogr. B 2017, 1041, 183–190. [Google Scholar] [CrossRef]
- Picariello, L.; Rinaldi, A.; Blaiotta, G.; Moio, L.; Pirozzi, P.; Gambuti, A. Effectiveness of chitosan as an alternative to sulfites in red wine production. Eur. Food Res. Technol. 2020, 246, 1795–1804. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Puxeu, M.; Nart, E.; Martín, L.; Andorrà, I. Evaluation of Tempranillo and Albariño SO 2 -free wines produced by different chemical alternatives and winemaking procedures. Food Res. Int. 2017, 102, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Marín, A.C.; Colangelo, D.; Lambri, M.; Riponi, C.; Chinnici, F. Relevance and perspectives of the use of chitosan in winemaking: A review. Crit. Rev. Food Sci. Nutr. 2020, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Chatonnet, P.; Dubourdie, D.; Boidron, J.N.; Pons, M. The origin of ethylphenols in wines. J. Sci. Food Agric. 1992, 60, 165–178. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine (OIV). Compendium of International Methods of Wine and Must Analysis; OIV: Paris, France, 2020. [Google Scholar]
- Chinnici, F.; Natali, N.; Bellachioma, A.; Versari, A.; Riponi, C. Changes in phenolic composition of red wines aged in cherry wood. LWT 2015, 60, 977–984. [Google Scholar] [CrossRef]
- Boulton, R.B. A method for the assessment of copigmentation in red wines. Am. J. Enol. Vitic. 1996, 47, 346. [Google Scholar]
- Chinnici, F.; Natali, N.; Sonni, F.; Bellachioma, A.; Riponi, C. Comparative changes in color features and pigment composition of red wines aged in oak and cherry wood casks. J. Agric. Food Chem. 2011, 59, 6575–6582. [Google Scholar] [CrossRef]
- López, R.; Aznar, M.; Cacho, J.; Ferreira, V. Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. J. Chromatogr. A 2002, 966, 167–177. [Google Scholar] [CrossRef]
- Imeri, A.G.; Knorr, D. Effects of chitosan on yield and compositional data of carrot and apple juice. J. Food Sci. 1988, 53, 1707–1709. [Google Scholar] [CrossRef]
- Mitani, T.; Yamashita, T.; Okumura, C.; Ishii, H. Adsorption of Benzoic acid and its derivatives to swollen chitosan beads. Biosci. Biotechnol. Biochem. 1995, 59, 927–928. [Google Scholar] [CrossRef]
- Gylienė, O.; Binkienė, R.; Baranauskas, M.; Mordas, G.; Plauškaitė, K.; Ulevicius, V. Influence of dissolved oxygen on Fe(II) and Fe(III) sorption onto chitosan. Colloids Surf. A: Physicochem. Eng. Asp. 2014, 461, 151–157. [Google Scholar] [CrossRef]
- Chinnici, F.; Natali, N.; Riponi, C. Efficacy of chitosan in inhibiting the oxidation of (+)-catechin in white wine model solutions. J. Agric. Food Chem. 2014, 62, 9868–9875. [Google Scholar] [CrossRef] [PubMed]
- Spagna, G.; Pifferi, P.G.; Rangoni, C.; Mattivi, F.; Nicolini, G.; Palmonari, R. The stabilization of white wines by adsorption of phenolic compounds on chitin and chitosan. Food Res. Int. 1996, 29, 241–248. [Google Scholar] [CrossRef]
- Spagna, G.; Barbagallo, R.N.; Pifferi, P.G. Fining treatments of white wines by means of polymeric adjuvants for their stabilization against browning. J. Agric. Food Chem. 2000, 48, 4619–4627. [Google Scholar] [CrossRef] [PubMed]
- Marín, A.C.; Culcasi, M.; Cassien, M.; Stocker, P.; Thétiot-Laurent, S.; Robillard, B.; Chinnici, F.; Pietri, S. Chitosan as an antioxidant alternative to sulphites in oenology: EPR investigation of inhibitory mechanisms. Food Chem. 2019, 285, 67–76. [Google Scholar] [CrossRef]
- Fariña, L.; Boido, E.; Carrau, F.; Dellacassa, E. Determination of volatile phenols in red wines by dispersive liquid–liquid microextraction and gas chromatography–mass spectrometry detection. J. Chromatogr. A 2007, 1157, 46–50. [Google Scholar] [CrossRef]
- Delmondes, P.; Neto, D.D.O.; Barbosa, C.F. Flavonoid interaction with chitosan: Planning active packing with antioxidant and antimicrobial activity. In Proceedings of the MOL2NET 2017, International Conference on Multidisciplinary Sciences, Miami, FL, USA, 15 January–15 December 2017; MDPI Sciforum: Basel, Switzerland, 2017; Volume 3. [Google Scholar] [CrossRef]
- Trouillas, P.; Sancho-García, J.C.; De Freitas, V.; Gierschner, J.; Otyepka, M.; Dangles, O. Stabilizing and modulating color by copigmentation: Insights from theory and experiment. Chem. Rev. 2016, 116, 4937–4982. [Google Scholar] [CrossRef] [Green Version]
- Heras-Roger, J.; Alonso-Alonso, O.; Gallo-Montesdeoca, A.; Díaz-Romero, C.; Darias-Martín, J. Influence of copigmentation and phenolic composition on wine color. J. Food Sci. Technol. 2016, 53, 2540–2547. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.K.; He, F.; Zhang, B.; Reeves, M.J.; Liu, Y.; Zhao, X.; Duan, C.Q. The effect of prefermentative addition of gallic acid and ellagic acid on the red wine color, copigmentation and phenolic profiles during wine aging. Food Res. Int. 2018, 106, 568–579. [Google Scholar] [CrossRef]
- Gombau, J.; Vignault, A.; Pascual, O.; Gómez-Alonso, S.; Gracía-Romero, E.; Hermosín, I.; Canals, J.M.; Teissedre, P.L.; Zamora, F. Influence of oenological tannins on malvidin-3-O-monoglucoside copigmentation in a model wine solution. OENO One 2019, 53, 531–547. [Google Scholar] [CrossRef]
- Gordillo, B.; Rodríguez-Pulido, F.J.; Gonzalez-Miret, M.; Quijada-Morín, N.; Rivas-Gonzalo, J.C.; García-Estévez, I.; Heredia, F.J.; Escribano-Bailón, M.T. Application of differential colorimetry to evaluate anthocyanin–flavonol–flavanol ternary copigmentation interactions in model solutions. J. Agric. Food Chem. 2015, 63, 7645–7653. [Google Scholar] [CrossRef]
- González-Manzano, S.; Santos-Buelga, C.; Dueñas, M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T.; Dueñas, M. Colour implications of self-association processes of wine anthocyanins. Eur. Food Res. Technol. 2007, 226, 483–490. [Google Scholar] [CrossRef]
- He, F.; Liang, N.N.; Mu, L.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Anthocyanins and their variation in red wines I. Monomeric anthocyanins and their color expression. Molecules 2012, 17, 1571–1601. [Google Scholar] [CrossRef] [Green Version]
- Melgosa, M.; Pérez, M.M.; Martínez, J.A.; Hita, E.A.I.N.S. Note visual and instrumental color evaluation in red wines. Food Sci. Technol. Int. 2001, 7, 439–444. [Google Scholar]
- Asenstorfer, R.E.; Jones, G.P. Charge equilibria and pK values of 5-carboxypyranomalvidin-3-glucoside (vitisin A) by electrophoresis and absorption spectroscopy. Tetrahedron 2007, 63, 4788–4792. [Google Scholar] [CrossRef]
- Colangelo, D.; Torchio, F.; De Faveri, D.M.; Lambri, M. The use of chitosan as alternative to bentonite for wine fining: Effects on heat-stability, proteins, organic acids, colour, and volatile compounds in an aromatic white wine. Food Chem. 2018, 264, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Marín, A.C.; Buglia, A.G.; Riponi, C.; Chinnici, F. Volatile and fixed composition of sulphite-free white wines obtained after fermentation in the presence of chitosan. LWT 2018, 93, 174–180. [Google Scholar] [CrossRef]
- Nunes, C.; Maricato, É.; Cunha, Â.; Rocha, M.A.M.; Santos, S.; Ferreira, P.; Silva, M.A.; Rodrigues, A.; Amado, O.; Coimbra, J.; et al. Chitosan—genipin film, a sustainable methodology for wine preservation. Green Chem. 2016, 18, 5331–5341. [Google Scholar] [CrossRef]
- Filipe-Ribeiro, L.; Cosme, F.; Nunes, F.M. Data on changes in red wine phenolic compounds and headspace aroma compounds after treatment of red wines with chitosans with different structures. Data Brief. 2018, 17, 1201–1217. [Google Scholar] [CrossRef]
C | KT | KTs | |
---|---|---|---|
pH | 3.65 ± 0.01 b | 3.70 ± 0.01 a | 3.71 ± 0.01 a |
Titratable acidity (g/L) | 5.89 ± 0.13 a | 5.61 ± 0.09 b | 5.74 ± 0.01 ab |
TPI (GAE) (mg/L) | 1286 ± 17.43 a | 1179 ± 19.23 b | 1170 ± 4.14 b |
Abs 420 nm (AU) | 1.587 ± 0.02 a | 1.423 ± 0.01 b | 1.421 ± 0.01 b |
Abs 520 nm (AU) | 1.690 ± 0.02 a | 1.528 ± 0.01 b | 1.528 ± 0.01 b |
Abs 620 nm (AU) | 0.455 ± 0.02 a | 0.376 ± 0.03 b | 0.337 ± 0.04 b |
Hue | 0.939 ± 0.01 a | 0.931 ± 0.01 b | 0.930 ± 0.01 b |
Color density (AU) | 3.730 ± 0.04 a | 3.327 ± 0.01 b | 3.386 ± 0.02 b |
C | KT | KTs | |
---|---|---|---|
Flavanols | |||
Procyanidin B1 | 8.46 ± 0.25 a | 8.31 ± 0,16 a | 8.37 ± 0.23 a |
Catechin | 25.52 ± 1.34 a | 25.14 ± 1,15 a | 25.33 ± 0.97 a |
Procyanidin B3 | 3.50 ± 0.10 a | 3.44 ± 0,06 a | 3.50 ± 0.10 a |
Procyanidin B2 | 7.10 ± 0.43 a | 7.02 ± 0.37 a | 7.05 ± 0.27 a |
Epicatechin | 17.57 ± 1.03 a | 17.35 ± 0.89 a | 17.40 ± 0,69 a |
Sum flavanols | 62.15 ± 3.15 a | 61.27 ± 2.61 a | 61.64 ± 2.24 a |
Benzoate derivatives | |||
Gallic Acid | 38.21 ± 0.85 a | 37.71 ± 0,21 a | 38.05 ± 0.47 a |
Ethyl gallate | 8.28 ± 0.33 a | 8.29 ± 0,19 a | 8.32 ± 0.07 a |
Protocatechuic acid | 7.97 ± 0.10 a | 8.01 ± 0.26 a | 7.96 ± 0.17 a |
Ellagic acid | 5.27 ± 0.06 a | 3.02 ± 0.02 b | 3.17 ± 0.03 b |
Sum benzoates | 59.73 ± 0.74 a | 57.03 ± 0.56 a | 57.5 ± 0.24 a |
Hydroxycinnamate derivatives | |||
cis-Coutaric | 2.91 ± 0.07 a | 2.91 ± 0.02 a | 2.97 ± 0.01 a |
trans-Coutaric | 7.57 ± 0.14 a | 7.49 ± 0.03 a | 7.55 ± 0.01 a |
p-Coumaric acid | 1.97 ± 0.14 a | 1.71 ± 0.02 b | 1.71 ± 0.02 b |
cis-Caftaric acid | 2.36 ± 0.02 a | 2.21 ± 0.04 a | 2.21 ± 0.02 a |
trans-Caftaric acid | 24.54 ± 0.44 a | 23.32 ± 0.11 b | 23.72 ± 0.17 b |
GRP | 5.44 ± 0.05 a | 4.55 ± 0.04 c | 4.63 ± 0.02 b |
trans-Fertaric acid | 2.08 ± 0.02 a | 2.04 ± 0.03 a | 2.05 ± 0.01 a |
trans-Caffeic acid | 5.07 ± 0.32 a | 4.30 ± 0.01 b | 4.31 ± 0.02 b |
Sum hydroxycinnamates | 49.56 ± 0.96 a | 46.27 ± 0.22 b | 46.94 ± 0.24 b |
Flavonols | |||
Flavonol derivative | 1.23 ± 0.01 a | 1.23 ± 0.01 a | 1.24 ± 0.01 a |
Dihydromyricetin 3-O-rhamnoside | 1.41 ± 0.01 a | 1.39 ± 0.01 a | 1.40 ± 0.02 a |
Myricetin glucuronide | 1.87 ± 0.06 a | 1.76 ± 0.04 a | 1.78 ± 0.05 a |
Myricetin-3-glucoside | 4.24 ± 0.15 a | 4.09 ± 0.08 a | 4.12 ± 0.11 a |
Myricetin 3-rhamnoside | 1.97 ± 0.07 a | 1.91 ± 0.02 a | 1.92 ± 0.02 a |
Quercetin glucuronide | 5.95 ± 0.10 a | 5.68 ± 0.03 b | 5.75 ± 0.02 b |
Quercetin-3-glucoside | 4.55 ± 0.09 a | 4.46 ± 0.04 a | 4.52 ± 0.02 a |
Syringetin-3-glucoside | 1.57 ± 0.03 a | 1.57 ± 0.02 a | 1.57 ± 0.00 a |
Myricetin | 2.27 ± 0.09 a | 2.13 ± 0.07 b | 2.21 ± 0.04 ab |
Quercetin | 6.90 ± 0.28 a | 6.23 ± 0.14 b | 6.40 ± 0.36 ab |
Sum flavonols | 31.97 ± 0.25 a | 30.46 ± 0.08 c | 30.91 ± 0.16 b |
Stilbenes | |||
Resveratrol glucoside | 0.89 ± 0.01 a | 0.89 ± 0.00 a | 0.89 ± 0.00 a |
t-resveratrol | 1.03 ± 0.01 a | 1.02 ± 0.00 a | 1.03 ± 0.01 a |
Others | |||
Tirosol | 27.59 ± 0.71 a | 27.36 ± 0.32 a | 27.58 ± 0.34 a |
C | KT | KTS | |
---|---|---|---|
% Co-Pigmentation | 9.7 ± 2.7 a | 0.0 ± 0.1 c | 6.1 ± 1.8 b |
% Anthocyanins | 36.5 ± 2.1 b | 52.5 ± 4.0 a | 46.9 ± 2.1 a |
% Polymers | 53.8 ± 0.7 a | 47.5 ± 2.4 b | 47.0 ± 0.8 b |
CIELab parameters | |||
L* | 19.43 ± 2.62 b | 25.72 ± 0.11 a | 24.1 ± 0.51 a |
a* | 48.17 ± 3.28 b | 54.82 ± 0.14 a | 52.8 ± 0.43 a |
b* | 34.98 ± 4.03 b | 40.10 ± 0.08 a | 37.9 ± 0.55 a |
C* | 57.83 ± 4.97 b | 67.93 ± 0.16 a | 65.0 ± 0.67 a |
hab | 33.50 ± 1.49 b | 36.19 ± 0.05 a | 36.7 ± 0.18 a |
C | KT | KTs | |
---|---|---|---|
Glucosides | |||
Df-3-glc | 6.05 ± 0.07 a | 6.14 ± 0.08 a | 5.95 ± 0.24 a |
Cn-3-glc | 2.65 ± 0.14 a | 2.61 ± 0.03 a | 2.44 ± 0.23 a |
Pt-3-glc | 10.06 ± 0.25 a | 9.99 ± 0.06 a | 9.96 ± 0.13 a |
Pn-3-glc | 6.22 ± 0.14 a | 6.08 ± 0.06 a | 6.08 ± 0.08 a |
Mv-3-glc | 39.49 ± 1.32 a | 39.75 ± 0.37 a | 39.79 ± 0.60 a |
total glc | 64.47 ± 1.90 a | 64.57 ± 0.54 a | 64.22 ± 0.68 a |
Acetylglucosides | |||
Df-3-acetylglc | 0.22 ± 0.00 a | 0.22 ± 0.01 a | 0.23 ± 0.01 a |
Pn-3-acetylglc | 0.18 ± 0.02 a | 0.19 ± 0.01 a | 0.17 ± 0.05 a |
Mv-3-acetylglc | 0.56 ± 0.02 a | 0.56 ± 0.01 a | 0.56 ± 0.02 a |
Mv-3-coumaroylglc | 0.42 ± 0.01 a | 0.42 ± 0.01 a | 0.42 ± 0.02 a |
total acetylglc | 1.39 ± 0.05 a | 1.40 ± 0.02 a | 1.38 ± 0.05 a |
Ethyl-bridged adducts | |||
Mv-3-glc (epi) catechin | 0.77 ± 0.05 a | 0.75 ± 0.01 a | 0.76 ± 0.02 a |
Mv-3-glc-ethyl-(epi)-catechin | 0.60 ± 0.02 a | 0.59 ± 0.01 a | 0.58 ± 0.02 a |
Mv-3-glc-ethyl-(epi)-catechin | 1.05 ± 0.01 a | 1.04 ± 0.01 a | 1.05 ± 0.02 a |
Mv-3-glc-ethyl-(epi)-catechin | 0.77 ± 0.02 a | 0.76 ± 0.03 a | 0.78 ± 0.01 a |
total ethyl epi (cat) | 3.18 ± 0.06 a | 3.13 ± 0.02 a | 3.16 ± 0.03 a |
B-type vitisins | |||
B-type vitisin of Pt-3-glc | 0.19 ± 0.02 a | 0.17 ± 0.01 a | 0.18 ± 0.01 a |
B-type vitisin of Pn-3-glc | 0.20 ± 0.01 a | 0.20 ± 0.01 a | 0.22 ± 0.01 a |
B-type vitisin of Mv-3-glc (vitisin B) | 0.95 ± 0.08 a | 0.91 ± 0.01 a | 0.93 ± 0.04 a |
total B-type | 1.35 ± 0.09 a | 1.28 ± 0.03 a | 1.32 ± 0.04 a |
A-type vitisins | |||
A-type vitisin of Mv-3-glc (vitisin A) | 1.02 ± 0.03 a | 0.99 ± 0.01 ab | 0.97 ± 0.01 b |
A-type vitisin of Pt-3-glc | 0.72 ± 0.02 a | 0.67 ± 0.00 b | 0.70 ± 0.01 a |
total A-type | 1.75 ± 0.01 a | 1.66 ± 0.01 b | 1.67 ± 0.02 b |
Vinylphenol adducts | |||
Mv-3-glc-4-vinyl (epi) catechin | 0.44 ± 0.02 a | 0.40 ± 0.00 b | 0.38 ± 0.01 b |
Pinotin A | 0.24 ± 0.04 a | 0.24 ± 0.02 a | 0.22 ± 0.02 a |
Pn-3-glc-4-vinylphenol | 0.14 ± 0.02 a | 0.11 ± 0.00 b | 0.13 ± 0.01 ab |
Mv-3-glc-4-vinylphenol | 0.82 ± 0.06 a | 0.78 ± 0.02 a | 0.82 ± 0.03 a |
Mv-3-glc-4-vinylguaiacol | 0.14 ± 0.02 a | 0.11 ± 0.01 a | 0.13 ± 0.02 a |
Total vinyl | 1.77 ± 0.11 a | 1.65 ± 0.05 a | 1.68 ± 0.07 a |
Total anthocyanins | 149.28 ± 3.95 a | 148.72 ± 1.09 a | 148.27 ± 1.52 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro Marin, A.; Chinnici, F. Physico-Chemical Features of Sangiovese Wine as Affected by a Post-Fermentative Treatment with Chitosan. Appl. Sci. 2020, 10, 6877. https://doi.org/10.3390/app10196877
Castro Marin A, Chinnici F. Physico-Chemical Features of Sangiovese Wine as Affected by a Post-Fermentative Treatment with Chitosan. Applied Sciences. 2020; 10(19):6877. https://doi.org/10.3390/app10196877
Chicago/Turabian StyleCastro Marin, Antonio, and Fabio Chinnici. 2020. "Physico-Chemical Features of Sangiovese Wine as Affected by a Post-Fermentative Treatment with Chitosan" Applied Sciences 10, no. 19: 6877. https://doi.org/10.3390/app10196877
APA StyleCastro Marin, A., & Chinnici, F. (2020). Physico-Chemical Features of Sangiovese Wine as Affected by a Post-Fermentative Treatment with Chitosan. Applied Sciences, 10(19), 6877. https://doi.org/10.3390/app10196877