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Abstract: Plants produce specific structures constituting barriers, hindering the penetration of
pathogens, while they also produce substances inhibiting pathogen growth. These compounds
are secondary metabolites, such as phenolics, terpenoids, sesquiterpenoids, resins, tannins and
alkaloids. Bioactive compounds are secondary metabolites from trees and shrubs and are used
in medicine, herbal medicine and cosmetology. To date, fruits and flowers of exotic trees and
shrubs have been primarily used as sources of bioactive compounds. In turn, the search for new
sources of bioactive compounds is currently focused on native plant species due to their availability.
The application of such raw materials needs to be based on knowledge of their chemical composition,
particularly health-promoting or therapeutic compounds. Research conducted to date on European
trees and shrubs has been scarce. This paper presents the results of literature studies conducted
to systematise the knowledge on phenolic compounds found in trees and shrubs native to central
Europe. The aim of this review is to provide available information on the subject and to indicate gaps
in the present knowledge.

Keywords: bioactive compounds from European trees and shrubs; biotic stress; hydroxybenzoic and
hydroxycinnamic acids; quercetin

1. Introduction

Tree stands are exposed to the action of stress factors, both abiotic and biotic. The former include
weather anomalies, UV radiation, intensive lighting, water deficits, substrate salinity, high temperature
amplitudes and the presence of heavy metals. In turn, biotic factors include pest insects, pathogenic
fungi, bacteria and viruses. Trees counter stressors by initiating defence mechanisms to minimise or
eliminate disturbances in growth and development. They are related to the consumption of energy
and assimilates, the limited production of biomass, its disadvantageous allocation, as well as reduced
reproduction. The action of biotic stressors is mainly connected with trees and woody plants entering
into symbiosis with antagonists of pathogens and insects, etc.

Plants produce specific structures constituting barriers, hindering the penetration of pathogens, e.g.,
resin canals and the presence of waxes and resins on their surface, while they also produce substances
inhibiting pathogen growth and reducing the attractiveness of needles, etc. These compounds are
secondary metabolites, such as phenolics, terpenoids, sesquiterpenoids, resins, tannins and alkaloids.
A considerable number of secondary metabolites protect against the adverse effect of herbivorous
insects [1,2], pathogenic fungi [3–6] and bacteria [7,8]. These compounds differ in their chemical
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structure and are found both on the surface of plants and inside their tissues. Most of them are located
in vacuoles and cell walls of peripheral tissues. They are also contained in resins secreted from bark
and fruits.

Studies on plant responses to the action of various abiotic and biotic stresses clearly show that
they are processes related to the uncontrolled increase in levels of reactive oxygen species (ROS),
also referred to as free radicals, and H2O2 [9,10]. When found in excessive amounts, they readily enter
chemical reactions with cellular components.

During exposure to the action of stressors, one of the most important defence mechanisms
is connected with the production of chemical compounds. This phenomenon involves two types
of mechanisms: non-enzymatic and enzymatic. In the case of the former, we observe the action
of free radical scavengers, which, when reacting with free radicals, protect cells against adverse
reactions. These include ascorbic acid (vitamin C), A-tocopherol (vitamin E), b-carotene and flavonoids.
The former type comprises mechanisms related to the formation of specialised enzymes eliminating free
radicals and preventing their formation. The enzymatic system includes superoxide dismutase (SOD
E.C.), catalysing the dismutation of the superoxide anion radical, and catalase (CAT E.C.), degrading
hydrogen peroxide to water [11].

The penetration of a pathogen into a plant triggers defence mechanisms connected with
the production of secondary metabolites (phytoalexins), defence proteins, i.e., glycine, serine-rich
proteins and GSRP, (Golgi-localized SR-containing protein) being structural components of plant
cell walls, pathogenesis-related proteins (PR)m as well as the accumulation of phenols [12–15].
The chemical defence mounted by plants requires considerable energy expenditure, which may have
a negative effect on their growth and development. Thus, a considerable body of research has been
based on the growth−differentiation balance hypothesis and the trade-off principle. According to
this approach, differentiation is understood as the increased production of secondary metabolites
involved in plant defence at the expense of primary metabolites directly related to plant growth and
development [16,17]. In this respect, plant species are divided into those characterised by considerable
and rapid growth—thus, to a limited extent, investing in chemical defence—and plants with limited,
slow growth, but investing in secondary metabolites at a level ensuring effective protection against
pathogens. Typically, only one type of compound predominates in plants: alkaloids, phenolic
compounds or terpenoids. For example, the main defence compounds in oak leaves are condensed
tannins [18], while in coniferous trees these compounds are terpenoids [19].

Many species of trees and shrubs occurring in Europe are used in folk medicine and industry.
Tree and shrub species are widespread in Europe and there are many that can be used in folk

medicine as well as industry. Deciduous forests in the temperate zone are characterised by a relatively
small number of tree species. The dominant trees are oak, beech and hornbeam. Elm, maple, linden
and ash are of great importance. Forests in Northern Europe are dominated by two main species,
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karsten). In Poland, outside the
mountainous areas, where species composition is observed, the share of spruce, fir and beech is higher
in most of the country stands, while pine, as the dominant species, predominates. In addition, tree and
shrub species that were not native but introduced species, which spread on a larger scale, e.g., bird
cherry, were selected for the literature analysis.

Enhanced biosynthesis of the above-mentioned bioactive compounds is an advantageous side
effect of the action of stressors. Trees, in their anatomical parts most exposed to the action of pathogens,
accumulate the greatest amounts of bioactive compounds, thanks to which shoots, fruits, leaves, needles
and bark have become valuable sources of biologically active compounds. Secondary metabolites
are most frequently synthesised via three metabolic pathways: terpenoid (mevalonate), phenolic
(shikimate) and nitrogen metabolism (amino acids). For woody plants, the derivatives of the shikimate
pathways are of greatest importance, e.g., phenolic compounds (phenols, alcohols and phenolic acids,
phenylpropanoids, flavonoids, coumarins, tannins), hydroxamic acids and indole alkaloids [20–23].
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The aim of this study was to review the available literature in terms of the content of phenolic
compounds in trees and shrubs grown in Europe. The literature research was supplemented with
the results of our own research on the various anatomical parts of selected trees and shrubs growing
in Poland.

2. Materials and Methods

As part of this work, a bibliometric study was made of original scientific papers on bioactive
compounds in Europe’s trees and shrubs available in databases. The following databases were used:
Baidu Scholar, BASE (Pakistan Science, Mission Punjab, Pakistan, Baidu Technology, ParkBeijing,
Chiny)(Bielefeld Academic Search Engine), CEON (Centrum Otwartej Nauki ICM UW Warszawa
Polska) (Library of Science), CiteFactor(Directory Indexing of International Research Jurnals, New York,
NY, USA) (Academic Scientific Journals), EBSCOhost (Academic Search Complete), Web of Science
(New York, NY, USA), (ESCI, GIGA (Giga Inter Center, Catania, Italia), Information Centre, Google
Scholar(Google, US) Index Copernicus International (Index Copernicus International S.A.,China
Trading Hause, Hong Kong, China) InfoBase Index (Akshantak Enterprices, Mysure US), and OCLC
WorldCat® (World Cat, New York, NY, USA).

Researching methods were based on a list of selected results and the unification of their units to
make them easier to compare.

In addition to the results of the literature research, the work includes the results of our own research.
The research material consisted of samples of the following components: leaves (bird cherry

Folium Prunus padus), dogwood Folium Cornus L.), fruit (elderberry Fructus Sambucus, dogwood Fructus
Cornus, bird cherry Fructus Prunus padus.), bark (bird cherry Cortex Prunus padus) and needles: fir
Abies Mill., Larix Mill., pine Pinus L, and spruce Picea Mill from the forests of northwest Poland,
collected in 2018 and 2019. Samples weighing about 100 g were freeze-dried, ground and subjected
to chromatographic analysis after prior acid and base hydrolysis according to the method described
in [24].

HPLC Determination of Phenolic Acids and Flavonols.
Extracts were evaporated to dryness in a stream of nitrogen. Next, they were placed in sealed

17-mL culture test tubes, where first alkaline and then acid hydrolysis was run. In order to run alkaline
hydrolysis, 1 mL distilled water and 4 mL 2-M aqueous sodium hydroxide were added to test tubes.
Tightly sealed test tubes were heated in a water bath at 95 ◦C for 30 min. After cooling (approx.
20 min), test tubes were neutralised with 2 mL 6-M aqueous hydrochloric acid solution (pH = 2).
Next, samples were cooled in water with ice. Flavonoids were extracted from the inorganic phase
using diethyl ether (2 × 2 mL). Formed ether extracts were continuously transferred to 8-mL vials.
Next acid hydrolysis was run. For this purpose, the aqueous phase was supplemented with 3 mL
6 M aqueous hydrochloric acid solution. Tightly sealed test tubes were heated in a water bath at
95 ◦C for 30 min. After being cooled in water with ice, the samples were extracted with diethyl ether
(2 × 2 mL). The produced ether extracts were continuously transferred to 8-mL vials, after which they
were evaporated to dryness in a stream of nitrogen. Prior to analyses, samples were dissolved in
1 mL methanol. Phenolic compound analysis was performed using an Acquity H class UPLC system
equipped with a Acquity PDA detector (The ACQUITY UPLC Photodiode Array (PDA) Detector)
(Waters Corp, Milford, MA, USA). Chromatographic separation was performed on an Acquity UPLC®

BEH C18 column (100 mm × 2.1 mm, particle size—1.7 µm) (Watersy, Dublin, Ireland). Elution was
carried out in a gradient using the following mobile phase composition: A: acetonitrile with 0.1%
formic acid, B: 1% aqueous formic acid mixture (pH = 2). Concentrations of phenolic compounds were
determined using an internal standard at wavelengths λ = 320 nm and 280 nm and finally expressed as
mg/100 g dw of samples. Compounds were identified by comparing the retention time of the analysed
peak with the retention time of the standard and by adding a specific amount of the standard to the
analysed samples and repeating the analysis. The detection level was 1 µg/g [24].
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3. Results

3.1. Phenolic Compounds

In the literature, polyphenols were the group of compounds considered to be the basic factor of
the non-enzymatic plant immune mechanism.

Polyphenols are secondary plant metabolites varying greatly in terms of their structure and
molecular mass, as well as their physical, biological and chemical properties. They are found in all
plant parts, i.e., flowers, fruits, seeds, leaves, roots, bark and lignified parts [25]. Polyphenols are
based on an aromatic group of phenols. For the purpose of this study, polyphenols were defined and
classified into subclasses according to their structural features [26].

This polyphenols database categorises polyphenols into four classes (Figure 1).
Woody plants very often synthesise phenolic compounds via the shikimate pathway.
This pathway plays an important role in the synthesis of many aromatic compounds in plants.

In this pathway, aromatic amino acids are formed, i.e., phenylalanine, tyrosine and tryptophan,
and they are used by higher plants as structural components of proteins and as precursors of secondary
metabolites. In this process, aromatic phenolic acids are produced, contained in the complex structures
of secondary metabolites, e.g., lignin [27,28]. (Figure 2) They are synthesised in the reaction of
phosphoenolpyruvate with erythrose-4-phosphate.
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Phenolic compounds, in terms of the structure of the basic carbon skeleton, may be divided into
phenolic acids, flavonoids, tannins (hydrolysable and non-hydrolysable tannins—proanthocyanidins)
and stilbenes [29].

3.1.1. Phenolic Acids

Phenolic acids, in their structure, contain a hydroxyl and a carboxyl group. Hydroxyl derivatives
of benzoic and cinnamic acids are common in the plant world (Table 1).

Table 1. The structures of phenolic acids [30,31].

(a) hydroxybenzoic acids

Acids R1 R2 R3 R4

3-hydroxybenzoic acid H OH H H

4-hydroxybenzoic acid H H OH H

Salicylic acid OH H H H

Pyrocatechuic acid OH OH H H

Genistic acid OH H H OH

Procatechuic acid H OH OH H

Vanillic acid H OCH3 OH H

Isovanillic acid H OH OCH3 H

Gallic acid H OH OH OH

Syringic acid H OCH3 OH OCH3

α-Resorcylic acid H OH H OH

β-Resorcylic acid OH H OH H
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In plant tissues, other complexes of phenolic acids were also identified, e.g., complexes with
flavonoids, fatty acids, sterols and polymers of cell walls. Phenolic acids may also be components of
anthocyanins or flavones [30,31]. A separate group is composed of depsides, being a complex of two
or more molecules of phenolic acids. In plant organisms, including trees, they are formed mainly in
the reaction of the so-called shikimate pathway or malate acid.

Tyrosine and phenylalanine are precursors of most phenolic acids, from which, as a result of
deamination, cinnamic acid and its hydroxy derivatives are formed [32].

In plants, phenolic acids are mostly found in the bound form as esters and glycosides contained in
lignins and hydrolysed tannins. Examples in this respect may be provided by hydroxycinnamic acids
found in ester complexes with carboxylic acids or with glucose. They appear in ester complexes with
the following acids: malonic, tartaric, α-hydroxy-hydrocaffeic, hydroxycinnamic, tartronic, shikimic,
galacturonic, glucaric (as caffeic acid glucuronide), gluconic (as feruloylgluconic acid, which main
isomer is 2-O-feruloyl gluconic acid) and 4-methoxyaldaric (as 2-O-feruloyl-4-methoxyaldaric acid).
In turn, hydroxybenzoic acids are primarily found as glycosides. In plant tissues, other complexes of
phenolic acids were also identified, e.g., complexes with flavonoids, fatty acids, sterols and polymers
of cell walls [30,31]. Phenolic acids are found in wood of oak, pine, spruce, fir, walnut, willow, birch
(leaves), and in the fruits of bird cherry (Table 2).

A particularly interesting active compound from the group of hydroxybenzoic acids is ellagic
acid, a dimer of gallic acid, found in plants in the free form and (more frequently) in an ester complex
with glucose, forming hydrolysable tannins (ellagotannins) [33,34]. It is found in the wood of oak,
walnut and sweet chestnut, as well as in berry fruits, such as in strawberries and raspberries [35,36],
as well as in the loosestrife family (Lythraceae), particularly pomegranate [10,18,37], and in certain nut
seeds [38] and Muscadine grapes. Ellagic acid exhibits, e.g., anti-cancer properties, thanks to which it
may inhibit cell division and induce apoptosis in cancer cells [39,40]. Moreover, its anti-inflammatory
and antioxidant action [41,42] were investigated and confirmed. Ellagic acid found in Cornelian cherry
fruit exhibits immunostimulatory, immunomodulatory, antimicrobial, antioxidative and anti-cancer
action. It inhibits the adverse effect of UVB radiation (Ultraviolet B), protects skin against degradation
and exhibits anti-inflammatory action [43–45]. Ellagic acid is also found in the ester form, bound with
glucose, forming hydrolysable tannins (so-called ellagitannins).

Salicylic acid, i.e., 2-hydrobexybenzoic acid, whose natural source is willow, is another compound
of particular interest. Willow bark contains a biologically active substance referred to as salicin [46].
Salicin is a β-glucoside of saligenin [47], which, in vivo, undergoes a two-stage transformation
consisting of deglycolisation and oxidation to salicylic acid [48,49]. Thanks to the rapid development
of chemical synthesis in the late 19th century, this acid has become a direct precursor of other drugs of
similar structure, the so-called salicylates, and non-steroid anti-inflammatory drugs. They include,
e.g., non-acetylated derivatives of salicylic acid such as sodium salicylate, methyl salicylate, diflunisal,
phenyl salicylate (salol), choline salicylate, ethylene glycol salicylate, salicylamide, salsalate, benorylate
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and diethylamine salicylate [50,51]. In turn, the acetylated derivative of this acid, i.e., aspirin, is an
anti-inflammatory, analgesic, antipyretic and antirheumatic drug.

Table 2. Phenolic acids found in trees and shrubs.

Trees and Shrubs Phenolic Acids Literature

Scots pine Pinus sylvestris L. Caffeic acid, salicylic, ferulic, vanillic, gallic,
sinapic, p-coumaric, protocatechuic acids [52–57]

Norway spruce Picea abies H. Karst
in the roots, wood, mature seeds

Shikimic acid, galusic acid, p-coumaric acid,
protocatechuic acid, ferulic, vanillic, syringic,
sinapic, salicylic, quinic acids, protocatechuic,

gallic acids

[52,58–62]

Silver fir Abies alba Mill. Wood
and bark

Gallic acid, homovanillic acid protocatehuic
acid, p-hydroxybenzoic acid, vanillic and

p-coumaric acids
[63]

European beech Fagus sylvatica
L.-leaves

Caffeic acid, ferulic acid, chlorogenic acid
syringic, gallic, abscisic and cinnamic acids [52,58,64]

Oak Quercus robus L.

Ellagic acid, gallic acid, gentisic acid,
p-hydroxybenzoic acid, protocatechuic acid
syringic acid vanillic acid, p-coumaric acid,

caffeic acid, ferulic acid sinapic acid

[52,58,65–67]

Walnut Juglans regia L. Ellagic acid, caffeic acid, p-coumaric acid,
galusic acid [52,58,68]

Willow Salix spp.
Ferulic, caffeic, salicylic, vanillic, syringic,
α-resorcylic, m and p-hydroxybenzoic,

p-coumaric, cinnamic acids
[58,69]

Salix alba L. Salicylic and p-coumaric acid [70]

Salix babylonica L.-leaves Caffeic and p-coumaric acids [71]

Salix capitata L.-leaves Protocatechuic acid [72,73]

Silver birch Betula pendula
Roth-leaves

Chlorogenic, p-hydroxybenzoic, caffeic, gallic,
coumaric, p-hydroxycinnamic acids [74]

Hawthorn Crataegus L. Chlorogenic, caffeic acid [58,75]

Rowan Sorbus aucuparia L. Neochlorogenic, chlorogenic, protocatechuic,
caffeic and p-hydroxybenzoic acids [76]

White poplar Populus alba L.-buds Benzoic, ferulic, caffeic acids, cinnamic,
cis-p-coumaric and trans-p-coumaric acids [58,77]

Bird cherry Prunus padus L. fruits Caffeic acid, ferulic, coumaric, chlorogenic,
elagic, gallic acids [58,78]

Prunus serotina Ehrh. Gallic acid, caffeic and p-hydroxybenzoic
acids, p-coumaric, ferulic, cinnamic acids [79]

To summarise, phenolic acids protect plants against the action of microorganisms and insects,
while, in combination with polysaccharides, they make cell walls more rigid. In the human organism,
they exhibit diverse biological activity, e.g., scavenging free radicals, chelating metal ions, modifying
enzyme activity and protein availability. They prevent cardiovascular disease, cancer and diabetes.
Additionally, they protect against photooxidative skin damage [80].

Based on our own conducted research on a representative number of plant material samples
of wild-growing trees and shrubs in north-western Poland, it was found that spruce needles had
the highest content of phenolic acids, and pine needles the lowest (Table 3). Among the analysed
acids, we found in fir benzoic and vanillic, in larch caffeic and coumaric acids, in pine caffeic and
ferulic, and, in spruce, 4 hydroxybenzoic, caffeic and chlorogenic, which were found in the highest
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concentration in the needles tested. Salicylic acid and rozmaric acid, on the other hand, were present at
a very low concentrations in all tested samples, except for larch for the latter acid. The samples varied
considerably in terms of the content of phenolic acids (Table 3).

Table 3. Concentration range of phenolic acids (mg/kg d.w. needles) in pine, fir, larch and spruce needles.

Phenolic Acids
Fir Larch Pine Spruce

Range Range Range Range

Gallic 4.5 5.4 5.5 7.3 12.5 14.1 36.6 41.3

4-hydroxybenzoic 31.5 38.8 42.3 48.6 40.2 55.8 199.5 227.0

Vanilic 183.6 194.4 11.2 20.4 4.6 7.1 5.7 7.6

Caffeic 27.4 30.8 161.0 177.5 87.6 107.0 204.6 287.9

Syringic 3.6 4.3 15.9 16.3 5.3 8.9 18.3 20.1

Vanilin 10.2 11.2 16.2 24.4 0.1 0.4 0.2 1.5

p-Cumaric 10.0 15.3 225.2 249.0 14.6 19.9 6.3 9.0

Benzoic 216.4 239.3 48.5 60.5 8.5 12.5 0.7 6.9

Ferulic 0.5 1.1 6.4 7.4 88.6 109.9 52.4 70.2

Sinapic 5.3 6.9 3.6 5.2 3.1 4.3 50.5 68.4

t-Cinnamic 27.4 29.8 55.0 63.7 5.2 8.7 36.5 45.1

Chlorogenic 3.4 10.9 28.7 32.4 24.2 29.1 201.7 246.2

Protocatechuic 0.3 1.2 13.5 20.1 0.3 0.7 11.8 20.5

Rozmaric 0.3 1.1 147.9 163.7 1.6 3.6 0.3 0.8

Salicylic 0.09 0.1 0.1 0.9 0.2 0.5 5.6 6.8

Total 524.5 590.6 781 897.4 296.6 382.5 830.7 1059.3

Mean 557.55 839.2 339.55 945

Elderberry, bird cherry and dogwood fruits and dogwood leaves were characterised by high
phenolic acid content, and the samples were particularly rich in benzoic acid (especially dogwood),
p-coumaric acid and chlorogenic acid. The highest variation was found in the case of benzoic acid,
where, in the dogwood fruit sample, it was present in concentrations of 655 µg/g d.w. and 17 µg/g d.w.
for bird cherry bark. Protocatechuic, 4-hydroxybenzoic, vanillic, caffeic, salicylic and rozmaric acids
were present in low concentrations in almost all samples (Table 4).

3.1.2. Flavonoids

The chemical structure of all flavonoids is based on the hydrocarbon skeleton of flavone (Figure 1).
They differ in the number and type of substituents, while differences between these compounds result
primarily from a different structure in only one basic ring. Chalcone formed via biosynthesis from
phenylalanine is a precursor of flavonoids. Its synthesis starts with shikimic acid. Flavonoids are
found not only as free molecules (aglycones), but also much more frequently in the bound form
with sugars (glycosides). To date, over 7000 various flavonoids have been identified, which, in terms
of their chemical structure, are divided into flavones, flavonols (3-hydroxyflavones), flavanones,
flavanols (flavan-3-oles), flavanonoles, anthocyanidins, isoflavones and neoflavonoids (Figure 1,
Table 5). Thanks to their unique structure, flavonoids may protect the cell against reactive oxygen
species (ROS) generated in the organism [81,82].
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Table 4. Concentration range of phenolic acids (mg/kg d.w.) in elderberry, bird cherry dogwood fruits; bird cherry and dogwood leaves and bird cherry bark.

Phenolic Acids
Elderberry Fruit Bird Cherry Leaves Bird Cherry Fruit Bird Cherry Bark Dogwood Fruit Dogwood Leaves

Range Range Range Range Range Range

Gallic 2.54 14.16 115.80 209.58 37.25 38.52 14.25 19.36 110.65 130.52 89.69 112.36

4-hydroxybenzoic 0.81 12.16 1.29 3.83 13.25 19.85 98.63 124.54 6.52 864.87 6.56 8.45

Vanilic 0.19 0.53 10.80 26.33 11.07 27.41 78.95 89.63 7.89 14.25 8.56 10.23

Caffeic 1.69 13.57 17.25 77.47 78.51 88.52 2.44 3.88 1.40 13.52 2.55 3.46

Syringic 2.92 6.37 0.17 0.24 10.45 11.57 45.12 58.95 3.56 2.58 1.16 2.12

Vanilin 5.39 12.74 11.07 18.70 131.54 185.70 172.45 198.63 4.58 4.32 5.69 7.56

p-Cumaric 1.31 2.46 183.85 187.66 89.69 106.74 344.20 375.25 2.55 6.6 4.35 6.56

Benzoic 16.05 57.80 28.04 35.56 102.54 127.40 14.95 16.98 498.52 655.23 377.51 430.56

Ferulic 58.16 169.44 3.81 9.56 3.04 5.25 77.52 89.52 2.12 3,10 1.56 3.56

Sinapic 163.28 321.03 0.32 0.64 11.21 20.74 1.20 3.23 0.50 1.6 0.59 2.04

t-Cinnamic 101.40 214.89 0.11 0.74 0.10 0.60 0.60 1.10 1.10 1.8 0.22 1.23

Chlorogenic 205.26 546.61 3.81 18.05 1.40 1.80 99.50 147.84 0.30 1.4 0.96 1.6

Protocatechuic 1.63 3.56 0.11 0.21 0.50 0.90 13.45 17.36 Nd 0.2 16.74 26.56

Rozmaric 1.32 4.37 0.21 0.64 1.70 1.90 4.74 9.69 Nd 0.1 5.59 10.44

Salicylic 6.90 9.99 11.18 38.00 30.50 39.84 5.85 6.46 10.32 21.54 105.45 130.55

Total 568.85 1389.6 387.82 627.22 522.75 676.74 973.85 1162.42 650.01 864.87 627.18 757.28

Mean 979.27 507.52 599.75 1068.14 754.44 692.23



Appl. Sci. 2020, 10, 6907 12 of 24

Table 5. Division of flavonoids depending on their chemical structure [83].

Flavonoids Representatives

Flavonols quercetin, kaempferol, myricetin, morin, rutin and others

Flavones luteolin, apigenin, chrysin, acacetin

Flavanones hesperidin, naringenin, eriodictyol, sakuranin

Flavan-3-ol catechin, epicatechin, theaflavin and derivatives

flavanonoles taxifolin, aromadendrin

Isoflavones daidzein, genistein, glycitein

Anthocyanidin

anthocyanins: cyanidin, delphinidin, malvidin, pelargonidin,
peonidin, petunidin, neoflavonoids (4-phenylcoumarin or

4-phenylchromen-2-one): dalbergin, dalbergichromene,
nivetin

Flavonoids are phytoalexins, i.e., substances serving protective functions, formed as a result of
the plant’s contact with a pathogen, frequently inducing the expression of several genes encoding
enzymes of the phenolic biosynthesis pathway [84]. Isoflavonoids are highly toxic towards fungal
pathogens, which is particularly evident in such compounds as pterocarpanes, isoflavanes, isoflavones
and isoflavonones. The mechanism of their action consists of the inhibition of spore development and
mycelium growth as well as the damage of fungal cell membrane structure [85–88]. Flavonoids are
compounds that are commonly found in plants; therefore, they constitute an everyday part of the
average human diet (approx. 1 g/day). They are, among others, found in fruits (chokeberry, citrus
fruits, blueberries, blueberries, grapes, cherries) and vegetables (onions, tomatoes, peppers, soybeans,
broccoli) and in trees and shrubs (Table 6).

Table 6. Flavonoids found in trees and shrubs.

Tree and Shrub Species Flavonoids Literature

Scots pine Pinus sylvestris L.
needles

Prodelphinidin and lacks taxifolin, quercetin
and taxifolin taxifolin, taxifolin

3′-O-glucoside, quercetin as well as quercetin
3-O-glucoside and 3′-O-glucoside

[58,89,90]

Oak Quercus robus L.
Tannin derivatives of pirocatechin and

pyrogallol, epicatechin, flavan-3-ol,
catechin, quercetin

[91,92]

Silver fir Abies alba Mill. Wood and
bark

Catechin, epicatechin and catechin
tetramethyl ether [93]

European beech Fagus sylvatica
L.-leaves wood Bark

Catechin, kempferol, gallocatechin,
kaempferol 3-glucoside, naringenin,

quercetin, quercetin-3-glucoside, mirycetyna,
quercetin, taxifolin

quercetin, kaempferol, chrysin Catechin,
cis-coniferin, cis-isoconiferin, cis-syringin,

R-glucodistylin, S-glucodistylin,
taxifolin-xylopyranoside quercetin,

kaempferol, chrysin, taxifolin,
and (epi)catechin

[52,58,94]



Appl. Sci. 2020, 10, 6907 13 of 24

Table 6. Cont.

Tree and Shrub Species Flavonoids Literature

Spruce Picea abies H. Karst-needle

Catechin, kaempferol 3-glucoside, naringenin,
quercetin, quercetin 3-glucoside, quercitrin

Catechin, epicatechin astringin, piceidin
Isorhapotin, piceatannol; prodelphinidins

[52,58,95–98]

Salix purpurea L.

Salipuroside, isosalipuroside. naringenin,
naringenin 5-O-glucoside, naringenin

7-O-glucoside, chalcone isosalipurposide,
flavan-3-ol, catechin

[97,98]

Salix spp: S. alba S. viminalis

Amentoflavone, isoquercetin, quercetin, rutin,
quercimeritrin, apigenin, 3-O-glucoside

rhamnasine, isosalipurpuroside, hyperoside,
catechin naringenin, luteolin, eriodycerol,

naringin, kaempferol, apigenin-7-O-glucoside,
astralgin, quercimeritrin and
quercetin-3,7-di-O-glucoside

[52,58,99–104]

Hawthorn Crataegus L.
Catechin, epicatechin, hyperoside, quercetin,

vitexin, isovitexin, apigenin,
rutin and kaempferol

[52,58,105]

Black elder Sambucus nigra
L.-flowers rutin, quercetin, astragalin and isoquercetin [52,58,106,107]

Birch-leaves hyperoside, myricetin and luteolin,
catechin tannins [52,58]

Rowan Sorbus aucuparia L. quercetin, rutin, hyperoside, isoquercetin and
quercetin-3-O-sophoroside [108]

Common yew Taxus baccata L. 3-O-rutinosides quercetin, myricetin,
kaempferol, 7-O-glucosides [109]

Black locust Robinia pseudoacacia L.
dihydrorobinetin robinetin, butein

dihydromyricetin, fisetin, fustin,
isoliquiritigenin, myricetin liquiritigenin

[110]

Prunus serotina Ehrh. Catechin, naringenin, quercetin, [79]

Horse chestnut quercetin, kaempferol, rutin [111]

Bird cherry Prunus padus L. fruits Catechin, epicatechin, hyperoside, quercitrin
quercetin, rutin [112]

Based on our own conducted research on plant material samples, it was found that fir needles
and elderberry fruit had the highest content in flavonoids, and spruce needles and bird cherry leaves
the lowest (Tables 7 and 8). Catechin and naringenin were present in the highest concentration in the
needles tested.

The highest concentration of flavonoids found in elderberry fruits turned out to be quercetin.
A high concentration of catechins was observed in samples of the bark and fruit of bird cherry. Among
the analysed flavonoids, vitexin, rutin, quercetin, apigenin, kaempferol, and luteolin were present in
very low concentrations in all sample needles. Samples of the fruit, bark and leaves of the examined
trees and shrubs contained low concentrations of luteolin, vitexin and kaempferol (Table 8).
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Table 7. Concentration range of flavonoids (mg/kg d.w. Needles) in pine, fir, larch and spruce needles.

Flavonoids
Fir Larch Pine Spruce

Range Range Range Range

Apigenin 0.0 0.5 0.2 0.6 0.1 0.4 Nd 0.2

Katechin 248.3 264.2 24.6 28.9 23.7 32.5 3.6 4.9

Kempferol 0.1 0.2 0.1 1.1 0.1 0.1 4.7 7.3

Luteolin 0.0 0.1 0.1 1.4 0.0 0.2 0.0 0.7

Naringenin 27.5 32.8 92.0 105.6 87.4 115.8 73.6 99.8

Quercetin 0.2 0.4 9.4 11.5 3.2 6.6 0.2 0.6

Rutin 0.9 1.6 4.5 6.6 1,7 4.1 0.6 0.7

Vitexin 0.8 1.9 6.2 10.7 0.3 1.1 2.1 3.9

Total 277.8 301.6 136.94 166.22 116.53 160.78 84.72 118.11

Mean 289.72 151.58 138.66 101.42

Table 8. Concentration range of flavonoids (mg/kg d.w.) in elderberry, bird cherry dogwood fruits;
bird cherry and dogwood leaves and bird cherry bark.

Flavonoids
Elderberry Fruit Bird Cherry

Leaves
Bird Cherry

Fruit
Bird Cherry

Bark Dogwood Fruit Dogwood
Leaves

Range Range Range Range Range Range

Apigenin 86.26 269.99 0.59 0.82 2.28 3.80 11.40 13.45 1.06 2.60 8.33 10.12

Katechin 0.17 1.59 0.32 0.86 566.3 687.25 858.25 904.52 284.60 314.30 0.51 0.98

Kempferol 1.05 5.00 0.86 1.69 5.18 6.08 3.04 4.88 0.50 1.40 0.84 1.60

Luteolin 17.07 105.69 0.11 0.64 Nd 0.20 9.85 12.45 0.10 0.50 1.04 2.60

Naringenin 74.67 131.38 116.01 164.08 0.80 2.01 1.52 2.30 344.65 430.50 300.55 345.62

Quercetin 671.45 1095.18 109.55 274 110.5 147.54 608.41 641.11 189.69 246.66 179.98 200.45

Rutin 1018.19 4571.75 30.53 34.25 15.32 19.85 22.52 26.56 29.69 44.32 95.52 125.65

Vitexin 1.12 5.28 0.59 0.85 5.84 9.85 3.15 5.50 1.56 2.56 11.51 23.56

Total 1869.9 6185.87 258.54 477.2 706.24 876.58 1518.1 1610.77 851.85 1042.84 598.28 710.58

Mean 4027.93 367.88 791.4 1564.46 947.35 654.43

Experiments in vitro and in vivo show the varied attributes of these compounds, including
their antioxidant, anti-inflammatory, anticancer, antiatherosclerotic and anti-aggregational properties,
as well as their capacity for plugging vessels and detoxification. The multidirectional spectrum of
the functions of flavonoids suggests a wide range of prospective applications for these compounds,
not only in the prevention of many diseases, but also in their therapy (e.g., cancers, cardiovascular
disease, atherosclerosis, diabetes, etc.) [111–114].

3.1.3. Tannins

Tannins are a group of organic chemical compounds, derivatives of phenols, which are
naturally produced by plants. Tannins are usually divided into two basic groups: hydrolysable
and non-hydrolysable (condensed) tannins [115–117].

In the centre of the hydrolysable tannin molecule is a monosaccharide (glucose or other polyols,
e.g., branched sugar–hamamelose, shikimic, quinic acid, and even pectin), whose hydroxyl groups,
partially or completely, are esterified with gallic acid residues, e.g., m-digalus acid. These tannins are
easily hydrolysed by weak acids and bases or enzymes to monomeric products. Depending on the type
of resulting products, gallotannins and ellagitannins are distinguished. Gallotanins are the simplest
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tannins, containing, in their molecule, glucose and ester in association with gallic acid. Another
example of such compounds is tannic acid (C76H52O46); see Figures 3 and 4.
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Proanthocyanidins (PA) (the condensed tannins–non-hydrolysable tannins) are oligomers or
polymers of flavonoid structures, mainly flavan-3-ols, (-)—epicatechin and (+)—catechin (Figure 1),
flavan-3,4-diols or a mixture of both. In contrast to hydrolysable tannins, they do not contain sugar
units. Some authors distinguish an additional third group—catechin tannins—examples of which are
the polyphenols found in green tea leaves. They have a characteristic carbon-condensed tannin and do
not contain sugar residues. These include monomeric flavan-3-ols, e.g., (+)—catechin, (-)—epicatechin,
(+)—gallocatechin and (-)—epigallocatechin or their ester derivatives, e.g., 3-gallates (-) -epicatechin
and (-)—epigallocatechin. The latter group of compounds is easily enzymatically hydrolysed under the
influence of tannase (4). The flavan-3-ol units are linked mainly through the C4→C8 bond (Figure 4),
but the C4→C6 bond also exists (both called B-type). The flavan-3-ol units can also be doubly linked by
an additional ether bond at C2→O7 (A-type). The size of PA molecules can be described by their degree
of polymerisation (114). Three common flavan-3-ols, which differ in their hydroxylation patterns,
are found in PAs. Proanthocyanidins, consisting exclusively of (epi)catechin, are called procyanidins
(PCs). Proanthocyanidins, containing (epi) afzelechin or (epi)gallocatechin as subunits, are named
propelargonidins (PPs) or prodelphinidins (PDs), respectively. Propelargonidins and PDs are less
common in nature than procyanidins [115].

The basic route for the synthesis of all tannins is the pathway associated with sugar catabolism,
leading to shikimic acid. Gallic acid is formed from shikimic or quinic acid, which is a substrate in
various types of condensation, resulting in the synthesis of tannins [115].

Proanthocyanidins (also called condensed or non-hydrolysable tannins) are also found in leaves,
lignified parts of plants, as well as flowers and fruits [118]. Inflorescences of hawthorn (Crataegi
inflorescentia, Crataegus sp. Rosaceae) are well-known sources of proanthocyanidin that have been used in
herbal medicine for years [119,120]. Recently, intensive studies have been conducted on an extract from
the bark of maritime pine Pinus pinaster (Pinaceae), patented as Pycnogenol, whose proanthocyanidin
content is 85%. This preparation exhibits, e.g., strong antioxidant properties (Table 9) [121–123].
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Table 9. Proanthocyanidins (condensed tannins) found in trees and shrubs.

Tree and Shrub Species Proanthocyanidins Literature

Scots pine Pinus sylvestris L. Pinus
densiflora L. needles

Proanthocyanidins (OPC)
procyanidins, prodelphinidins and

propelargonidins catechin
derivatives, both dimers

and trimers.

[124–128]

Quercus petraea L. and Q. robur Proanthocyanidins [129–132]

Hawthorn Crataegus oxyacantha L. Procyanidin glycosides [121,133,134]

Bird cherry Prunus padus Cyanidin-3-rutinoside and
cyaniding-3-glucoside [135]

Salix purpurea L. Cyanidin-3-glucoside, myrtillin
(delphinidin-3-glucoside) [136]

A considerable body of data indicates that a diet rich in anthocyanins plays a significant role
in the prevention of cardiovascular disease and cancer [135]. It was shown that plant extracts rich
in anthocyanins may exert a protective effect on the function of blood vessel walls, preventing
endothelial dysfunction and the loss of its regulatory activity [124,136,137]. The antioxidant properties
of these compounds may be used in the prevention of cancer, both of the alimentary tract and
internal organs [137]. They also prevent the oxidation of the LDL cholesterol fraction (Low-density
lipoprotein) [138,139].
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3.1.4. Stilbenes

Stilbenes are metabolites of the phenylpropanoid pathway, activated under biotic and abiotic
stress. They are compounds with a 1,2-diphenylethylene skeleton. Only some unrelated plant species
are capable of synthesising and accumulating stilbenes. The enzyme facilitating this synthesis is stilbene
synthase (STS). In plants, stilbenes serve several functions, among which the most significant is related
to strong antimicrobial properties; thus, they are classified as phytoalexins [142]. Other known functions
also include their repellent action against herbivores, as well as their allelopathic and antioxidant
properties. Stilbenes are produced in small amounts; however, biosynthesis is activated primarily post
infection, while it is also triggered by wounding, UV radiation, ozone and aluminium ions. Resveratrol
(3,5,4′-trihydroxy-trans-stilbene) is one of the most extensively described stilbenes [142–144].

Resveratrol is found in the form of two isomeric forms: cis and trans (Figure 1). Transresveratrol
is a phenol stilbene found in many plants, e.g., the grape family (Vitaceae), and is particularly common
in grape vines (Vitis vinifera). The other form of resveratrol, i.e., cis, is formed as a result of the
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isomerisation of trans-resveratrol and after the decomposition of resveratrol polymer molecules during
the fermentation of grape skins, due to the action of UV radiation, and at high pH [144]. Resveratrol
was first isolated in 1940 from the roots of Veratum gradiflorum [145]. Its highest concentration was
recorded in the roots of Japanese knotweed (Polygonum cuspidatum). In folk medicine, this plant was
successfully used to treat pyoderma, mycoses and venereal diseases [146]. Moreover, resveratrol has
been applied in cancer prevention and treatment thanks to its ability to effectively inhibit each stage of
neoplasia, i.e., the initiation, promotion and progression of the disease [147,148].

Stilbenes are secondary metabolites that are relatively rarely found in nature (Table 10). To date,
they have been reported in almost 70 unrelated plant species belonging to approx. 30 genera and
12 families. The greatest stilbene contents are detected in plants from the pine family (Pinaceae), the
grape family (Vitaceae), the beech family (Fagaceae), the mulberry family (Moraceae) and the grass family
(Poaceae) [141].

Table 10. Stilbenes found in trees and shrubs.

Tree and Shrub Species Stilbenes Literature

Scots pine-Pinus sylvestris L.
Eastern white pine-Pinus strobus

Japanese red pine-Pinus densiflora

Pinosylvin, pinosylvin
3-o-methyl ether [149–151]

Spruce Picea abies L. H. Karst
Cis and trans-astringin,

trans-piceatannol, cis- and
trans-piceid, trans-resveratrol

[140,152–155]

Black locust Robinia pseudoacacia L. Piceatannol and resveratrol [156]

Morus spp. Mulberry Resveratrol [157]

The presented literature sources indicate that phenolic substances of plant origin, particularly
those obtained from trees and shrubs growing in a temperate climate zone, exhibit a beneficial
effect on human health. Thanks to the presence of bioactive compounds in those plants, they have
found applications as detoxicants, vitamin supplements, as well as preparations boosting immunity
and adjunctive medication in the treatment of various diseases. There is a considerable body of
data indicating that a diet rich in bioactive compounds plays a significant role in the prevention of
cardiovascular diseases and cancer. In view of the fact that the treatment of chronic pain, cancer,
cardiovascular disease and a number of other diseases requires a combination of several therapeutic
methods, alternative therapies using plant origin preparations are gaining popularity. It also needs to
be stressed that molecular mechanisms of action, in the case of active substances contained in plant
preparations, have not been fully elucidated and require further research.

The review of the literature presented in this paper presents the potential of trees and shrubs
native to temperate zones as sources of phenolic substances.
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