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Abstract: As natural disasters have become increasingly severe, many structures designed to prevent
rockfalls and landslides have been constructed in various areas. The impact resistance capacity of a
reinforced concrete (RC) rock shed can be evaluated using its roof deflection. This study establishes
a method for estimating the maximum deflection of a bending-failure-type RC beam, subjected to
collisions that is based on the energy conservation concept—in which, the transmitted energy from a
collision is equivalent to the energy absorbed by the beam. However, the following assumptions
have never been confirmed: (1) The energy transmitted to the RC beam, due to the dropped weight,
can be estimated by assuming a perfect plastic collision; and (2) the energy absorbed by the RC beam
can be estimated by assuming plane conservation. In this study, these assumptions were verified
using 134 previous test results of RC beams subject to weight collisions. In addition, we proposed a
simple method for calculating the maximum deflection and its application scope. With this method, a
performance-based impact-resistant design procedure for various RC structures can be established in
the future. Moreover, this method will significantly improve the maintenance and management of
existing RC structures subject to collisions.
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1. Introduction

In recent years, natural disasters have become more severe because of climate change caused
by global warming. Torrential rains have occurred in various parts of the world, causing large-scale
slope disasters [1–3]. Many rock sheds, retaining walls, and barriers are used in coastal and
mountainous areas as road disaster prevention countermeasures. Figure 1 shows examples of
rockfall and landslide disasters in rock sheds in coastal and mountainous regions. Instead of being
designed with specification-based approaches, such as the allowable stress method, these protective
structures should be designed using performance-based design methods [4,5]. In particular, the impact
resistance capacity of a reinforced concrete (RC) rock shed can be evaluated using the deflection of its
roof [6–8], which can be used to set each limit state of the shed. However, even for basic structural
members, such as an RC beam, an appropriate method for estimating the maximum deflection has
not yet been established. Hence, many research institutes were attempting to establish a method for
estimating the maximum deflection of RC beams subjected to collision action [9–14]. Figure 2 illustrates
the general impact loading method and an example of the test results.
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Figure 1. Examples of rockfall and landslide disaster; (a) Rockfall in a coastal area (Hokkaido, Japan, 
2008), (b) Landslide in a mountainous area (Ishikawa, Japan, 2018). 
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Figure 2. An example of a weight-falling impact test and its results; (a) Setup, (b) dimensions of the 
RC beam, (c) time histories of impact force and deflection, (d) crack pattern after the experiment. 

In previous studies, Kishi et al. proposed a method for estimating the maximum deflection of 
RC beams based on the results of their weight-falling impact tests under bending failure [9]. This 
estimation method was suggested based on the linear relationship between the kinetic energy of the 
weight and the maximum deflection of the RC beam. This method was also summarized in Structural 
Engineering Series 22, published by the Japan Society of Civil Engineers (JSCE) [10]. Tachibana et al. 
conducted impact loading tests of RC beams and proposed an estimation equation for the maximum 
deflection [11]. Fujikake et al. calculated the load–deflection relationship of RC beams, considering 
the strain rate effect of concrete and reinforcing bars and subsequently attempted to estimate the 
maximum deflection based on the conservation laws of momentum and energy. Their study clarified 
that the experimental results presented by other researchers can be evaluated conservatively [12]. 
Kishi et al. proposed a residual deflection estimation method for large RC beams with a clear span of 
8.0 m [13]. In this estimation method, a correction formula based on the mass ratio of the weight and 
RC beam was empirically introduced. 

Recently, Hwang et al. proposed a maximum deflection estimation method based on the 
conservation law of energy, considering (i) input energy (due to falling weight), (ii) energy loss at the 
time of collision, (iii) change in potential energy (due to the deflection of the RC beam), (iv) energy 

Figure 1. Examples of rockfall and landslide disaster; (a) Rockfall in a coastal area (Hokkaido, Japan,
2008), (b) Landslide in a mountainous area (Ishikawa, Japan, 2018).
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Figure 2. An example of a weight-falling impact test and its results; (a) Setup, (b) dimensions of the RC
beam, (c) time histories of impact force and deflection, (d) crack pattern after the experiment.

In previous studies, Kishi et al. proposed a method for estimating the maximum deflection of
RC beams based on the results of their weight-falling impact tests under bending failure [9]. This
estimation method was suggested based on the linear relationship between the kinetic energy of the
weight and the maximum deflection of the RC beam. This method was also summarized in Structural
Engineering Series 22, published by the Japan Society of Civil Engineers (JSCE) [10]. Tachibana et al.
conducted impact loading tests of RC beams and proposed an estimation equation for the maximum
deflection [11]. Fujikake et al. calculated the load–deflection relationship of RC beams, considering the
strain rate effect of concrete and reinforcing bars and subsequently attempted to estimate the maximum
deflection based on the conservation laws of momentum and energy. Their study clarified that the
experimental results presented by other researchers can be evaluated conservatively [12]. Kishi et al.
proposed a residual deflection estimation method for large RC beams with a clear span of 8.0 m [13].
In this estimation method, a correction formula based on the mass ratio of the weight and RC beam
was empirically introduced.

Recently, Hwang et al. proposed a maximum deflection estimation method based on the
conservation law of energy, considering (i) input energy (due to falling weight), (ii) energy loss at the
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time of collision, (iii) change in potential energy (due to the deflection of the RC beam), (iv) energy
absorption (due to the bending deformation of the beam), and (v) energy loss (due to the peeling of
concrete at the upper edge of the beam) [14]. Their results showed that the maximum deflection of RC
beams can be estimated based on previous experimental studies. Furthermore, a numerical analysis
using the finite element method was conducted [15–17].

However, few studies have focused on the simple estimation method for maximum deflection,
and its application range for cases where a bending-failure-type RC beam is plastically deformed to
absorb energy. The simple calculation method enables the appropriate maintenance based on the
reliability design of existing disaster prevention structures, taking into consideration the uncertainty of
action and variations in material strength [18,19].

Currently, the energy transmitted to the RC beam during a weight collision can often be calculated
under the assumption of a perfect plastic collision, in which the weight and RC beam move together
without repulsion after the collision [12,14]. However, no investigation exists where the validity of
this assumption is verified by the impact test results of RC beams under different conditions. In
addition, the energy absorbed by the RC beam is calculated to be the area surrounded by the curve by
obtaining the RC beam load–deflection relationship under the assumption of plane conservation [9–14].
However, the applicable range of this assumption has not been clarified.

In this study, these assumptions were verified based on the experimental results of 134 cases
conducted in previous studies, and a simple calculation method for the maximum deflection and
its application range were proposed. Based on the proposed method for estimating the maximum
deflection of a bending-failure-type RC beam, an impact-resistant-design procedure for various RC
structures can be established in the future. Moreover, the proposed method will significantly improve
the maintenance and management of existing RC structures subject to a collision action.

2. Outline of the Simple Estimation Method of Maximum Deflection for Bending-Failure-Type
RC Beams Subject to a Weight Collision

2.1. Energy Conservation Concept

As previously discussed, the maximum deflection is calculated as the deflection when the
transmitted impact energy Et and the absorbed energy Ea of the RC beam are equivalent, based on the
law of conservation of energy.

Et = Ea (1)

In addition to the above energy, it is possible that the energy generated by the movement of the
RC beams and the energy generated by the scattering of concrete pieces may have an effect. However,
these effects are extremely small compared to Et and Ea; therefore, they were excluded from this study.
The calculation methods for Et and Ea are detailed below.

2.2. Calculation Method of Transmitted Impact Energy Et

The energy Et transmitted to the RC beam during a weight collision was calculated under the
assumption of a perfect plastic collision where the weight and the RC beam moved together without
repulsion after the collision. The formula for calculating Et was derived, as follows.

First, the momentum conservation laws, immediately before and after the weight collides with
the beam, are expressed as follows:

MwV = (Mbe + Mw) Va (2)

Va = (Mw/(Mbe + Mw)) V (3)

where Mbe is the equivalent mass of the beam obtained by assuming that the vibration mode of the
beam is equivalent to the first-order bending mode and multiplying the mass of the beam within its
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clear span Mb by 17/35. Furthermore, Mw is the mass of the impact weight, V is the velocity of the
weight immediately before collision, and Va is the velocity of the mass point, including the falling
weight and the beam, immediately after the collision. Subsequently, we considered the kinetic energy
before collision Ek can be estimated using Equation (4), and the energy after collision Eka can be derived
using Equations (5)–(7) as follows:

Ek = 1/2 Mw V2 (before collision) (4)

Eka = 1/2 (Mbe + Mw) Va
2 (after collision) (5)

= Mw
2 / (2 (Mbe + Mw)) V2 (6)

= (Mw/(Mbe + Mw)) Ek (7)

where Eka is the kinetic energy of the combined weight and beam immediately after the collision and
corresponds to the energy transmitted to the beam Et. The energy Et can be determined using Equation
(8).

Et = (Mw/(Mbe + Mw)) Ek (8)

Mbe = (17/35) ρAL (9)

where ρ is the unit mass of the RC beam (=2.5), A is the sectional area of the beam, and L is the clear
span of the beam.

2.3. Calculation Method for the Absorbed Energy Ea of the RC Beam

Ea is calculated as the area under the load–deflection curve obtained by the fiber model, considering
the plane conservation of the beam section.

Ea =

∫ δ

0
P(δ)dδ (10)

The calculation procedure is outlined as follows: (i) Divide the height of the section into 5 mm
intervals and along the span direction into 100 mm intervals, considering the solution stability; (ii)
increase the upper-edge strain by 10 µ to determine the cross-sectional neutral axis at each stage,
and determine the curvature-bending moment relationship; (iii) determine the bending moment
distribution along the span direction at each load step and the corresponding curvature distribution;
and (iv) calculate the deflection of the span center using the elastic load method. Figure 3 shows the
concept of the fiber model.

1 
 

 

Figure 3. Calculation concept of the fiber model.

The constitutive material laws for concrete and reinforcing bars were determined, as shown in
Figure 4, following the JSCE Concrete Standards Design [20].
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The compressive stress and strain relationships of concrete were defined as follows:

ρEc = E0K
(
ε′c − ε′p

)
(11)

E0 =
2· f ′c
ε′peak

(12)

K = exp
{
−0.73

ε′max

ε′peak

[
1− exp

(
−1.25

ε′max

ε′peak

)]}
(13)

ε′p = ε′max − 2.86·ε′peak

[
1− exp

(
−0.35

ε′max

ε′peak

)]
(14)

Material test results were used to establish the compressive strength of concrete and yield strength
of the reinforcing steel. The tensile strength f t of concrete was estimated using the following equation,
according to JSCE [20]:

ft = 0.23 f ′c
2
3 (15)

As the tensile fracture energy of concrete is substantially smaller than the absorbed energy owing
to the bending plastic deformation of the RC beams, the tension softening of concrete was not included
in the scope of this study. Moreover, perfect bonding was assumed between the rebar and concrete.

In this calculation, the strain rate cannot be considered because it changes significantly in time
and space after a weight collision. It is difficult to apply it to a simple estimation formula. In addition,
the applicable range of absorbed energy calculated under the assumption of plane conservation has
not been clarified yet. This should be confirmed through a comparison with the numerous existing
experimental results.

3. Verification by Comparison with Previous Experimental Results

3.1. Validity of a Perfect Plastic Collision

3.1.1. Experimental Results Used for This Investigation

The validity of the assumption of a perfect plastic collision was evaluated using experimental
results from previous studies [9,10]. Table 1 lists the specifications of the tested RC beams and
experimental conditions. The clear span of the beam, L, is the distance between the two supports, and
pt is the tensile rebar ratio. The numerical values for the calculated bending capacity Pu and shear
capacity Qu were obtained from the literature [9].
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Table 1. List of test specimens used for analysis [9].

Name Size of
Section

Rebar
L (m) pt (%) f ’c

(MPa)
f y

(MPa)
Pu

(kN)
Qu

(kN)
α Mb (t) Mbe (t) V (m/s) Mw (t) Ek (kJ) Et (kJ)

ϕ
(mm) N

G1-1
200 × 300 19 2 3.0 1.10 33.7 379 69.6 195.4 2.81 0.450 0.219

7.00
0.3

7.35 4.25
G1-1S 7.00 7.35 4.25
G2-1

150 × 250 13 2 2.0 0.80 32.2 373 38.1 139.7 3.67 0.188 0.091
4.00

0.3
2.40 1.84

G2-2 5.00 3.75 2.88
G2-3 6.00 5.40 4.14

G2L-1
150 × 250 13 2 2.0 0.80 32.2 373 38.1 139.7 3.67 0.188 0.091

4.00
0.4

3.20 2.61
G2L-2 5.00 5.00 4.07
G2L-3 6.00 7.20 5.86
G3-1

150 × 250 13 2 2.0 0.80 34.6 393 40.2 141.1 3.51 0.188 0.091
4.00

0.3
2.40 1.84

G3-2 5.00 3.75 2.88
G3-3 6.00 5.40 4.14
G4-1

150 × 250 13 2 2.0 0.80 32.3 373 38.1 139.8 3.52 0.188 0.091
4.00

0.3
2.40 1.84

G4-2 5.00 3.75 2.88
G5-1

200 × 300 19 2 3.0 1.10 39.2 379 70.4 200.4 2.85 0.450 0.219
6.00

0.4
7.20 4.66

G5-2 7.00 9.80 6.34
G6-1 250 × 250 19 2 2.0 1.09 34.7 392 87.4 191.4 2.19 0.313 0.152 5.00 0.3 3.75 2.49
G7-1

250 × 250 19 2 3.0 1.09 34.7 392 58.3 162.3 2.78 0.469 0.228
5.00

0.3
3.75 2.13

G7-2 6.00 5.40 3.07
G8-1 200 × 200 25 2 2.0 3.17 34.7 383 102.3 158.4 1.55 0.200 0.097 6.00 0.3 5.40 4.08
G9-1

200 × 200 25 2 3.0 3.17 34.7 383 68.2 136.3 2.00 0.200 0.097
5.00

0.3
3.75 2.83

G9-2 6.00 5.40 4.08
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Table 1. Cont.

Name Size of
Section

Rebar
L (m) pt (%) f ’c

(MPa)
f y

(MPa)
Pu

(kN)
Qu

(kN)
α Mb (t) Mbe (t) V (m/s) Mw (t) Ek (kJ) Et (kJ)

ϕ
(mm) N

G10-1

200 × 250 19 2 3.0 1.36 23.5 404 56.6 289.3 5.11 0.375 0.182

4.00

0.3

2.40 1.49
G10-2 5.00 3.75 2.33
G10-3 6.00 5.40 3.36
G10-4 7.00 7.35 4.57
G11-1

200 × 300 22 2 2.7 1.55 23.6 401 94.4 164.8 1.66 0.405 0.197

3.13

0.5

2.45 1.76
G11-2 4.20 4.41 3.16
G11-3 5.05 6.38 4.58
G11-4 5.78 8.35 5.99
G11-5 6.42 10.30 7.39
G11-6 7.00 12.25 8.79
G12-1 200 × 300 19 3 2.7 2.72 23.6 407 103.9 168.1 1.52 0.405 0.197 7.67 0.5 14.71 10.55
G13-1 200 × 400 25 2 2.7 1.45 23.6 406 178.3 400.2 2.11 0.540 0.262 7.67 0.5 14.71 9.65
G14-1 200 × 350 25 2 2.7 1.69 23.6 406 149.8 312.2 1.96 0.473 0.230 7.67 0.5 14.71 10.08
G15-1 200 × 400 29 2 2.7 1.84 23.6 406 224 850.1 3.58 0.540 0.262 7.67 0.5 14.71 9.65
G16-1 200 × 370 25 2 2.7 1.58 23.6 406 161.2 371.7 2.16 0.500 0.243 7.67 0.5 14.71 9.90

ϕ: Nominal diameter of the tensile rebar, N: Number of rebars, L: Clear span length of the beam, pt: Tensile rebar ratio, f’c: Compressive strength of concrete, f y: Yield strength of the tensile
rebar, Pu: Calculated bending capacity, Qu: Calculated shear capacity, α: Shear-bending capacity ratio (= Qu/Pu), Mb: Mass of beam, Mbe: Equivalent mass of beam, Mw: Mass of weight V:
Impact velocity of weight, Ek: Kinetic energy of weight (input energy), Et: Transmitted energy.
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In all 36 experimental cases employed in this study, the steel weight was dropped only once from
a predetermined height to the RC beam center. The RC beam was placed on a fulcrum with a lifting
prevention jig. The boundary condition of the fulcrum was similar to that of the pinned support. The
beams were all rectangular RC beams.

The cross-sectional width, height, and span length of the test specimens varied from 150 to 250
mm, 200 to 400 mm, and 2 to 3 m, respectively. Further, the tensile rebar ratio and mass of the falling
steel weight varied from 0.8% to 3.17% and from 300 to 500 kg, respectively. Furthermore, the velocity
of the falling weight before collision varied from 4 to 7.67 m/s.

3.1.2. Comparison Between the Estimated and Measured Maximum Deflections

The maximum deflection δu, assuming a perfect plastic collision, was calculated as the satisfying
deflection Equation (16) based on the energy conservation concept. For comparison, the maximum
deflection δuk, assuming no energy loss, was also calculated using Equation (17). Figure 5 shows a
conceptual diagram of δu and δuk obtained with Et and Ek, respectively, using the calculated P–δ curve.
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Calculated bending capacity, Qu: Calculated shear capacity, α: Shear-bending capacity ratio (= Qu/Pu), 
Mb: Mass of beam, Mbe: Equivalent mass of beam, Mw: Mass of weight V: Impact velocity of weight, 
Ek: Kinetic energy of weight (input energy), Et: Transmitted energy. 
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From Figure 5, it can be seen that δu is smaller than δuk. This means that in the case of considering
a perfect plastic collision, energy is lost when a weight collides.

Et = (Mw/(Mbe + Mw)) Ek =

∫ δu

0
P(δ)dδ (16)

Ek =

∫ δuk

0
P(δ)dδ (17)

Figure 6 compares the estimated maximum deflections δuk and δu based on Ek and Et, respectively,
with the experimental results of δu.exp. The figure shows that the estimated maximum deflection δuk

based on Ek significantly exceeds the experimental value and that this difference increases when the
deflection is larger. In contrast, the estimated maximum deflection δu based on the transmitted energy
Et is generally larger than the experimental value; however, it is closer to the experimental value than
in the case of δuk. This indicates that the maximum deflection δu.exp can be determined accurately and
conservatively by using the transmitted energy Et.
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Consequently, δu.exp can be predicted considering the energy loss, due to the complete plastic
collision between the weight and RC beam. This is because the target RC beam is a bending-failure
type and is plastically deformed; therefore, the collision with the weight behaves like a nearly perfect
plastic collision. On the other hand, in some cases, δu greatly exceeds δu.exp. This is especially evident
when the amount of deformation is large. It is assumed that this occurs because the RC beam has
reached a region, in which the assumption of plane conservation does not hold. In the next section,
based on this investigation, the scope of application of the plane-holding assumption is examined.

3.2. Scope of the Application of the RC Beam Plane Conservation Assumption

3.2.1. Examination Outline

To examine the applicable range of the plane conservation assumption of the RC beam, the
experimental results of 134 cases of the bending-failure-type RC beam plastically deformed by a weight
collision were collected. The specifications of the RC beams investigated in this study are shown in
Appendix A (see Tables A1 and A2). The numerical values of the calculated bending capacity Pu and
shear capacity Qu were obtained from the literature, shown in those tables.

Table 2 shows the range of the considered specifications of the RC beams for the 134 cases. In this
table, α is the shear-bending capacity ratio obtained by dividing the calculated shear capacity Qu by
the calculated bending capacity Pu. RC beams with α ≥ 1.0 were selected here. In addition, when the
velocity of the impactor is higher than approximately 80 m/s, the RC member is often damaged by
penetration or perforation, including shear failure and backside spalling, prior to exhibiting bending
deformation [14]. Moreover, it was reported that the maximum impact velocity of falling rocks is
approximately 25 m/s [3]. Thus, those experiments with impact velocities of less than 25 m/s were
considered. The diameter of the impactor is almost the same as the width of the RC beam, and the shape
of the bottom surface of the weight was spherical with a small curvature. Each study confirmed that
bending deformation was predominantly observed for all RC beams. Figure 7 shows the dimensions
for the typical RC beams, considered here.
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Table 2. Range of RC beam specifications (total of 134 cases).

Item of Specification Symbol Unit
Range of Value

Min. Max.

Size of section mm 60 × 100 1000 × 1,000
Clear span length L m 0.9 8.0
Tensile rebar ratio pt % 0.26 1.26

Compressive strength of concrete f ’c MPa 25.2 52.0
Yield strength of the tensile rebar f y Mpa 235 520

Calculated bending capacity Pu kN 4.10 881
Calculated shear capacity Qu kN 7.18 2,882

Shear-bending capacity ratio α 1.19 8.78
Mass of beam Mb t 0.014 20.0

Mass of weight Mw t 0.020 10.0
Impact velocity of weight V m/s 1.00 19.8

The kinetic energy of weight (input energy) Ek kJ 0.05 392.2
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Figure 8 shows the relationship between the estimated maximum deflection δu and the
experimental value δu.exp. From the figure, the estimated value δu up to approximately 40 mm
corresponds well with the experimental value δu.exp. On the other hand, when δu becomes large, δu

may overestimate the experimental ones. It is assumed to be because the RC beams have greatly
deformed and damaged, so that the assumption of plane conservation does not hold as in the case of
Figure 6.

However, as the minimum and maximum clear spans of the considered RC beam are 0.9 m and 8
m, respectively, the maximum deflection is expected to be significantly different even if the degree of
damage is the same. Therefore, the accuracy of the estimated values and the applicable range must be
examined without the results being affected by the shape and size of the beam.
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3.2.2. Investigation of the Estimation Accuracy Based on the Deflection Ratio RD

In this section, the accuracy of the estimation method is assessed using the deflection ratio without
considering the influence of the shape and dimensions of the beams. The value obtained by dividing
the maximum deflection δu by the clear span length L was defined as the deflection ratio RD.

RD = δu/L (18)

Figure 9 shows the relationship between the experimental and estimated deflection ratios. The
figure shows that the estimated value of RD overestimates the experimental value RD.exp when 2% <

RD < 9%. In contrast, when RD is larger than 9%, the estimated RD value corresponds relatively well
to the experimental value RD.exp. Therefore, the accuracy and the applicable range of the estimated
values are difficult to examine based on the deflection ratio RD.
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3.2.3. Investigation of the Estimation Accuracy Based on the Plasticity Ratio Rp

The value obtained by dividing the maximum deflection δu by the tensile rebar yield deflection,
δy, is defined as the plasticity ratio Rp. It is an index generally used to evaluate ductility in the seismic
design of RC piers.

Rp = δu/δy (19)

Figure 10 shows the relationship between the estimated and experimental values of the plasticity
ratio. The figure shows that when the plasticity ratio Rp is large, the estimated ratio is higher than
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the experimental result Rp.exp. It is observed that the maximum deflection δu can be estimated with
relatively high accuracy when the plasticity ratio Rp ≤ 10. In addition, if Rp > 10, the estimation
accuracy is low. A high plasticity ratio indicates that the RC beam has a high degree of damage.
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The estimated value of Rp is calculated by assuming a bending deformation based on the plane
conservation of the section of the RC beam in the calculation. Therefore, it is assumed that all transmitted
energy is consumed by the bending deformation of the beam. In contrast, in the experiment, energy
is usually consumed by not only the bending deformation, but also damage to the concrete at the
collision point, pull-out of the reinforcing steel, and opening of shear cracks. Therefore, the estimated
Rp tended to be higher than Rp.exp when the plasticity ratio Rp was high.

3.3. Investigation of the Accuracy and Applicable Range of the Deflection Estimation Formula

The accuracy of the maximum deflection, δu, can be calculated using Equation (20), and its
application range is discussed below. The accuracy evaluation indicator (AEI) is defined as follows:

AEI = δu/δu.exp. (20)

Figure 11 shows the relationship between the AEI and plasticity ratio for the design Rp (= δu/δy)
in the same manner as that in Reference [14]. From the figure, many plots can be obtained when the
plasticity ratio Rp ≤ 10, and the AEI is densely distributed between 0.8 and 1.6. Conversely, when the
plasticity ratio Rp > 10, the AEI is widely distributed between 1.0 and 2.0.

Therefore, the application range of the proposed formula can be determined as 1 < Rp ≤ 10. When
Rp ≤ 1, the deflection of the RC beam is within the elastic range, and it does not exhibit a complete
plastic collision. Therefore, Rp < 1 was excluded from the above application range.

To examine the estimation accuracy, Figure 12 shows the AEI when 1 < Rp ≤ 10. As shown in the
figure, the AEI was distributed between 0.81 and 1.56, with an average value of 1.15, and a coefficient
of variation of 0.113.
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4. Simplified Estimation Method for the Maximum Deflection of the RC Beam Subjected to an
Impact Load

Thus far, we have proposed a method for estimating the maximum deflection based on the
assumption that the energy Et transmitted to the beam by a weight collision is equivalent to the
absorption energy Ea, due to the bending deformation of the RC beam. Here, if the load–deflection
curve of the RC beam can be simplified to a bilinear model, as shown in Figure 13, Ea can be easily
calculated, as expressed in Equation (21).

Ea = Py δud − Py δy/2 (21)

The deflection, when Ea corresponds to Et, is the maximum deflection for the design of δud.
Therefore, δud can be estimated as follows:

Et = Py δud − Py δy/2 (22)

δud = Et/Py + δy/2 (23)
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δud =
M2

wV2

2Py
(

17
35ρAL + Mw

) + δy

2
(24)

1 < Rp ≤ 10 (25)

To confirm the difference between δud and δu, Figure 14 illustrates the relationship between these
values. The figure shows that δud is nearly equivalent to δu. Therefore, the maximum deflection δud

can be calculated using the transmitted energy Et, yield load Py of the RC beam, and yield deflection δy.
Such an evaluation is possible when the relationship between the load and deflection is nearly bilinear,
as in the case of a single bar RC beam. However, if the load–deflection relationship is composed of a
curved line or multi-line, such as a prestressed concrete (PC) beam and other composite structural
members, further investigations are required.
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5. Conclusions

A method to estimate the maximum deflection of a bending-failure-type RC beam subjected to a
collision action was established in this study. This method is based on the energy conservation concept
where the transmitted energy acting on the beam by the weight collision is equivalent to the absorbed
energy of the beam. The method was proposed based on reliable experimental results, and the validity
and applicable range of this method were subsequently examined using the previous test results of 134
cases. The findings of this study are as follows:
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(1) The maximum deflection can be estimated with relatively high accuracy by using the transmitted
impact energy obtained by assuming a vibration mode equal to the primary bending mode of the
beam and a perfect plastic collision;

(2) However, if the deflection is large, the estimated value overestimates the experimental value.
This is thought to be because the assumption of the plane conservation of the cross-section of the
RC beam does not hold;

(3) Regardless of the shape and dimensions of the RC beam, if the estimated value of the plasticity
ratio exceeds approximately 10, the assumption of plane conservation tends to fail;

(4) A simplified estimation method for the maximum deflection was proposed by modeling the
load–deflection relationship of the RC beams in a bilinear form. Assuming that the range of
the plasticity ratio Rp is from 1 to 10, the estimated value is approximately 15% larger than the
experimental value. The coefficient of variation was approximately 0.11.
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Symbols

f ’c Compressive strength of concrete
f y Yield strength of the tensile rebar
pt Tensile rebar ratio
Ek Kinetic energy of weight (Input energy)
Et Transmitted energy
L Clear span of the beam
Mb Mass of beam
Mbe Equivalent mass of beam
Mw Mass of weight
N Amount of the rebar
Py Calculated yield capacity of the beam
Pu Calculated bending capacity
Qu Calculated shear capacity
RD Deflection ratio (=δu/L)
RD.exp Experimental result of the deflection ratio (=δu.exp /L)
Rp Plasticity ratio (=δu /δy)
Rp.exp Experimental result of the plasticity ratio (=δu.exp /δy)
V Impact velocity of weight
α Shear-bending capacity ratio (=Qu/Pu)
δu Estimated maximum deflection
δud Estimated maximum deflection for design
δu.exp Experimental result of maximum deflection
δuk Estimated maximum deflection based on the Ek
δy Calculated yield deflection of the beam
ϕ Nominal diameter of tensile rebar

Appendix A

The specifications of the RC beams investigated in this study are listed in Table A1. Maximum
deflections δu estimated by the proposed method are listed in Table A2.
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Table A1. Test specimens were used for examination.

Name Size of
Section

Rebar
L (m) pt (%) f ’c

(MPa)
f y

(MPa)
Pu

(kN)
Qu

(kN)
α Mb (t) Mbe (t) Mw (t) V (m/s) Ek (kJ) Et (kJ)

φ
(mm) N

Tachibana et al. [11]

1-A2

150 × 250 13 2

2.0

0.8 31.0 383

33.3 91.1 2.74 0.188 0.091

0.15 3.50 0.92 0.57
2-A2 0.3 2.40 0.86 0.66
3-A2 0.45 2.00 0.90 0.75
4-A2 0.15 4.90 1.80 1.12
5-A2 0.3 3.50 1.84 1.41
6-A2 0.45 2.80 1.76 1.47
7-A2 0.15 6.00 2.70 1.68
8-A2 0.3 4.20 2.65 2.03
9-A2 0.45 3.50 2.76 2.29

10-A2 0.3 1.00 0.15 0.12
11-A2-1

0.3 2.00 0.60 0.4611-A2-2
12-A2-1

0.3 3.00 1.35 1.0412-A2-2
13-A2-1

0.3 4.00 2.40 1.8413-A2-2
14-A2-1

0.3 5.00 3.75 2.8814-A2-2
14-A2-3
15-A1-1

1.0 66.7 91.1 1.37 0.094 0.046 0.3 5.00 3.75 3.26
15-A1-2
15-A1-3
15-A1-4
16-A4-1

4.0 16.7 91.1 5.46 0.375 0.182 0.3 5.00 3.75 2.3316-A4-2
16-A4-3
17-B-1

300 × 150 13 4 2.0 1.53

27.3

378 31.8 65.9 2.07 0.225 0.109 0.3 5.00 3.75 2.7517-B-2
18-C-1

150 × 250 16 2 2.0 1.26 402 50.3 94.8 1.88 0.188 0.091 0.3 5.00 3.75 2.8818-C-2
19-D-1

150 × 250 10 2 2.0 0.45 393 20.2 87.1 4.31 0.188 0.091 0.3 5.00 3.75 2.8819-D-2
20-E-1

150 × 400 13 2 2.0 0.47 378 59.5 145.6 2.45 0.3 0.146 0.3 5.00 3.75 2.5220-E-2
21-F-1

150 × 400 10 2 2.0 0.26 393 34.9 140.6 4.03 0.3 0.146 0.3 5.00 3.75 2.5221-F-2



Appl. Sci. 2020, 10, 6941 17 of 26

Table A1. Cont.

Name Size of
Section

Rebar
L (m) pt (%) f ’c

(MPa)
f y

(MPa)
Pu

(kN)
Qu

(kN)
α Mb (t) Mbe (t) Mw (t) V (m/s) Ek (kJ) Et (kJ)

φ
(mm) N

Fujikake et al. [12]

S1616-1

150 × 250

16 2 1.4 1.26

42

426 91.1 232 2.55 0.131 0.064 0.4

1.72 0.59 0.51
S1616-2 2.43 1.18 1.02
S1616-3 3.43 2.35 2.03
S1616-4 4.85 4.70 4.06
S1322-1

22 2 1.4 2.46 418 162 245.4 1.51 0.131 0.064 0.4

2.43 1.18 1.02
S1322-2 3.43 2.35 2.03
S1322-3 4.85 4.70 4.06
S1322-4 6.86 9.41 8.12
S2222-1 2.43 1.18 1.02
S2222-2 3.43 2.35 2.03
S2222-3 4.85 4.70 4.06
S2222-4 6.86 9.41 8.12

Kishi et al. [13]

PB-880

1000 × 1000 32 7 8.0 0.65 33.3 382 881 2882 3.27 20.00 9.71 2.0

9.90 98.07 16.74
PB-880 14.00 196.1 33.49
PB-880 17.15 294.2 50.23
PB-880 19.81 392.2 66.97
PC-620

1000 × 850 29 7 8.0 0.64 31.2 400 621 1794 2.89 17.00 8.26 2.0
9.90 98.07 19.12

PC-620 14.00 196.1 38.24

Pham et al. [16]

Beam 1
150 × 250 10 2 1.9 0.46

46
500

54.5 306.3 5.62
0.178 0.087 0.2035

6.26 3.99 2.80
Beam 2 52 54.2 476.1 8.78 6.26 3.99 2.80

Konno et al. [21]

W2H10

1000 × 1000 25 7 8.0 0.42 29.2 382 613 2002 3.27 20.00 9.714

2.0 14.00 196.1 33.49
W5H4 5.0 8.86 196.1 66.65
W10H2 10.0 6.26 196.1 99.49
W2H5 2.0 9.90 98.07 16.74
W10H1 10.0 4.43 98.07 49.74
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Table A1. Cont.

Name Size of
Section

Rebar
L (m) pt (%) f ’c

(MPa)
f y

(MPa)
Pu

(kN)
Qu

(kN)
α Mb (t) Mbe (t) Mw (t) V (m/s) Ek (kJ) Et (kJ)

φ
(mm) N

Sakai et al. [22]

N-H0.1

450 × 150 13 4 2.0 1.02 25.2 383 39.9 87.8 2.20 0.338 0.164 0.3

1.24 0.23 0.15
N-H0.25 2.06 0.64 0.41
N-H0.5 2.98 1.33 0.86
N-H1.0 4.20 2.65 1.71
N-H1.5 5.13 3.95 2.55

Kurihashi et al. [23,24]

N-H300
60 × 100 6 1 0.9 0.75 31.6 380 4.1 7.18 1.75 0.014 0.007 0.02

2.30 0.05 0.04
N-H600 3.20 0.10 0.08
N-H900 3.90 0.15 0.11

Zhan et al. [25]

6-C27-3

120 × 120

6

6

1.2 0.45

27

235

13.9 47.4 3.41 0.043 0.021 0.0336
7.67 0.99 0.61

6-C27-4 8.85 1.32 0.81
8-C27-3

8 1.2 0.81 15.6 51.1 3.28 0.043 0.021 0.0336
7.67 0.99 0.61

8-C27-4 8.85 1.32 0.81
10-C27-2.5

10 1.2 1.26 27.2 54.4 2.00 0.043 0.021 0.0336
7.00 0.82 0.51

10-C27-3 7.67 0.99 0.61
10-C27-4 8.85 1.32 0.81
6-C40-5

6 1.2 0.45

40

15.8 49.8 3.15 0.043 0.021 0.0336

9.90 1.65 1.01
6-C40-6 10.84 1.97 1.22
6-C40-7 11.71 2.30 1.42
6-C40-8 12.52 2.63 1.62
8-C40-2

8 1.2 0.81 19.4 54 2.79 0.043 0.021 0.0336

6.26 0.66 0.41
8-C40-3 7.67 0.99 0.61
8-C40-4 8.85 1.32 0.81
8-C40-5 9.90 1.65 1.01

10-C40-5
10 1.2 1.26 29.9 57.8 1.93 0.043 0.021 0.0336

9.90 1.65 1.01
10-C40-6 10.84 1.97 1.22
10-C40-7 11.71 2.30 1.42
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Table A1. Cont.

Name Size of
Section

Rebar
L (m) pt (%) f ’c

(MPa)
f y

(MPa)
Pu

(kN)
Qu

(kN)
α Mb (t) Mbe (t) Mw (t) V (m/s) Ek (kJ) Et (kJ)

φ
(mm) N

Adhikary et al. [26]

DR3.8_0.8
_0.11_H0.6

160 × 240 13 2 1.6 0.79 38.5 520

67.8 93.3 1.38 0.154 0.075

0.3

3.43 1.76 1.41

DR3.8_0.8
_0.11_H0.9 4.20 2.65 2.12

DR3.8_0.8
_0.11_H1.2 4.85 3.53 2.83

DR3.8_0.8
_0.15_H0.6

67.8 102.3 1.51 0.154 0.075
3.43 1.76 1.41

DR3.8_0.8
_0.15_H0.9 4.20 2.65 2.12

DR3.8_0.8
_0.15_H1.2 4.85 3.53 2.83

DR5.7_1.6
_0.15_H0.3

120 × 170 13 2 1.6 0.79 38.5 520

42.4 50.5 1.19 0.082 0.040

0.3

2.43 0.89 0.78

DR5.7_1.6
_0.15_H0.45 2.97 1.32 1.17

DR5.7_1.6
_0.15_H0.6 3.43 1.76 1.56

DR5.7_1.6
_0.20_H0.3

42.4 56.4 1.33 0.082 0.040
2.43 0.89 0.78

DR5.7_1.6
_0.20_H0.45 2.97 1.32 1.17

DR5.7_1.6
_0.20_H0.6 3.43 1.76 1.56

ϕ: Nominal diameter of tensile rebar, N: Amount of the rebar, L: Clear span length of the beam, pt: Tensile rebar ratio, f’c: Compressive strength of concrete, f y: Yield strength of the tensile
rebar, Pu: Calculated bending capacity, Qu: Calculated shear capacity, α: Shear-bending capacity ratio (= Qu/Pu), Mb: Mass of beam, Mbe: Equivalent mass of beam, Mw: Mass of weight, V:
Impact velocity of weight, Ek: Kinetic energy of weight (Input energy), Et: Transmitted energy.
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Table A2. Estimated maximum deflection δu.

Ref. ID Name δu.exp (mm) Ek (kJ) Et (kJ) δuk (mm) δu (mm) RD (%) RD.exp (%) Rp Rp.exp Py (kN) δy (mm) δud (mm) AEI

9

G1-1 64.3 7.35 4.25 114.0 67.3 2.24 2.14 7.42 7.09 67.1 9.07 67.9 1.06
G1-1S 58.0 7.35 4.25 114.0 67.3 2.24 1.93 7.42 6.39 67.1 9.07 67.9 1.17
G2-1 28.3 2.40 1.84 71.2 54.0 2.70 1.42 10.09 5.29 35.8 5.35 54.1 1.91
G2-2 44.0 3.75 2.88 112.9 86.0 4.30 2.20 16.07 8.22 35.8 5.35 83.0 1.89
G2-3 57.0 5.40 4.14 164.1 124.9 6.25 2.85 23.35 10.65 35.8 5.35 118.4 2.08

G2L-1 44.2 3.20 2.61 95.9 77.7 3.89 2.21 14.52 8.26 35.8 5.35 75.5 1.71
G2L-2 66.8 5.00 4.07 151.7 122.9 6.15 3.34 22.97 12.49 35.8 5.35 116.4 1.74
G2L-3 89.7 7.20 5.86 220.2 178.5 8.93 4.49 33.36 16.77 35.8 5.35 166.5 1.86
G3-1 36.7 2.40 1.84 67.4 51.2 2.56 1.84 9.46 6.78 37.7 5.41 51.5 1.40
G3-2 52.0 3.75 2.88 107.0 81.4 4.07 2.60 15.05 9.61 37.7 5.41 79.0 1.52
G3-3 70.6 5.40 4.14 155.6 118.5 5.93 3.53 21.90 13.05 37.7 5.41 112.6 1.59
G4-1 39.7 2.40 1.84 71.2 54.0 2.70 1.99 10.09 7.42 35.8 5.35 54.1 1.36
G4-2 56.1 3.75 2.88 112.9 86.0 4.30 2.81 16.07 10.49 35.8 5.35 83.0 1.48
G5-1 63.5 7.20 4.66 113.9 74.2 2.47 2.12 7.99 6.84 66.8 9.29 74.3 1.17
G5-2 83.4 9.80 6.34 154.6 100.4 3.35 2.78 10.81 8.98 66.8 9.29 99.5 1.19
G6-1 26.4 3.75 2.49 47.7 30.9 1.55 1.32 5.46 4.66 83.8 5.66 32.5 1.23
G7-1 45.8 3.75 2.13 72.9 42.5 1.42 1.53 3.65 3.93 55.9 11.65 44.0 0.96
G7-2 60.9 5.40 3.07 104.8 59.9 2.00 2.03 5.14 5.23 55.9 11.65 60.7 1.00
G8-1 36.5 5.40 4.08 59.4 45.5 2.28 1.83 5.10 4.09 101.5 8.93 44.7 1.22
G9-1 43.2 3.75 2.83 65.2 50.8 1.69 1.44 2.77 2.35 67.6 18.37 51.1 1.18
G9-2 57.9 5.40 4.08 91.4 70.5 2.35 1.93 3.84 3.15 67.6 18.37 69.5 1.20
G10-1 33.7 2.40 1.49 49.3 32.7 1.09 1.12 2.48 2.56 55.5 13.18 33.5 0.99
G10-2 49.5 3.75 2.33 74.6 48.0 1.60 1.65 3.64 3.76 55.5 13.18 48.6 0.98
G10-3 67.8 5.40 3.36 105.8 67.2 2.24 2.26 5.10 5.14 55.5 13.18 67.1 0.99
G10-4 83.9 7.35 4.57 142.9 90.1 3.00 2.80 6.84 6.37 55.5 13.18 89.0 1.06
G11-1 20.5 2.45 1.76 29.5 22.6 0.84 0.76 2.24 2.03 97.7 10.08 23.0 1.12
G11-2 33.2 4.41 3.16 50.1 36.9 1.37 1.23 3.66 3.29 97.7 10.08 37.4 1.13
G11-3 43.1 6.38 4.58 71.2 51.9 1.92 1.60 5.15 4.28 97.7 10.08 51.9 1.20
G11-4 55.5 8.35 5.99 92.5 67.0 2.48 2.06 6.65 5.51 97.7 10.08 66.4 1.20
G11-5 67.2 10.3 7.39 113.6 82.0 3.04 2.49 8.13 6.67 97.7 10.08 80.7 1.20
G11-6 83.4 12.2 8.79 134.7 97.3 3.60 3.09 9.65 8.27 97.7 10.08 95.0 1.14
G12-1 85.4 14.7 10.55 143.9 104.0 3.85 3.16 10.09 8.28 109.2 10.31 101.8 1.19
G13-1 60.6 14.7 9.65 82.4 54.9 2.03 2.24 7.87 8.68 185.6 6.98 55.5 0.92
G14-1 63.7 14.7 10.08 98.9 68.6 2.54 2.36 8.22 7.63 156.3 8.35 68.7 1.08
G15-1 40.5 14.7 9.65 65.9 44.3 1.64 1.50 6.06 5.54 233.7 7.31 44.9 1.11
G16-1 52.9 14.7 9.90 91.5 62.5 2.31 1.96 7.89 6.68 168.5 7.92 62.7 1.19
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Table A2. Cont.

Ref. ID Name δu.exp (mm) Ek (kJ) Et (kJ) δuk (mm) δu (mm) RD (%) RD.exp (%) Rp Rp.exp Py (kN) δy (mm) δud (mm) AEI

11

1-A2 13.6 0.92 0.57 26.6 17.4 0.87 0.68 3.33 2.60 36.2 5.23 18.4 1.35
2-A2 16.3 0.86 0.66 25.0 19.8 0.99 0.82 3.79 3.12 36.2 5.23 20.9 1.28
3-A2 17.9 0.90 0.75 26.0 22.0 1.10 0.90 4.21 3.42 36.2 5.23 23.3 1.30
4-A2 25.4 1.80 1.12 51.9 32.1 1.61 1.27 6.14 4.86 36.2 5.23 33.6 1.32
5-A2 31.6 1.84 1.41 53.1 40.5 2.03 1.58 7.74 6.04 36.2 5.23 41.6 1.31
6-A2 33.3 1.76 1.47 50.7 42.1 2.11 1.67 8.05 6.37 36.2 5.23 43.1 1.30
7-A2 37.0 2.70 1.68 78.8 48.4 2.42 1.85 9.25 7.07 36.2 5.23 49.0 1.32
8-A2 43.7 2.65 2.03 77.3 58.7 2.94 2.19 11.22 8.36 36.2 5.23 58.7 1.34
9-A2 48.4 2.76 2.29 80.7 66.6 3.33 2.42 12.73 9.25 36.2 5.23 65.9 1.36

10-A2 4.50 0.15 0.12 6.60 5.70 0.29 0.23 1.09 0.86 36.2 5.23 5.79 1.29
11-A2-1 12.8 0.60 0.46 18.2 14.7 0.74 0.64 2.81 2.45 36.2 5.23 15.3 1.20
11-A2-2 12.3 0.60 0.46 18.2 14.7 0.74 0.62 2.81 2.35 36.2 5.23 15.3 1.25
12-A2-1 25.8 1.35 1.04 38.7 29.8 1.49 1.29 5.70 4.93 36.2 5.23 31.2 1.21
12-A2-2 28.0 1.35 1.04 38.7 29.8 1.49 1.40 5.70 5.35 36.2 5.23 31.2 1.12
13-A2-1 42.2 2.40 1.84 69.8 53.1 2.66 2.11 10.15 8.07 36.2 5.23 53.5 1.27
13-A2-2 40.6 2.40 1.84 69.8 53.1 2.66 2.03 10.15 7.76 36.2 5.23 53.5 1.32
14-A2-1 60.1 3.75 2.88 110.5 84.2 4.21 3.01 16.10 11.49 36.2 5.23 82.1 1.37
14-A2-2 57.2 3.75 2.88 110.5 84.2 4.21 2.86 16.10 10.94 36.2 5.23 82.1 1.44
14-A2-3 57.6 3.75 2.88 110.5 84.2 4.21 2.88 16.10 11.01 36.2 5.23 82.1 1.43
15-A1-1 24.1 3.75 3.26 56.0 48.5 4.85 2.41 37.02 18.40 72.4 1.31 45.6 1.89
15-A1-2 24.2 3.75 3.26 56.0 48.5 4.85 2.42 37.02 18.47 72.4 1.31 45.6 1.89
15-A1-3 22.8 3.75 3.26 56.0 48.5 4.85 2.28 37.02 17.40 72.4 1.31 45.6 2.00
15-A1-4 25.2 3.75 3.26 56.0 48.5 4.85 2.52 37.02 19.24 72.4 1.31 45.6 1.81
16-A4-1 119.9 3.75 2.33 216.7 133.8 3.35 3.00 6.26 5.61 18.3 21.36 138.2 1.15
16-A4-2 116.8 3.75 2.33 216.7 133.8 3.35 2.92 6.26 5.47 18.3 21.36 138.2 1.18
16-A4-3 107.9 3.75 2.33 216.7 133.8 3.35 2.70 6.26 5.05 18.3 21.36 138.2 1.28
17-B-1 78.0 3.75 2.75 132.2 95.3 4.77 3.90 8.04 6.58 35.7 11.85 82.9 1.06
17-B-2 75.9 3.75 2.75 132.2 95.3 4.77 3.80 8.04 6.41 35.7 11.85 82.9 1.09
18-C-1 41.1 3.75 2.88 69.2 53.3 2.67 2.06 8.57 6.61 58.3 6.22 52.5 1.28
18-C-2 43.7 3.75 2.88 69.2 53.3 2.67 2.19 8.57 7.03 58.3 6.22 52.5 1.20
19-D-1 95.5 3.75 2.88 189.3 143.7 7.19 4.78 27.63 18.37 21.7 5.20 135.2 1.42
19-D-2 92.5 3.75 2.88 189.3 143.7 7.19 4.63 27.63 17.79 21.7 5.20 135.2 1.46
20-E-1 29.6 3.75 2.52 60.1 40.3 2.02 1.48 13.39 9.83 63.7 3.01 41.1 1.39
20-E-2 28.6 3.75 2.52 60.1 40.3 2.02 1.43 13.39 9.50 63.7 3.01 41.1 1.44
21-F-1 43.0 3.75 2.52 100.7 66.9 3.35 2.15 23.72 15.25 38.1 2.82 67.7 1.57
21-F-2 44.7 3.75 2.52 100.7 66.9 3.35 2.24 23.72 15.85 38.1 2.82 67.7 1.51
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Table A2. Cont.

Ref. ID Name δu.exp (mm) Ek (kJ) Et (kJ) δuk (mm) δu (mm) RD (%) RD.exp (%) Rp Rp.exp Py (kN) δy (mm) δud (mm) AEI

12

S1616-1 5.80 0.59 0.51 7.80 6.90 0.49 0.41 2.37 1.99 89.2 2.91 7.18 1.24
S1616-2 10.2 1.18 1.02 14.2 12.4 0.89 0.73 4.26 3.51 89.2 2.91 12.9 1.26
S1616-3 18.8 2.35 2.03 28.0 24.2 1.73 1.34 8.32 6.46 89.2 2.91 24.2 1.29
S1616-4 36.0 4.70 4.06 56.5 48.7 3.48 2.57 16.74 12.37 89.2 2.91 46.9 1.30
S1322-1 6.30 1.18 1.02 8.70 7.70 0.55 0.45 2.24 1.83 165.7 3.44 7.87 1.25
S1322-2 11.3 2.35 2.03 16.0 13.9 0.99 0.81 4.04 3.28 165.7 3.44 14.0 1.24
S1322-3 21.3 4.70 4.06 30.9 26.8 1.91 1.52 7.79 6.19 165.7 3.44 26.2 1.23
S1322-4 41.2 9.41 8.12 60.9 52.7 3.76 2.94 15.32 11.98 165.7 3.44 50.7 1.23
S2222-1 6.30 1.18 1.02 8.60 7.60 0.54 0.45 2.32 1.93 166.2 3.27 7.76 1.23
S2222-2 11.2 2.35 2.03 15.7 13.7 0.98 0.80 4.19 3.43 166.2 3.27 13.8 1.24
S2222-3 20.7 4.70 4.06 30.5 26.4 1.89 1.48 8.07 6.33 166.2 3.27 26.1 1.26
S2222-4 39.6 9.41 8.12 60.4 52.2 3.73 2.83 15.96 12.11 166.2 3.27 50.5 1.27

13

PB-880 29.8 98.07 16.74 123.2 29.5 0.37 0.37 1.48 1.49 823.6 20.00 30.3 1.02
PB-880 56.0 196.1 33.49 248.1 49.2 0.62 0.70 2.46 2.80 823.6 20.00 50.7 0.90
PB-880 82.6 294.2 50.23 378.6 67.8 0.85 1.03 3.39 4.13 823.6 20.00 71.0 0.86
PB-880 106.6 392.3 66.97 510.1 89.9 1.12 1.33 4.50 5.33 823.6 20.00 91.3 0.86
PC-620 44.8 98.1 19.12 177.7 44.6 0.56 0.56 1.73 1.74 572.8 25.80 46.3 1.03
PC-620 87.7 196.1 38.24 370.7 76.1 0.95 1.10 2.95 3.40 572.8 25.80 79.7 0.91

16
Beam 1 52.3 3.99 2.80 113.5 79.5 4.18 2.75 15.90 10.46 35.7 5.00 80.9 1.55
Beam 2 48.0 3.99 2.80 113.1 79.0 4.16 2.53 15.58 9.47 35.9 5.07 80.5 1.68

21

W2H10 66.4 196.1 33.49 377.5 69.5 0.87 0.83 3.45 3.30 531.2 20.12 73.1 1.10
W5H4 129.3 196.1 66.65 377.5 125.9 1.57 1.62 6.26 6.43 531.2 20.12 135.5 1.05

W10H2 166.7 196.1 99.49 377.5 183.5 2.29 2.08 9.12 8.29 531.2 20.12 197.3 1.18
W2H5 40.2 98.0 16.74 180.7 40.3 0.50 0.50 2.00 2.00 531.2 20.12 41.6 1.03

W10H1 89.8 98.0 49.74 180.7 97.4 1.22 1.12 4.84 4.46 531.2 20.12 103.7 1.15
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Table A2. Cont.

Ref. ID Name δu.exp (mm) Ek (kJ) Et (kJ) δuk (mm) δu (mm) RD (%) RD.exp (%) Rp Rp.exp Py (kN) δy (mm) δud (mm) AEI

22

N-H0.1 10.5 0.23 0.15 11.3 9.15 0.46 0.53 0.80 0.91 37.6 11.48 9.71 0.92
N-H0.25 17.6 0.64 0.41 21.6 16.0 0.80 0.88 1.39 1.53 37.6 11.48 16.7 0.95
N-H0.5 24.2 1.33 0.86 39.9 26.9 1.35 1.21 2.34 2.11 37.6 11.48 28.6 1.18
N-H1.0 43.5 2.65 1.71 85.7 52.4 2.62 2.18 4.56 3.79 37.6 11.48 51.2 1.18
N-H1.5 59.9 3.95 2.55 133.0 82.1 4.11 3.00 7.15 5.22 37.6 11.48 73.6 1.23

23, 24
N-H300 10.0 0.05 0.04 13.8 10.8 1.20 1.11 3.45 3.19 3.50 3.13 12.9 1.29
N-H600 15.1 0.10 0.08 35.1 24.9 2.77 1.68 7.96 4.82 3.50 3.13 23.6 1.56
N-H900 21.9 0.15 0.11 58.1 41.7 4.63 2.43 13.33 7.00 3.50 3.13 34.3 1.57

25

6-C27-3 47.0 0.99 0.61 94.8 58.2 4.85 3.91 8.29 6.69 11.5 7.02 56.4 1.20
6-C27-4 63.7 1.32 0.81 126.3 77.5 6.46 5.31 11.04 9.07 11.5 7.02 73.9 1.16
8-C27-3 30.6 0.99 0.61 55.1 34.7 2.89 2.55 4.26 3.75 19.6 8.15 35.1 1.15
8-C27-4 39.4 1.32 0.81 72.9 45.5 3.79 3.29 5.58 4.84 19.6 8.15 45.4 1.15

10-C27-2.5 18.5 0.82 0.51 31.2 20.4 1.70 1.54 2.21 2.00 29.7 9.25 21.7 1.17
10-C27-3 20.0 0.99 0.61 37.0 23.9 1.99 1.67 2.58 2.16 29.7 9.25 25.1 1.26
10-C27-4 28.7 1.32 0.81 48.3 30.8 2.57 2.39 3.33 3.10 29.7 9.25 31.9 1.11
6-C40-5 62.7 1.65 1.01 156.1 95.3 7.94 5.22 14.59 9.59 11.8 6.53 89.2 1.42
6-C40-6 87.7 1.97 1.22 186.7 114.5 9.54 7.31 17.53 13.44 11.8 6.53 106.2 1.21
6-C40-7 119.1 2.30 1.42 218.2 133.9 11.16 9.92 20.51 18.23 11.8 6.53 123.4 1.04
6-C40-8 119.1 2.63 1.62 249.8 153.3 12.78 9.93 23.48 18.24 11.8 6.53 140.6 1.18
8-C40-2 22.9 0.66 0.41 36.4 23.0 1.92 1.91 3.17 3.16 20.2 7.26 23.7 1.03
8-C40-3 35.7 0.99 0.61 54.0 33.6 2.80 2.97 4.63 4.91 20.2 7.26 33.7 0.95
8-C40-4 35.1 1.32 0.81 71.8 44.4 3.70 2.93 6.12 4.84 20.2 7.26 43.7 1.24
8-C40-5 38.8 1.65 1.01 89.5 55.3 4.61 3.24 7.62 5.35 20.2 7.26 53.8 1.39
10-C40-5 33.7 1.65 1.01 58.8 37.0 3.08 2.81 4.50 4.09 30.6 8.23 37.2 1.11
10-C40-6 45.2 1.97 1.22 69.9 43.9 3.66 3.77 5.33 5.49 30.6 8.23 43.8 0.97
10-C40-7 62.5 2.30 1.42 82.3 50.9 4.24 5.21 6.18 7.59 30.6 8.23 50.5 0.81
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Table A2. Cont.

Ref. ID Name δu.exp (mm) Ek (kJ) Et (kJ) δuk (mm) δu (mm) RD (%) RD.exp (%) Rp Rp.exp Py (kN) δy (mm) δud (mm) AEI

26

DR3.8_0.8
_0.11_H0.6 18.6 1.76 1.41 28.6 23.1 1.44 1.16 5.03 4.05 65.9 4.59 23.7 1.28

DR3.8_0.8
_0.11_H0.9 34.5 2.65 2.12 42.7 34.3 2.14 2.16 7.47 7.52 65.9 4.59 34.5 1.00

DR3.8_0.8
_0.11_H1.2 41.0 3.53 2.83 56.8 45.6 2.85 2.56 9.93 8.93 65.9 4.59 45.2 1.10

DR3.8_0.8
_0.15_H0.6 19.6 1.76 1.41 28.6 23.1 1.44 1.23 5.03 4.27 65.9 4.59 23.7 1.21

DR3.8_0.8
_0.15_H0.9 28.8 2.65 2.12 42.7 34.3 2.14 1.80 7.47 6.27 65.9 4.59 34.5 1.20

DR3.8_0.8
_0.15_H1.2 39.2 3.53 2.83 56.8 45.6 2.85 2.45 9.93 8.54 65.9 4.59 45.2 1.15

DR5.7_1.6
_0.15_H0.3 20.0 0.89 0.78 24.9 22.1 1.38 1.25 2.90 2.63 41.7 7.61 22.6 1.13

DR5.7_1.6
_0.15_H0.45 30.0 1.32 1.17 35.9 32.0 2.00 1.88 4.20 3.94 41.7 7.61 31.8 1.06

DR5.7_1.6
_0.15_H0.6 39.1 1.76 1.56 47.3 42.1 2.63 2.44 5.53 5.14 41.7 7.61 41.2 1.05

DR5.7_1.6
_0.20_H0.3 19.1 0.89 0.78 24.9 22.1 1.38 1.19 2.90 2.51 41.7 7.61 22.6 1.18

DR5.7_1.6
_0.20_H0.45 28.8 1.32 1.17 35.9 32.0 2.00 1.80 4.20 3.78 41.7 7.61 31.8 1.11

DR5.7_1.6
_0.20_H0.6 37.9 1.76 1.56 47.3 42.1 2.63 2.37 5.53 4.98 41.7 7.61 41.2 1.09

δu.exp: Experimental result of maximum deflection, Ek: Kinetic energy of weight (Input energy), Et: Transmitted energy, δuk: Estimated maximum deflection based on the Ek, δu: Estimated
maximum deflection, RD: Deflection ratio (= δu /L), RD.exp: Experimental result of the deflection ratio (= δu.exp/L), Rp: Plasticity ratio (= δu/δy), Rp.exp: Experimental result of the plasticity
ratio (= δu.exp /δy), Py: Calculated yield bending capacity of the beam, δy: Calculated yield deflection of the beam, δud: Estimated maximum deflection for design, AEI: Accuracy evaluation
indicator (= δu /δu.exp).
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