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Abstract: Cost-competitiveness of offshore wind depends heavily in its capacity to switch preventive
maintenance to condition-based maintenance. That is, to monitor the actual condition of the wind
turbine (WT) to decide when and which maintenance needs to be done. In particular, structural
health monitoring (SHM) to monitor the foundation (support structure) condition is of utmost
importance in offshore-fixed wind turbines. In this work a SHM strategy is presented to monitor
online and during service a WT offshore jacket-type foundation. Standard SHM techniques, as guided
waves with a known input excitation, cannot be used in a straightforward way in this particular
application where unknown external perturbations as wind and waves are always present. To face
this challenge, a vibration-response-only SHM strategy is proposed via machine learning methods.
In this sense, the fractal dimension is proposed as a suitable feature to identify and classify different
types of damage. The proposed proof-of-concept technique is validated in an experimental laboratory
down-scaled jacket WT foundation undergoing different types of damage.

Keywords: fractal dimension; structural health monitoring; offshore wind turbine; kNN; support
vector machines

1. Introduction

Structural health monitoring’s (SHM) main purpose is to diagnose in time damage that affects the
integrity of a structure and determine whether repair or reinforcement actions are required to avoid or
delay its degradation. Generally, SHM strategies consist of the following steps:

(i) the strategic placement of sensors in the overall structure;
(ii) data collection and communication; and
(iii) analysis of the measured data.

It is important to note that, in a wide variety of applications, guided waves, which is a
nondestructive approach, is the usual standard. This approach relies on exciting the structure with
low frequency ultrasonic waves and then sensing the reflected response waves. Thus, the method
relies heavily on the fact that the input excitation is known and also that other perturbations can be
filtered or neglected. On the one hand, in civil infrastructures, such as bridges, it is feasible to assume
that external perturbations can be neglected or filtered with respect to the induced excitation, see [1,2].
On the other hand, in other applications, as in aerospace, the structure can only be diagnosed with
this approach when it is not in service. This strategy is used, for example, in [3] where a multiarea
scanning ultrasonic system is built in a hangar to rapidly scan the airplane overall structure. This type
of not in service diagnose (the airplane can be diagnosed during no-flight conditions, when it is in the
hangar) or neglecting the external perturbations (as in SHM for standard civil structures as bridges

Appl. Sci. 2020, 10, 6972; doi:10.3390/app10196972 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-9369-1423
https://orcid.org/0000-0003-4964-6948
https://orcid.org/0000-0001-8958-6789
http://dx.doi.org/10.3390/app10196972
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/19/6972?type=check_update&version=2


Appl. Sci. 2020, 10, 6972 2 of 23

or buildings) cannot be straightforwardly extrapolated to the main research area of the present work:
wind turbines. Online and in-service SHM for wind turbines (WTs) are extremely important. WTs are
extremely large structures subject to remarkable external unknown excitations such as wind and waves
in the offshore case. Thus, SHM strategies for WTs must be able to cope with unknown significant
external excitations hindering the use of the standard exciting-and-sensing approach [4]. To face
this challenge, in this work, a vibration-response-only SHM strategy is stated to monitor online and
during service a WT offshore fixed foundation by using only the excitation caused by the external and
unknown perturbations.

Offshore wind power will expand dramatically in the next two decades, multiplying by 15 by 2040
to a minimum of 345 gigawatts (GW) of installed capacity, according to the Offshore Wind Outlook
2019 report of the International Energy Agency [5]. However, this achievement will only be possible
through cost-competitiveness of offshore wind, which depends entirely on SHM capacity to switch
preventive maintenance to predictive one [6]. Thus, SHM for offshore assets is imperative to guarantee
its exploitability. Hence, in this work, a SHM methodology for offshore fixed foundations is proposed.

Nowadays, the SHM systems for WTs are mostly deployed to blades [7] and tower [8] but research
of SHM for offshore support structures is still scarce [9]. The state of the art in this very specific area
has three main research lines:

(i) model-based, using, for example, the finite element method as in [10–12];
(ii) data-based using solely experimental and/or real data; and
(iii) a hybrid approach that makes use of real and/or experimental data and numerical models.

Regarding the first option, the work of Stutzamnn et al. is noteworthy [13] where crack detection
of monopile offshore foundations is accomplished based on numerical simulations of fatigue cracks.
Regarding the second option, a comprehensive review is given in [14] about SHM of offshore WTs
through the statistical pattern recognition paradigm. In this review, it is shown that the usual strategy,
regarding offshore WT damage detection, is to identify changes in the modal properties. However,
this strategy requires detailed attention to take into account the operational and environmental impact,
and usually only damage detection (but not classification) is accomplished. For example, in [15] a
SHM approach verified on a full-scale foundation is presented. However, dynamic variability between
different operational cases only allows the final results to indicate an overall stiffening of the structure
but not to conclude whether damage is present or not. Regarding the third approach, the work by
Gomez et al. [16] is noteworthy based on acceleration response data and calibrated computer models.
However, this work is based in the usual operational modal analysis and holds the difficulties of
this type of approach including the fact that only detection (but not classification of damage type) is
acquired. In this work, facing the challenge posed by the previous references, different damage types
are taken into account and its classification is achieved in an experimental down-scaled jacket WT
foundation. It should be noted that the experimental testbed is a reduced model but well-founded
for this proof-of-concept work as it is comparable to that employed in the following works: (i) [17],
where damage detection is achieved via damage indicators; (ii) [18], where damage detection is
obtained via statistical time series analysis; (iii) [19], based on principal component analysis and
support vector machines; and (iv) [20], where a deep learning approach based on convolutional neural
networks is employed.

It is well known that machine learning requires a feature extraction preprocess. It is a challenge to
find suitable features, sensitive to physical characteristics, that lead to the identification of the damage
or fault [21]. In this work, the fractal dimension (FD) of the data time series is employed as the main
feature. The FD has been used traditionally as a feature for medicine applications. For example, in [22]
experiments on intensive care unit data sets show that the FD characterizes the time series better than
the correlation dimension; in [23] FD is proven to be discriminant for the detection of epileptic seizures
in intracranial electroencephalogram signals; and in [24] glaucomatous eye detection is proposed
based on FD estimation. However, it was not until recently that FD has been explored as feature for
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structural damage detection. It is important to note the recent work by Rezaie et al. [25], where FD for
crack pattern recognition is studied. It is also important to note the work by Wen et al. [26] where FD is
shown to be effective to realize fault diagnosis of rolling element bearings and cope with the effects of
variation in operating conditions. In this work, the FD feature is proposed for the vibration-response
signals inspired by the physical insight that the different fractal structures of these signals should be
capable to discriminate different types of damage in jacket-type offshore foundations.

The paper is arranged as follows. First, the laboratory test bed and damage scenarios are briefly
introduced in Section 2. Section 3 addresses the detailed statement of the developed damage diagnosis
strategy that encompasses the following steps:

(i) data collection and manipulation;
(ii) fractal dimension feature extraction by means of the Katz’s algorithm; and
(iii) normalization and classification tools.

The experimental results are comprehensively stated in Section 4. Finally, conclusions are drawn
in Section 5.

2. Experimental Test Bed

The reliability of the damage diagnosis approach presented in this paper is verified using different
types of damage in an experimental test bed modeling a jacket-type WT as in [19]. For a very detailed
description of the function generator, the amplifier and inertial shaker, the sensor network, the data
acquisition system, how the vibration signals are acquired and how the time domain waveforms are
processed, readers are referred to [19,20].

A brief characterization of the experimental setup of the small scale wind turbine is described
below. First, a function generator (model GW INSTEK AF-2005) is used to produce a white noise
signal with four different amplitudes (0.5, 1, 2, and 3) that account for different wind speed regions.
This signal is then amplified and used as input to a modal shaker (GW-IV47 from Data Physics) that
induces vibration in the structure. The overall description of the test bench is displayed in Figure 1a.

(a)
(b)

Figure 1. (a) The test bench detailing the location of the damaged bar (red circle); and (b) Location of
the sensors.
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The structure is 2.7 m high and consists of three parts:

(i) the top beam;
(ii) the tower; and
(iii) the jacket.

The top beam is 1 meter wide and 0.6 meters high and the inertial shaker is attached to one of
the ends of the beam. Three tubular sections united with bolts form the tower. Finally, the jacket is a
pyramidal structure composed of steel bars of different lengths as well as steel sheets.

The vibration of the structure is measured by means of the data acquisition system cDAQ-9188
(National Instruments) and through 8 triaxial accelerometers (model 356A17, PCB Piezotronic)
optimally placed following the work by Zugasti (2014) [17], as can be seen in Figure 1b.

In this work we have considered the same 4 different structural states as in the work by
Puruncajas et al. [20]. All of the structural states refer to the jacket bar illustrated in Figure 1a.
These states are:

(i) the healthy structure with the original healthy steel bar;
(ii) the healthy structure where the original bar is replaced by a replica;
(iii) the structure with a 5 mm crack damaged bar; and
(iv) the structure with an unlocked bolt in the jacket.

3. Damage Diagnose Strategy

In this section the damage diagnosis strategy is stated. First, a detailed description on data
collection and manipulation is given. On the one hand, how data is collected and reshaped is of
utmost importance in machine learning in general and for this specific application in particular,
see [27,28]. On the other hand, it is well known that feature selection allows to improve the classification
performance making faster and more profitable the classifiers [21]. In this regard, the fractal dimension
feature is introduced for damage classification purposes, as well as a physical insight of its nature
for time series and a detailed explanation about the Katz’s algorithm used to compute it. Finally,
three machine learning classifiers are reviewed and tested for damage classification.

3.1. Data Collection and Manipulation

A total of 100 experimental tests have been conducted that include the four amplitudes that
represent the different speed regions. More precisely:

(i) 10 tests with the original healthy bar for each amplitude, i.e., 40 tests;
(ii) 5 tests with the replica bar for each amplitude, i.e., 20 tests;
(iii) 5 tests with the 5 mm crack bar for each amplitude, i.e., 20 tests; and
(iv) 5 tests with the unlocked bolt for each amplitude, i.e., 20 tests.

For each experimental test, the acceleration has been measured through 24 sensors during
59.51636719 s and with a sampling frequency of 275.28 Hz, which leads to 16,384 time instants
and a time step of about ∆ = 0.0036328125 s.

The raw data of the k-th experimental test, k = 1, . . . , 100, can be arranged as the matrix X(k) in
Equation (1). Each of the 24 columns of matrix X(k) contain the 16,384 measures of each sensor:
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X(k) =

sensor #1 sensor #2 sensor #3 · · · sensor #24



x(k)1,1 x(k)1,2 x(k)1,3 · · · x(k)1,24

x(k)2,1 x(k)2,2 x(k)2,3 · · · x(k)2,24

x(k)3,1 x(k)3,2 x(k)3,3 · · · x(k)3,24
...

...
...

. . .
...

x(k)16383,1 x(k)16383,2 x(k)16383,3 · · · x(k)16383,24

x(k)16384,1 x(k)16384,2 x(k)16384,3 · · · x(k)16384,24

∈ M16384×24(R) (1)

Each column of the matrix X(k) in Equation (1) is reshaped into a 64-by-256 matrix to build a new
matrix Y(k) ∈ M64×(256·24)(R) in Equation (2):

Y(k) =

sensor #1 · · · sensor #24


x(k)1,1 x(k)2,1 · · · x(k)256,1 · · · x(k)1,24 x(k)2,24 · · · x(k)256,24

x(k)257,1 x(k)258,1 · · · x(k)512,1 · · · x(k)257,24 x(k)258,24 · · · x(k)512,24
...

...
. . .

...
. . .

...
...

. . .
...

x(k)16129,1 x(k)16130,1 · · · x(k)16384,1 · · · x(k)16129,24 x(k)16130,24 · · · x(k)16384,24

(2)

Two are the main reasons for reshaping the matrix Y(k) in Equation (2):

(i) on the one hand, for a single experimental test, we create 64 rows. Each one of these rows is what
we call a sample;

(ii) on the other hand, each sample will contain time-history measures of the whole set of sensors.

We will see in Section 4 that when we want to diagnose whether a wind turbine is healthy or not,
we just need to measure these 24 sensors during 256 time instants, that is, during 256∆ ≈ 0.93 s.

To define the matrix that contains all the data, the matrices Y(k), k = 1, . . . , 100, from each
experiment, are stacked to define

Y =


Y(1)

Y(2)

...
Y(100)

 ∈ M(64·100)×(256·24)(R) =M6400×6144(R). (3)

3.2. Fractal Dimension

Fractal geometry was proposed by Benoît Mandelbrot [29] and it is a relatively new mathematics
discipline which has found a lot of applications in bio-science [30–32], engineering [33] and many
other fields [34].

Euclidean geometry describes common geometric forms like lines, planes, spheres or rectangular
volumes. Each of the geometric objects considered so far has an integer dimension (D), either 1, 2, or 3.
However, many natural shapes do not harmonize with the integer-based idea of dimension.

In order to give meaning to noninteger dimensions, a more mathematical description of dimension
proposed by P. Bourke [35] is based on “how the size of an object behaves as the linear dimension
increase”. More precisely, consider, for instance, three objects with dimensions D = 1 (a line segment);
D = 2 (a square); and D = 3 (a cube). If the line segment, the square and the cube are linearly scaled
by a factor of 2, then the results are 2 copies, 4 copies, and 8 copies of the initial objects, respectively.
In other words, the length (characteristic size) of the line segment is doubled (Figure 2a), the area
(characteristic size) of the square increases by a factor of 4 (Figure 2b), and the volume (characteristic
size) of the cube increases by a factor of 8 (Figure 2c).
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Result: 2=21 copies of the original

1D line 2D square

Result: 2=22 copies of the original

3D cube

Result: 2=23 copies of the original

(a) (b) (c)

Figure 2. When objects of different dimension (e.g., (a) line, (b) square, and (c) cube) are linearly scaled
by a factor of 2, their characteristic size will have different results associated to their dimension.

The relation between the scaling factor S, the dimension D and the number of generated copies N
(increasing size) can be generalized and expressed as:

N = SD, (4)

which is equivalent to

D =
log(N)

log(S)
. (5)

Since D is defined in terms of N and S in Equation (5), it is possible to find the dimension,
for instance, of the famous Koch curve [36]. In the case of the Koch curve, at each step, we divide the
line segment into S = 3 segments of equal length and we draw an equilateral triangle that has the
middle as its base and points outward. Therefore, we have created N = 4 copies (the two external sides
of the original line segment and the two sides of the triangle). Consequently, the fractal dimension
DKoch of the Koch curve is:

DKoch =
log(4)
log(3)

≈ 1.2619.

As it is very well known, fractals are self-similar subsets of the Euclidean space where the fractal
dimension defined in Equation (5) surpasses their topological dimension. Fractals have the same
appearance at different scales. In this sense, many time series of different processes can be considered
as fractals, since many parts taken from these time series, scaled by proper factors, are similar to the
whole series. Considering that the fractal dimension is, somehow, a measure of the complexity that is
repeating on each scale, it seems very interesting to compute the fractal dimension of a time series.
In this regard, there are several algorithms that can be applied to estimate the fractal dimension of
a time series. The approach used in this paper to estimate the fractal dimension is Katz’s algorithm,
that is summarized in Section 3.2.1.
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3.2.1. Katz’s Algorithm

For a given sensor τ = 1, . . . , 24, the time series used in this work are the rows in matrix Y
in Equation (3). More precisely, for a given row i = 1, . . . , 6400 and a given sensor τ = 1, . . . , 24,
the associated time series are composed of a sequence of ν = 256 points, s1

i,τ , s2
i,τ , . . . , sν

i,τ ∈ R2 where

sj
i,τ = (j, Y [i, j + ν(τ − 1)]) ∈ R2, j = 1, . . . , ν,

where Y[α, β] represents the element in the α-th row and β-th column of matrix Y.
To estimate the fractal dimension of the time series, Katz [37] defines two magnitudes, L and d,

see Figure 3. On the one hand, the total length of the curve L is defined as the sum of the distance
between two consecutive points. More precisely, for a given row i = 1, . . . , 6400 and a given sensor
τ = 1, . . . , 24:

Li,τ =
ν−1

∑
j=1

∥∥∥sj+1
i,τ − sj

i,τ

∥∥∥
2
=

ν−1

∑
j=1

√
1 + (Y [i, j + 1 + ν(τ − 1)]− Y [i, j + ν(τ − 1)])2. (6)

On the other hand, d is the diameter or planar extent of the time series and it is defined as the
maximum distance between the first point in the time series and the rest of points. More precisely,
for a given row i = 1, . . . , 6400 and a given sensor τ = 1, . . . , 24:

di,τ = max
j=2,...,ν

∥∥∥sj
i,τ − s1

i,τ

∥∥∥
2

. (7)

The last step in the Katz’s algorithm is the normalization of both Li,τ and di,τ by the average
distance ai,τ between two consecutive points. More precisely, for a given row i = 1, . . . , 6400 and a
given sensor τ = 1, . . . , 24:

ai,τ =
Li,τ

ν− 1
. (8)

Finally, for a given row i = 1, . . . , 6400 and a given sensor τ = 1, . . . , 24, the formula for the fractal
dimension zi,τ can be represented as:

zi,τ =
log
(

Li,τ
ai,τ

)
log
(

di,τ
ai,τ

) =
log (ν− 1)

log
(

di,τ(ν−1)
Li,τ

) =
log(ν− 1)

log(ν− 1) + log
(

di,τ
Li,τ

) . (9)

Note that di,τ ≤ Li,τ , where both di,τ and Li,τ are positive real numbers. Therefore,

0 <
di,τ

Li,τ
≤ 1,

that implies

log
(

di,τ

Li,τ

)
≤ 0.

The expression log
(

di,τ
Li,τ

)
is zero if, and only if, the points sj

i,τ , j = 1, . . . , ν are all aligned. In this

case, the fractal dimension is exactly 1. When the ratio di,τ
Li,τ

decreases from 1 to 1√
ν−1

, then the fractal
dimension of the time series increases up to 2. Even though the fractal dimension of a plane fractal
never exceeds 2, the fractal dimension of a time series using the Katz’s algorithm may exceed this
value when the fraction di,τ

Li,τ
is less than 1√

ν−1
. However, the fractal dimension of a regular time series

normally lies within the range [1, 2].
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…

…

a1 a2 a3 aN a ∈ RN

hidden layer h1 h2 h3 hN h ∈ {0, 1}N

W1,1 WN,M W ∈ RN×M

visible layer v1 v2 v3 vM v ∈ {0, 1}M

b1 b2 b3 bM b ∈ RM

Figure 3: Original EPS image

s1s1
si = (ti, yi)

sN

d

t

y

Figure 4: Original EPS imageFigure 3. The diameter of a time series d is given by the distance between the first point and the point
that provides the maximum distance.

With the fractal dimensions zi,τ of the time series in matrix Y in Equation (3), we build a new
matrix Z as:

Z =

sensor #1 sensor #2 · · · sensor #24


z1,1 z1,2 · · · z1,24

z2,1 z2,2 · · · z2,24
...

...
. . .

...
z6400,1 z6400,2 · · · z6400,24

∈ M6400×24(R). (10)

Specifically:

• z1,1 in matrix Z in Equation (10) is the fractal dimension of the time series

x(1)1,1 , x(1)2,1 , . . . , x(1)ν,1 ;

• more generally, zi,τ is the fractal dimension of the time series

x(β)
α,τ , x(β)

α+1,τ , . . . , x(β)
α+ν,τ ,

where

α = [(i mod 64)− 1] · ν+1, if i mod 64 6= 0,

α = 63ν + 1, if i mod 64 = 0,

β = [(i−1) div 64] + 1,

and div and mod stand for the integer quotient and the remainder of an integer division, respectively.

3.3. Normalization and Classification Tools

Although matrix Z in Equation (10) is a matrix of elements generally between 1 and 2, the data
is normalized by using column-wise scaling. This way, each column, and consequently each sensor,
will have the same influence on the posterior analysis. Otherwise, the sensors closest to the source
of the excitation and furthest from the structural damage could have a superior influence and make
it difficult to detect the damage. Column-wise scaling is performed by subtracting the mean of each
column to the elements on that column and dividing the same elements by the standard deviation of
the column.
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In this work, different classifiers have been used for the classification: k nearest neighbors (kNN)
and support vector machines (SVM) with different kernels. In Sections 3.3.1 and 3.3.2 these methods
will be briefly reviewed. Finally, it is important to note that 5-fold cross validation has been used to
evaluate the classifier models.

3.3.1. k Nearest Neighbor

The k nearest neighbor (kNN) algorithm has been used since 1970. It is a classification algorithm
that is used to make a prediction of a new observation based on the category of the k nearest neighbors.
Two elements are key to this approach:

(i) the one and only parameter k; and
(ii) the distance measure [38].

The most commonly used distance measures in machine general are, in general, the Hamming
distance, Euclidean distance, the Manhattan distance and the Minkowski distance. In this paper,
the Euclidean distance is used.

3.3.2. Support Vector Machines (SVM)

SVM is a supervised machine learning algorithm that is used for classification purposes and it
has been applied to a large variety of applications [39]. SVM are based on the simple idea of finding
the hyperplane (or the decision boundary) that best divides the data into two classes.

Figure 4a shows the illustration of three separating hyperplanes out of many possible. The goal
is to choose a hyperplane with the widest margin to separate both classes, see Figure 4b. In this
context, the margin is defined as the smallest distance between any of the samples and the hyperplane.
The data points closest to the separating hyperplane are called the support vectors. These points
will determine how wide the margin is. Let us consider a two-classes example, a training data set
x1, . . . , xN , N ∈ N with corresponding binary target values {t1, . . . , tN} ⊂ {−1, 1}, where one class is
labeled as red (corresponding to a positive target value 1) and the other one as blue (corresponding to a
negative target value −1). Commonly, the hyperplane is expressed in the following form:

h(x) = ω>x + b

where ω is the weight vector and b is the bias term. The canonical hyperplane is used in this paper,
among all the possible descriptions. The canonical hyperplane satisfies:

ω>xsv
red + b = 1,

ω>xsv
blue + b = −1,

where xsv
red and xsv

blue represent the so-called support vectors (the closest samples with respect to the
hyperplane) on the red and blue classes, respectively. The distance δ from the support vectors to the
hyperplane is given by:

δ
(

xsv
{red,blue}, h

)
=

∣∣∣ω>xsv
{red,blue} + b

∣∣∣
‖ω‖ =

1
‖ω‖ .

Since the margin is twice the distance from the support vectors to the hyperplane, the margin will
be 2
‖ω‖ . As it has been said, the goal is to maximize the margin 2

‖ω‖ , which is equivalent to minimizing

the inverse function ‖ω‖2 . This is also equivalent to minimizing

min
ω,b

1
2
‖ω‖2 subject to h(xi)ti ≥ 1, i = 1, . . . , N.
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x

y

(a)

x

y support vectors

support
vector

separating hyperplane

margin

(b)
Figure 4. (a) There are two classes (blue and red), which are separated by three hyperplanes (in this
case lines) out of many possible; (b) optimal hyperplane that maximizes the margin between classes.

In order to find the extreme values of a function with multiple constraints, one possible approach
is to use the Lagrange multipliers. With this approach, the previous minimization problem is
re-expressed as:

min
ω,b,αi

L(ω, b; αi) = min
ω,b,αi

1
2
‖ω‖2 −

N

∑
i=1

αi

[
(ω>xi + b)ti − 1

]
(11)

where αi, i = 1, . . . , N are the Lagrange multipliers. To find the extreme values, the partial derivatives
with respect to ω and b are computed and equated to zero:

∂L(ω, b; αi)

∂ω
= ω−

N

∑
i=1

αitixi = 0⇒ ω =
N

∑
i=1

αitixi (12)

∂L(ω, b; αi)

∂b
= −

N

∑
i=1

αiti = 0 (13)

Equation (12) shows that the weight vector ω is a linear combination of the training data set.
Replacing Equations (12) and (13) into Equation (11), the minimization problem is uniquely expressed
in terms of αi, xi and ti:

min
αi

1
2

(
N

∑
i=1

αitixi

)> ( N

∑
i=1

αitixi

)
−

N

∑
i=1

αiti

(
N

∑
j=1

αjtjxj

)>
xi − b

N

∑
i=1

αiti +
N

∑
i=1

αi

 . (14)

After some simple manipulations, Equation (14) is now expressed as:

min
αi

[
N

∑
i=1

αi −
1
2

N

∑
i=1

N

∑
j=1

αiαjtitjx>i xj

]
(15)

As it can be clearly seen, the optimization problem depends only on the dot product of pairs of
training data. However, frequently the data are not linearly separable. Therefore, the margin constraint
cannot be satisfied for any ω and b. One possible solution is to allow some data points to violate the
margin constraints (soft margin), but it is needed to assign them a cost. In this case, a penalty parameter
C (box constraint) has to be considered to control the maximum penalty imposed on margin-violating
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observations, as well as slack variables εi that controls the width of the margin. For the case of a linear
kernel, dealing with a nonlinearly separable case can be generalized as:

min
ω,b,εi

[
1
2
‖ω‖2 + C

N

∑
i=1

εi

]
subject to

{
h(xi)ti ≥ 1− εi, i = 1, . . . , N;
εi ≥ 0, i = 1, . . . , N.

(16)

The constrained minimization problem in Equation (16) can be rewritten, using Lagrange
multipliers, as:

min
αi

[
N

∑
i=1

αi −
1
2

N

∑
i=1

N

∑
j=1

αiαjtitjx>i xj

]
subject to


N
∑

i=1
αiti = 0;

0 ≤ αi ≤ C, i = 1, . . . , N.
(17)

In many cases, even with a soft margin, the space is not linearly separable. In these cases,
a transformation φ is used to transform the original training data to another space. As it was mentioned
before, the optimization depends only in dot products. Therefore, the transformation φ is not needed.
Instead, only the dot product

K(xi, xj) = φ(xi)φ(xj)

is needed, renamed as the kernel function. In this work, we will used two kernel functions, quadratic
kernel Kq and Gaussian kernel KG, defined as:

Kq(xi, xj) =

(
1 +

1
γ2 x>i xj

)
,

KG(xi, xj) = exp

(
−
‖xi − xj‖2

γ2

)
,

where γ is the so-called kernel scale.

4. Results

In this section, the results are organized as follows. First, the evaluation metrics used to assess
the classification models are introduced and explained in Section 4.1. As it has been detailed in
Sections 3.3.1–3.3.2, the classification models used in this work are kNN, quadratic SVM and Gaussian
SVM. The results of the present approach using the fractal dimension to build the feature vector and
kNN, quadratic SVM and Gaussian SVM are presented in Sections 4.2–4.4, respectively.

Figure 5 presents a flowchart summarizing the proposed damage diagnosis strategy. In a nutshell,
the fractal dimension is computed and normalized to each time series (per sensor) of the baseline data
and machine learning models are trained. Finally, when new data from a structure to be diagnosed
comes in, its fractal dimension is computed, normalized and finally the already trained kNN or SVM
(quadratic or Gaussian) model is applied for the structural state classification.

4.1. Evaluation Metrics

Before the results are presented, in terms of multiclass confusion matrices, it is important to clearly
describe the evaluation metrics that are used to assess the performance of each model. One of the
most used metrics is the overall accuracy, which is defined as the number of correct predictions out of
the total number of predictions. However, the overall accuracy alone does not always tell if a model
performs satisfactorily or unsatisfactorily, especially if the test data are comprised of imbalanced classes.
However, even in the case of balanced classes, with the information provided by the overall accuracy,
it is not possible to completely know how to improve the model. The metrics used in this work are
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accuracy, precision, recall, F1-score and specificity. These metrics, for both the binary classification and
multiclass classification problem will be defined shortly in the next paragraphs.

data coming from a structure 
to be diagnosed

baseline data

kNN/SVM

256 time steps

256 x 24

CLASSIFICATION

N

fractal dimension
(Katz’s algorithm)

256 x 24

sensor #1 sensor #24

N

24

normalization

Figure 5. Flowchart summarizing the proposed damage diagnose strategy.

Consider categorical labels when n ∈ N observations x1, . . . , xn have to be assigned into
predefined classes C1, . . . , C`, ` ∈ N. In a binary classification problem, each observation xi is to
be classified into one, and only one, of two nonoverlapping classes (C1 and C2, or positive and negative).
However, in a multiclass classification problem, the input xi is to be classified into one, and only one,
of ` nonoverlapping classes.

4.1.1. Metrics for a Binary Classification Problem

A confusion matrix is a table or matrix that summarizes the prediction results of a classification
problem. It is not a metric itself but it helps to visually understand the metrics and types of errors the
model is making. Table 1 represents the confusion matrix for the case of a binary classification problem,
where two classes have been considered: positive and negative. The observations are distributed in
two rows and two columns. The rows represent the actual classes, while the columns represent the
predicted classes. The observations in the diagonal represent the correct decisions, while the elements
in the antidiagonal represent the misclassifications.

Table 1. Confusion matrix of a binary classification problem.

Predicted Class
Positive Negative

A
ct

ua
lc

la
ss Positive True positive False negative

(tp) (fn)

Negative False positive True negative

(fp) (tn)

More precisely, the four elements in a confusion matrix of a binary classification problem are:

• True positive (tp): the number of positive observations predicted as positive;
• True negative (tn): the number of negative observations predicted as negative;
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• False positive (fp): the number of negative observations wrongly predicted as positive;
• False negative (fn): the number of positive observations wrongly predicted as negative.

The five metrics for the binary classification problem are then defined in Table 2 in terms of the
elements of the confusion matrix. The F1 score is a particular case of the Fβ score defined in [40] when
β = 1.

Table 2. Metrics for the evaluation of a binary classification problem.

Metric Formula

accuracy acc =
tp + tn

tp + fn + fp + tn

precision ppv =
tp

tp + fp

recall tpr =
tp

tp + fn

F1 score F1 =
2 · ppv · tpr
ppv + tpr

specificity tnr =
tn

tn + fp

4.1.2. Metrics for a Multiclass Classification Problem

Metrics for a multiclass classification problem are based on a generalization of the metrics in
Table 2 for many classes Ci, i = 1, . . . , ` [41,42]. More precisely, with respect to the class Ci, we define:

• tpi as the true positive for Ci, that is, the number of observations that belong to the class Ci that
are correctly labeled as Ci;

• tni as the true negative for Ci, that is, the number of observations that do not belong to the class
Ci that are not labeled as Ci;

• fpi as the false positive for Ci, that is, the number of observations that do not belong to the class
Ci that are wrongly labeled as Ci; and

• fni as the false negative for Ci, that is, the number of observations that belong to the class Ci that
are not labeled as Ci.

Table 3 presents the metrics for the evaluation of a multiclass classification problem. Although
the quality of the overall multiclass classification is usually assessed in two ways: (i) macroaveraging;
and (ii) microaveraging, Table 3 only considers the macroaveraging case, where all classes are treated
equally, instead of microaveraging, where bigger classes are favored.

Table 3. Metrics for the evaluation of multiclass classification problems, where ` is the number of classes.

Metric Formula

average accuracy acc =
1
`

`

∑
i=1

tpi + tni
tpi + fni + fpi + tni

average precision ppv =
1
`

`

∑
i=1

tpi
tpi + fpi

average recall tpr =
1
`

`

∑
i=1

tpi
tpi + fni

average F1 score F1 =
2 · ppv · tpr
ppv + tpr

average specificity tnr =
1
`

`

∑
i=1

tni
tni + fpi
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Finally, it is important to note that in the next subsections all the presented confusion matrices
follow the next nomenclature. The rows represent the actual class and the columns represent the
predicted class. Label 0 corresponds to the case when the structure is healthy; label 1 corresponds to
the structure with a replica bar; label 2 corresponds to the structure with a 5 mm cracked bar; and label
3 corresponds to the structure with an unlocked bolt in the jacket.

4.2. Results of Fractal Dimension and kNN as Classification Method

As it has been said in Section 3.3.1, the one and only parameter of the kNN classifier is k,
the number of neighbors. Table 4 shows the performance of the proposed approach using kNN
as the classification method, in terms of the number of neighbors k. As described in Section 4.1.2,
the metrics for the evaluation of this multiclass classification problem are the average accuracy, the
average precision, the average recall, the average F1 score and the average specificity. The best results
for each metric have been highlighted in bold. The same results, as a function of the number of
neighbors, are depicted in Figure 6. The case with the best performance corresponds to the case where
the number of neighbors is k = 20. It can be observed that increasing further the number of neighbors
does not increase the indicators’ performance and only leads to a higher computational cost. Table 5
represents the confusion matrix for the best case (k = 20). In Table 4, the performance measures are
presented using macroaveraging. However, in the confusion matrix in Table 5, precision and recall
can be extracted for each class, separately. Similarly, Table 5 also presents the false negative rate
(fnr)—defined as 1−tpr— and the false discovery rate (fdr)—defined as 1−ppv—. From this confusion
matrix, it can be derived all the aforementioned metrics. In particular, it is noteworthy that an average
accuracy of 96.9%, an average precision of 94.3% and an average specificity of 97.7% are obtained.

Table 4. Performance measures (per-unit) for the kNN method using different number of nearest
neighbors (k). The cases with the best performance of each measure are highlighted in bold.

k acc ppv tpr F1 tnr

1 0.953 0.899 0.898 0.898 0.968
5 0.964 0.929 0.917 0.922 0.974
10 0.967 0.937 0.922 0.929 0.976
15 0.968 0.940 0.925 0.931 0.977
20 0.969 0.943 0.926 0.933 0.977
25 0.969 0.942 0.925 0.933 0.977
30 0.969 0.943 0.925 0.933 0.977
35 0.969 0.943 0.924 0.932 0.977
40 0.968 0.944 0.924 0.932 0.977
45 0.967 0.941 0.920 0.929 0.976
50 0.967 0.941 0.919 0.928 0.975

Table 5. Confusion matrix for the kNN algorithm when k = 20.

0 1 2 3 tpr fnr

0 2527 4 7 22 99% 1%

1 33 1186 60 1 93% 7%

2 6 68 1195 11 93% 7%

3 165 6 13 1096 86% 14%

ppv 93% 94% 94% 97%

fdr 7% 6% 6% 3%

4.3. Results of Fractal Dimension and Quadratic SVM as Classification Method

Table 6 summarizes the performance, using macroaveraging, of the proposed approach using
quadratic SVM as the classification method, in terms of the box constraint C and the kernel scale γ
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hyperparameters. More precisely, we combine the box constraint for C = 5, 10, 20, 30, 40 and 50 and
the kernel scale for γ = 0.1, 0.2, 0.5, 1, 2, 5, 10, 15, 20, 30 and 50. The best results for each metric have
been highlighted in bold. The same results, for a box constraint C = 30 and as a function of the kernel
scale γ, are depicted in Figure 7. The case with the best performance corresponds to the case where the
box constraint is C = 30 and the kernel scale is γ = 1. Table 7 represents the confusion matrix for this
case, where it is worth remarking that an average accuracy of 98.4%, an average precision of 96.5% and
an average specificity of 98.9% are obtained.

0.89

0.91

0.93

0.95

0.97

0.99

1 5 10 15 20 25 30 35 40 45 50

accuracy precision recall F1 score specificity

Figure 6. Performance measures (per-unit) corresponding to the kNN strategy for the multiclass
classification problem with respect to the number of neighbors k (horizontal axis).

Table 6. Performance measures (per-unit) corresponding to the quadratic SVM strategy for the
multiclass classification problem using different box constraints (C) and different kernel scales (γ).
The cases with the best performance of each measure are highlighted in bold.

C γ acc ppv tpr F1 tnr

5

0.1 0.971 0.935 0.937 0.936 0.981
0.2 0.981 0.958 0.956 0.957 0.987
0.5 0.982 0.961 0.959 0.960 0.988
1 0.981 0.959 0.957 0.958 0.987
2 0.980 0.958 0.953 0.956 0.986
5 0.937 0.933 0.844 0.876 0.949
10 0.924 0.928 0.809 0.850 0.937
15 0.922 0.924 0.805 0.846 0.935
20 0.919 0.918 0.798 0.838 0.933
30 0.893 0.901 0.732 0.777 0.911
50 0.868 0.887 0.669 0.720 0.890

10

0.1 0.971 0.933 0.935 0.934 0.981
0.2 0.980 0.956 0.955 0.955 0.987
0.5 0.982 0.961 0.960 0.960 0.988
1 0.982 0.961 0.959 0.960 0.988
2 0.982 0.962 0.959 0.960 0.988
5 0.963 0.940 0.910 0.922 0.972
10 0.924 0.928 0.809 0.850 0.937
15 0.923 0.926 0.808 0.849 0.936
20 0.922 0.924 0.805 0.846 0.935
30 0.918 0.916 0.796 0.837 0.933
50 0.888 0.898 0.720 0.766 0.907
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Table 6. Cont.

C γ acc ppv tpr F1 tnr

20

0.1 0.961 0.915 0.912 0.912 0.974
0.2 0.978 0.951 0.950 0.951 0.951
0.5 0.982 0.961 0.959 0.960 0.988
1 0.984 0.964 0.962 0.963 0.989
2 0.982 0.962 0.959 0.961 0.988
5 0.974 0.951 0.939 0.944 0.982
10 0.926 0.929 0.814 0.854 0.938
15 0.924 0.927 0.809 0.849 0.937
20 0.923 0.925 0.808 0.848 0.936
30 0.921 0.922 0.804 0.844 0.935
50 0.906 0.908 0.766 0.810 0.923

30

0.1 0.963 0.917 0.919 0.916 0.976
0.2 0.976 0.947 0.946 0.947 0.984
0.5 0.983 0.961 0.960 0.960 0.988
1 0.984 0.966 0.964 0.965 0.989
2 0.983 0.962 0.960 0.961 0.988
5 0.978 0.955 0.948 0.951 0.984
10 0.934 0.931 0.834 0.869 0.945
15 0.924 0.928 0.810 0.850 0.937
20 0.923 0.926 0.808 0.849 0.936
30 0.923 0.924 0.807 0.847 0.936
50 0.918 0.916 0.797 0.837 0.933

40

0.1 0.963 0.917 0.919 0.916 0.976
0.2 0.976 0.947 0.946 0.946 0.984
0.5 0.982 0.961 0.959 0.960 0.988
1 0.984 0.965 0.963 0.964 0.989
2 0.983 0.962 0.961 0.962 0.989
5 0.980 0.958 0.952 0.955 0.986
10 0.944 0.932 0.860 0.886 0.954
15 0.924 0.927 0.810 0.850 0.937
20 0.924 0.927 0.809 0.849 0.937
30 0.923 0.924 0.807 0.847 0.936
50 0.919 0.918 0.799 0.839 0.934

50

0.1 0.963 0.917 0.919 0.916 0.976
0.2 0.974 0.941 0.941 0.941 0.982
0.5 0.982 0.959 0.958 0.958 0.988
1 0.984 0.965 0.963 0.964 0.989
2 0.983 0.963 0.961 0.962 0.989
5 0.980 0.958 0.953 0.955 0.986
10 0.953 0.935 0.883 0.903 0.963
15 0.925 0.927 0.812 0.852 0.938
20 0.924 0.927 0.809 0.849 0.937
30 0.923 0.925 0.807 0.848 0.936
50 0.920 0.919 0.801 0.841 0.934
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Figure 7. Performance measures (per-unit) corresponding to the quadratic SVM strategy for the
multiclass classification problem for a box constraint C = 30 and with respect to the kernel scale γ

(horizontal axis).

Table 7. Confusion matrix for the quadratic SVM algorithm for the case C = 30 (box constraint) and
γ = 1 (kernel scale).

0 1 2 3 tpr fnr

0 2531 7 8 15 99% 1%

1 5 1214 61 95% 5%

2 11 40 1223 6 96% 4%

3 41 10 9 1220 95% 5%

ppv 98% 96% 94% 98%

fdr 2% 4% 6% 2%

4.4. Results of Fractal Dimension and Gaussian SVM as Classification Method

As in Section 4.3, Table 8 summarizes the performance of the proposed approach using Gaussian
SVM as the classification method, in terms of both the box constraint C and the kernel scale γ.
More precisely, we combine the box constraint for C = 5, 10, 20, 30, 40 and 50 and the kernel scale for
γ = 0.1, 0.2, 0.5, 1, 2, 5, 10, 15, 20, 30 and 50. The best results for each metric have been highlighted in
bold. The same results, for a box constraint C = 50 and as a function of the kernel scale γ, are depicted
in Figure 8. The case with the best performance corresponds to the case where the box constraint is
C = 50 and the kernel scale is γ = 1. Table 9 represents the confusion matrix for this case. From the
confusion matrix, it is worth remarking that an average accuracy of 98.7%, an average precision of
97.3% and an average specificity of 99.1% are obtained.
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Table 8. Performance measures (per-unit) corresponding to the Gaussian SVM strategy for the
multiclass classification problem using different box constraints (C) and different kernel scales (γ). The
cases with the best performance of each measure are highlighted in bold.

C γ acc ppv tpr F1 tnr

5

0.1 0.757 0.734 0.396 0.397 0.800
0.2 0.833 0.833 0.586 0.634 0.863
0.5 0.939 0.921 0.849 0.876 0.951
1 0.983 0.965 0.960 0.963 0.988
2 0.978 0.959 0.946 0.952 0.984
5 0.925 0.930 0.813 0.853 0.938
10 0.924 0.929 0.810 0.851 0.937
15 0.922 0.926 0.806 0.847 0.936
20 0.919 0.919 0.798 0.839 0.933
30 0.893 0.901 0.733 0.778 0.912
50 0.868 0.886 0.669 0.720 0.890

10

0.1 0.756 0.730 0.395 0.396 0.800
0.2 0.832 0.828 0.584 0.631 0.862
0.5 0.940 0.923 0.851 0.879 0.952
1 0.985 0.969 0.965 0.967 0.990
2 0.977 0.956 0.953 0.954 0.985
5 0.944 0.936 0.859 0.887 0.954
10 0.924 0.928 0.810 0.850 0.937
15 0.924 0.928 0.809 0.850 0.937
20 0.922 0.925 0.806 0.846 0.935
30 0.919 0.917 0.797 0.837 0.933
50 0.888 0.898 0.721 0.767 0.908

20

0.1 0.756 0.730 0.395 0.396 0.800
0.2 0.831 0.822 0.581 0.627 0.627
0.5 0.940 0.922 0.852 0.879 0.952
1 0.986 0.970 0.967 0.968 0.990
2 0.984 0.967 0.961 0.963 0.988
5 0.969 0.948 0.922 0.932 0.976
10 0.925 0.930 0.812 0.853 0.938
15 0.924 0.928 0.809 0.850 0.937
20 0.924 0.927 0.809 0.849 0.937
30 0.921 0.922 0.804 0.844 0.935
50 0.909 0.910 0.773 0.817 0.925

30

0.1 0.756 0.730 0.395 0.396 0.800
0.2 0.830 0.821 0.581 0.627 0.862
0.5 0.940 0.923 0.852 0.879 0.952
1 0.987 0.972 0.969 0.970 0.991
2 0.985 0.968 0.963 0.966 0.989
5 0.976 0.956 0.942 0.948 0.982
10 0.930 0.930 0.824 0.861 0.942
15 0.924 0.928 0.809 0.850 0.937
20 0.924 0.928 0.809 0.850 0.937
30 0.923 0.924 0.807 0.847 0.936
50 0.918 0.916 0.796 0.837 0.933

40

0.1 0.756 0.730 0.395 0.396 0.800
0.2 0.830 0.819 0.580 0.626 0.861
0.5 0.940 0.923 0.852 0.879 0.952
1 0.987 0.972 0.970 0.971 0.991
2 0.985 0.969 0.965 0.967 0.990
5 0.978 0.957 0.946 0.951 0.984
10 0.936 0.931 0.841 0.873 0.948
15 0.924 0.928 0.811 0.851 0.937
20 0.924 0.927 0.809 0.849 0.937
30 0.923 0.925 0.808 0.848 0.936
50 0.919 0.918 0.799 0.839 0.934
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Table 8. Cont.

C γ acc ppv tpr F1 tnr

50

0.1 0.756 0.730 0.395 0.396 0.800
0.2 0.830 0.818 0.579 0.625 0.861
0.5 0.940 0.922 0.852 0.878 0.952
1 0.987 0.973 0.970 0.971 0.991
2 0.985 0.969 0.965 0.967 0.990
5 0.979 0.959 0.95 0.954 0.985
10 0.946 0.933 0.865 0.890 0.956
15 0.925 0.928 0.812 0.852 0.938
20 0.924 0.927 0.809 0.849 0.937
30 0.923 0.926 0.808 0.848 0.936
50 0.920 0.920 0.802 0.842 0.934
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Figure 8. Performance measures (per-unit) corresponding to the Gaussian SVM strategy for the
multiclass classification problem for a box constraint C = 50 and with respect to the kernel scale γ

(horizontal axis).

Table 9. Confusion matrix for the Gaussian SVM algorithm for the case C = 50 (box constraint) and
γ = 1 (kernel scale).

0 1 2 3 tpr fnr

0 2542 2 1 15 99% 1%

1 7 1231 40 2 96% 4%

2 1 45 1230 4 96% 4%

3 36 6 3 1235 96% 4%

ppv 98% 96% 97% 98%

fdr 2% 4% 3% 2%

4.5. Brief Discussion

Sections 4.2–4.4 present an optimization of the model hyperparameters for the kNN, quadratic
SVM and Gaussian SVM, respectively. In each subsection, the confusion matrix for the best (optimized)
model is presented. In this subsection, the best models are compared among them. That is,
a comparison among the kNN, quadratic SVM and Gaussian SVM methodologies is given. In particular,
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Figure 9 shows the accuracy, precision, recall, F1 score and specificity measures for the best kNN,
quadratic SVM and Gaussian SVM models. It is noteworthy that the Gaussian SVM accomplishes the
highest performance for all the indicators. Thus, it is the recommended approach to be employed
with the proposed SHM strategy. Finally, it is also important to note that the quadratic SVM has a
close performance to the Gaussian SVM but the kNN falls far behind in all the indicators in general,
and more markedly for the recall and F1 score measures. Therefore, its use is inadvisable. As a final
remark, the performance of the Gaussian SVM over the quadratic SVM may depend on the nature
of the data or even on how this data is preprocessed and what features are extracted. In this sense,
the exceeding performance of the Gaussian SVM has been reported in the literature as a machine
learning model for the prediction of the viscosity of nanofluids [43] or, in the field of fault diagnosis,
to get the operation status of a wind turbine [44].

92
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99

100

accuracy precision recall F1 score specificity

kNN quadratic SVM Gaussian SVM

Figure 9. Performance measures (percentage) comparison among the different classifiers.

5. Conclusions

In this work a proof-of-concept damage diagnosis strategy that can be deployed online and
during the WT service has been stated. This main contribution of the paper is accomplished by
using only the vibration-response accelerometer signals instead of the standard approach based on
guided waves. Furthermore, the methodology is based on machine learning techniques. In this
regard, the second main contribution of this work is to introduce the FD as a suitable feature to
detect and classify different damage scenarios inspired by the physical insight that the different fractal
structures of the accelerometer signals should be capable to discriminate different types of damage.
Three supervised machine learning classifiers have been studied and optimized for the specific problem.
Finally, the proposed methodology has been validated in an experimental laboratory test bed where
for the best selected model (Gaussian SVM with box constraint C = 50 and kernel scale γ = 1) all the
studied measures (average accuracy, average precision, average recall, average F1 score and average
specificity) have attained values higher than 97%. These results encourage future work in this area of
research to develop further this proof-of-concept. More tests including changing the damage location
and taking into account and dealing with variable environmental operating conditions, including
waves, will be the focus of future work.
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Abbreviations

The following abbreviations are used in this manuscript:

acc accuracy
FD fractal dimension
fdr false discovery rate
fn false negative
fnr false negative rate
fp false positive
GW gigawatts
kNN k nearest neighbor
ppv precision
SHM structural health monitoring
SVM support vector machine
tn true negative
tnr specificity
tp true positive
tpr recall
WT wind turbine
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