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Featured Application: The proposed methodology can be applied in the field of agricultural land
use and land cover classification, precision agriculture, and environmental monitoring.

Abstract: Although superpixel segmentation provides a powerful tool for hyperspectral image
(HSI) classification, it is still a challenging problem to classify an HSI at superpixel level because of
the characteristics of adaptive size and shape of superpixels. Furthermore, these characteristics of
superpixels along with the appearance of noisy pixels makes it difficult to appropriately measure the
similarity between two superpixels. Under the assumption that pixels within a superpixel belong to
the same class with a high probability, this paper proposes a novel spectral–spatial HSI classification
method at superpixel level (SSC-SL). Firstly, a simple linear iterative clustering (SLIC) algorithm is
improved by introducing a new similarity and a ranking technique. The improved SLIC, specifically
designed for HSI, can straightly segment HSI with arbitrary dimensionality into superpixels, without
consulting principal component analysis beforehand. In addition, a superpixel-to-superpixel similarity
is newly introduced. The defined similarity is independent of the shape of superpixel, and the
influence of noisy pixels on the similarity is weakened. Finally, the classification task is accomplished
by labeling each unlabeled superpixel according to the nearest labeled superpixel. In the proposed
superpixel-level classification scheme, each superpixel is regarded as a sample. This obviously
greatly reduces the data volume to be classified. The experimental results on three real hyperspectral
datasets demonstrate the superiority of the proposed spectral–spatial classification method over
several comparative state-of-the-art classification approaches, in terms of classification accuracy.

Keywords: hyperspectral image; improved SLIC; superpixel; superpixel-to-superpixel similarity;
spectral–spatial classification

1. Introduction

Hyperspectral image (HSI) classification is one of the most active and attractive topics in the field
of remote sensing. Compared with multispectral sensors, hyperspectral sensors can capture more
abundant information of land cover, such as agricultural crop types. This detailed spectral–spatial
information will greatly increase the discriminative ability of HSI. In recent years, HSI classification
has been successfully applied to precision agriculture [1,2], environment monitoring [3,4], ocean
exploration [5], object detection [6,7], and so on. However, it continues to be a challenging problem to
develop new effective spectral–spatial methods to classify HSI accurately, due to its high dimension,
large data volume, massive noisy pixels, and few training samples.
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HSI classification needs to assign a meaningful class label to each pixel within the image according
to the spectral feature or spectral–spatial information. A large number of effective HSI classification
techniques have been developed in the past decades. Early HSI classification methods mainly used the
spectral features to classify hyperspectral data [8–12]. Although the classification results obtained by
these methods may not be good enough, this is a successful attempt to apply the machine learning
method to hyperspectral remote sensing. Lately, spatial structure information has been gradually
taken into account in some pixel-based classification approaches [13–20], aiming at getting better
classification results. Generally speaking, the purpose of introducing spatial information into the
process of classification can be roughly understood as denoising HSI in preprocessing [21–24], defining
the novel similarity between a pair of pixels [25,26], reducing dimensionality [27], improving the
classification map in post-processing [28–30], or their combinations. From the point of view of
classification accuracy, the existing literatures show that some spectral–spatial HSI classification
methods do have good classification performance.

In recent times, more attention has been paid to spectral–spatial HSI classification approaches
based on superpixel in remote sensing. Unlike the fixed-size window commonly used in the Markov
random field technique [31,32], a superpixel is a homogeneous region with adaptive shape and size.
Specifically, superpixel-based classification methods first segment HSI into superpixels, and then
integrate various techniques and classifiers to process hyperspectral data [33–36]. For example, the
SuperPCA method developed an intrinsic low dimensional feature of HSI by using principal component
analysis (PCA) on each superpixel [35]. Zhang et al. presented an effective classification method by
using the joint sparse representation on different superpixels [36]. On the basis of multiscale superpixels
and guided filter, Dundar and Ince depicted a spectral–spatial HSI classification method [24]. In
addition, the homogeneity of superpixels together with the majority voting strategy were also adopted
to improve the classification map in some spectral–spatial HSI classification methods [37–39]. These
superpixel-based HSI classification methods at pixel level utilize the spatial information of HSI detected
by the superpixels to improve the performance of classification algorithms.

Very recently, under the assumption that pixels within a superpixel should share the same class
label, two superpixel-level HSI classification methods have been proposed. Based on an affine hull
model and set-to-set distance, Lu et al. developed a spectral–spatial HSI classification method at
superpixel level [40]. Sellars et al. proposed a graph-based semi-supervised classification technique
for HSI by defining the weight between two adjacent superpixels [41]. The classification at superpixel
level is, to some degree, a reduction of pixels, which may greatly reduce the number of objects in the
classification process. To our knowledge, most of the existing HSI classification methods based on
superpixels are pixel level, and few of them are superpixel level. Therefore, it is significant to propose
new powerful and effective spectral–spatial classification approaches at superpixel level in the field of
remote sensing.

For the HSI classification method at superpixel level, two key problems need to be considered: (i)
How to segment the HSI into the superpixels? (ii) How to properly measure the similarity between
two superpixels? As for the first problem, two representative segmentation algorithms, simple linear
iterative clustering algorithm (SLIC) [42] and the entropy rate superpixel (ERS) [43], are usually
applied to divide the given HSI into multiple non-overlapping homogeneous regions. Although
these two methods show good performance in the segmentation of HSI, the PCA method must be
performed in advance, and the problem of selecting the optimal parameter in SLIC and ERS is also
encountered. In addition, it is fundamentally important to properly measure the similarity between a
pair of superpixels in the superpixel-level HSI classifier because it is closely related to the classification
results. However, the appropriate definition of the similarity between two superpixels is non-trivial,
due to the complexity of spectra and spatial structure of the pixels in the superpixel.

To address the problems mentioned above, this study chooses SLIC as an attempt first because
it has the advantages of fast calculation, convenient use, and accurate matching with the contour
of objects [42]. By taking into account the spectrum differences of two pixels and their correlation,
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we introduce a new distance metric to measure the similarity between two pixels. Based on a novel
sorting strategy and the suggested measurement, SLIC has been improved so that it can be straightly
used to partition HSI into superpixels, without consulting PCA and requiring parameters. Compared
with our earlier improvement of SLIC [28], the improved SLIC here has good computability and
understanding. Furthermore, motivated by the idea of local mean-based pseudo nearest neighbor
(LMPNN) rule, we also define a new metric to measure the similarity between a pair of superpixels.
Specifically, we first adopt the LMPNN rule to calculate the distance from a pixel to a superpixel.
Then the superpixel-to-superpixel similarity is obtained by extending the LMPNN rule to the case
of set-to-set. Under the assumption that pixels within a superpixel should be the same class label,
the classification is carried out by marking each unlabeled superpixel as the same label as its closest
labeled superpixel.

The main contributions of the proposal are concluded as following:

• The SLIC algorithm is improved so that it can be directly used to divide any dimensional HSI into
superpixels without using PCA and parameters.

• The superpixel-to-superpixel similarity is defined properly, which is unrelated to the shape
of superpixel.

• A novel spectral–spatial HSI classification method at superpixel level is proposed.

2. The Proposed HSI Classification Method at Superpixel Level

2.1. SLIC Algorithm and Its Improvement

Superpixel segmentation is a powerful and important technique in computer vision and
image processing. Some typical segmentation algorithms are SLIC [42], ERS [43], watersheds [44],
MeanShift [45], Turbopixels [46], and so on. Among them, SLIC, proposed by Achanta et al. in 2010 [42],
is easy to use and understand, and; therefore, is one of the most popular segmentation algorithms.
This algorithm adopts the strategy of local k-means clustering to generate the compact superpixels of
color images.

For a given color image in the CIELAB color space, each pixel in this color image can be represented
as (li, ai, bi, pi, qi) (I = 1, 2, . . . , N), which is composed of color value (li, ai, bi) and coordinate (pi, qi). The
image will be approximately segmented into N/s2 regions with a roughly equal size by a predetermined
segmentation scale s. To ensure the segmentation quality, the gradient descent technique was used
to select the initial N/s2 centers to avoid them on edges or noisy pixels. Aiming at improving the
calculation speed, the k-means clustering was carried out locally in an area of 2s× 2s centered on the
tested pixel, rather than the whole image. The following metric was adopted to measure the similarity
of a pair of pixels in SLIC algorithm [42],

dlab =

√(
li − l j

)2
+

(
ai − a j

)2
+

(
bi − b j

)2
, (1)

dpq =

√(
pi − p j

)2
+

(
qi − q j

)2
, (2)

d =

√
d2

lab + m2

(
dpq

s

)2

, (3)

where dlab and dpq denote the color difference and spatial distance of a pair of pixels, respectively; the
balance parameter m in Equation (3) is to weigh the importance between dlab and dpq.

It is clear that the classical SLIC algorithm cannot be applied directly to superpixel segmentation
of HSI. This is because different magnitudes between bands risk to make the distance depending only
on high magnitude wavelengths discarding the low magnitude ones. In addition, if the color distance
dlab in Equation (1) is replaced directly by spectral distance, huge spectral difference among hundreds
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of bands will cause enormous difficulty to the balance of two terms in Equation (3). Experimental
results show that this method cannot get a satisfactory segmentation result. Although we can use
classic SLIC to split HSI into superpixels by pre-executing PCA, this means that the more knowledge
and the optimal parameter values are required.

To address the aforementioned problem, in what follows, we will put forward an improved SLIC
algorithm by introducing a novel technique and a new measurement. The improved SLIC, especially
designed for segmenting HSI, can be straightforward used to superpixel segmentation of HSI with
any dimensionality.

The improved SLIC algorithm is described as follows:
Let HSI = (x1, x2, · · · , xN) ⊂ RB be a hyperspectral dataset with N pixels; the spectral feature of

pixel xi is represented by xi = (xi,1, xi,2, · · · , xi,B)
T; B is the number of bands. After carefully considering

the spectral features of the pixels and the correlation between them, we would like to defined the
spectral similarity of two pixels xi and x j as

Sspec
(
xi, x j

)
=

(
1− ρi, j

)[∑B

k=1

(
xi,k − x j,k

)2
] 1

2
, (4)

where ρi, j is Pearson correlation coefficient calculated by

ρi, j =
B
∑B

h=1 xi,hx j,h −
∑B

h=1 xi,h
∑B

h=1 x j,h√
B
∑B

h=1 x2
i,h −

(∑B
h=1 xi,h

)2
√

B
∑B

h=1 x2
j,h −

(∑B
h=1 x j,h

)2
. (5)

The proposed spectral similarity Sspec
(
xi, x j

)
takes into account both spectral distance and

correlation. In theory, the difference between two pixels can be measured better.
Suppose there are k centers around pixel xi, c1, c2, · · · , ck. Clustering in the improved SLIC

algorithm is carried out by the following three steps.
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Sspec
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≤ Sspec
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≤ · · · ≤ Sspec
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)
, (6)

where
(
c′1, c′2, · · · , c′k

)
is a permutation of (c1, c2, · · · , ck).

For each cluster center c j, a spectral sequence index Ispec
(
xi, c j

)
is obtained through Equation (6).
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I
(
xi, c j

)
= Ispec

(
xi, c j

)
+ Ispat

(
xi, c j

)
. (8)

If I
(
xi, c j

)
is the smallest in all I(xi, cm) (m = 1, 2, . . . , k), then pixel xi is assigned to the j-th class,

in that,
Label (xi) = arg min

m=1,2,...,k

{
I(xi, cm)

}
. (9)

In the improved SLIC algorithm, the proposed clustering technique based on the index ranking
balances spectral similarity and spatial distance with equal weight. In addition, the method of ranking
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spectral similarity and spatial distance, respectively, allows us to use different metrics when calculating
them. This, to some extent, expands effectively the space of application of the proposed method.
Compared with our previous work of the improvement of SLIC [28], the improved SLIC algorithm
suggested in this study has good computability and is easy to understand. Obviously, the improved
SLIC method can be used straightforwardly for superpixel segmentation of hyperspectral data with
arbitrary dimensionality.

2.2. Superpixel-To-Superpixel Similarity

For HSI classification at superpixel level, it is basically important to measure the similarity of
two superpixels appropriately, since the classification results are highly dependent on it. A simple
way is to replace the similarity of two superpixels with the similarity of their centroids to classify
HSI. Obviously, doing so will result in the loss of too much pixel information. In [40], a set-to-set
distance was defined based on an affine hull model and the singular value decomposition. Sellars et
al. used a combination of Gaussian kernel technique, Log-Euclidean distance of a covariance matrix
and Euclidean spectral distance to construct a weight between two connected superpixels [41]. By
using a domain transform recursive filtering and k nearest neighbor rule (KNN), Tu et al. [47] gave a
representation of the distance between superpixels. These work make an effective attempt for HSI
classification at superpixel level. However, the selection of the optimal parameters and computational
complexity will bring some difficulties to the application of these methods.

The LMPNN rule [48] can be regarded as the improvement of KNN [49], local mean-based
k-nearest neighbor rule [50], and the pseudo nearest neighbor rule [51]. In the LMPNN algorithm, a
point-to-set distance can be calculated by using the pseudo nearest neighbor and weighted distance.
Inspired by the LMPNN rule, this work suggests a novel superpixel-to-superpixel similarity by
extending the point-to-set distance in the LMPNN algorithm to the set-to-set similarity.

Specifically, for a given HSI, we adopt the improved SLIC algorithm to segment it into superpixels,
denoted by HSI = S1 ∪ S2 ∪ · · · ∪ SM. Suppose that superpixel Si be made up of ni pixels, say
Si =

(
xi

1, xi
2, · · · , xi

ni

)
.

The similarity s
(
Si, Sp

)
between superpixel Si and Sp is calculated as follows.

(1) Compute the similarity between pixel xi
i and each pixel xp

j by Equation (4). Sort xp
1, xp

2, · · · , xp
np in

an ascending order according to the corresponding similarities, represented as xp
1∗, xp

2∗, · · · , xp
np∗.

(2) Calculate local mean vector xp
m of the first m nearest pixels of pixel xi

i,

xp
m =

1
m

∑m

1
xp

l . (10)

Sspec
(
xi

i, xp
1

)
, Sspec

(
xi

i, xp
2

)
, · · · , Sspec

(
xi

i, xp
np

)
are their corresponding similarities obtained by

Equation (4).
(3) Calculate the similarity s(xi

i, Sp) between pixel xi
i and superpixel Sp,

s
(
xi

i, Sp
)
=

∑np

m=1

1
m

Sspec
(
xi

i, xp
m

)
. (11)

(4) Arrange s(xi
1, Sp), s(xi

2, Sp), · · · , s(xi
ni

, Sp) in an ascending order according to their values,

represented as s(xi
1∗, Sp), s(xi

2∗, Sp), · · · , s(xi
ni∗

, Sp). The similarity s
(
Si, Sp

)
between two

superpixels can be calculated

s
(
Si, Sp

)
= s

(
xi

1∗, Sp
)
+

1
2

s
(
xi

2∗, Sp
)
+ · · ·+

1
ni

s
(
xi

ni∗
, Sp

)
. (12)
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It is can be seen from Equation (12) that the spectral features of all pixels in these two superpixels
are taken into account when computing the defined similarity. In spite of this, the effect of noise pixels
on similarity is also effectively weakened because they are assigned smaller weights. Compared with
the similarity between a pair of superpixels introduced in [40] (an affine hull model and the singular
value decomposition), the similarity suggested above is easy to understand since only the sorting
rule is used. Contrasted to similarity defined in [41,47], our method is simple to calculate, and has
no use of parameters. These advantages of the proposal make it easier to be applied in the field of
remote sensing.

2.3. Superpixel-To-Superpixel Similarity-Based Label Assignment

In the proposed semi-supervised classification method, a pixel-level random labeling strategy
is adopted. Based on the assumption of the homogeneity of superpixel, the superpixel Sp will be
assigned to a label if at least one of the pixels in Sp is marked. Since clustering is not perfect, it could
happen that a superpixel contains two or more pixels that are labeled with different classes. In this
case, the final class label of this superpixel will be determined by the majority voting rule. Suppose
that there are h marked superpixels. All such superpixels form a labeled set SL =

{
SL

1 , SL
2 , · · · , SL

h

}
.

The remaining unlabeled superpixels make up a collection to be classified SU =
{
SU

h+1, SU
h+2, · · · , SU

M

}
.

For each unlabeled superpixel SU
i ∈ SU, we calculate its similarity to every labeled superpixel SL

p

in SL by Equation (12). Then, the label of this superpixel SU
i will be assigned according to:

Class
(
SU

i

)
= argp=1,2,··· ,hmin

{
s
(
SU

i , SL
p

)}
, i = h + 1, h + 2, · · · , M. (13)

2.4. Complexity

By localizing k-means clustering procedure, the improved SLIC avoids multiple times of calculating
redundant distance. In fact, there will be no more than eight clustering centers around one pixel [42]. It
means that the complexity of improved SLIC is O (NBI), where I is the number of iterations. Assuming
that the maximum superpixel volume is about s2 in the case of the pre-specified segmentation scale s.
After the superpixel segmentation is completed, the proposal first requires O (s2B + 2s2log2s) to calculate
the similarity from a pixel to a superpixel. It is supposed that h (h << N/s2) superpixels are marked.
Then, the complexity of computing the similarity from unmarked superpixels to labeled superpixels is
approximately O (h(N/s2

− h)s2
× Bs2) ≈ O

(
hNBs2

)
. Finally, in the classification stage, the minimal

similarity from each unmarked superpixel to L marked superpixels is calculated with O (h(N/s2
− h)).

Hence, the computational complexity of the proposed method is about O (hNBs2 + NBI).

3. Experimental Results

To assess the performance of the suggested method, we have tested our proposal on three
benchmark hyperspectral datasets which are extensively used to evaluate the effectiveness of the HSI
classification approaches. In the proposed semi-supervised HSI classification frame, the labeled samples
are obtained by randomly marking pixels in the original HSI. Particularly, in the experiments conducted
in this work, the generation of training set is to randomly label 10% of pixels per class for Indian Pines
dataset and University of Pavia, and 1% of pixels from each class for Salinas dataset, respectively. In
order to obtain objective classification results and to reduce the impact of the random labeling on the
classification results, all the experiments performed in this work are repeated ten times independently.
The final result is reported with the averages and standard deviations. Like most existing literatures,
three commonly implemented evaluation criteria indices, overall accuracy (OA), average accuracy
(AA), and Kappa coefficient (κ) are employed to quantify the classification performance.

In the test stage, the proposed SSC-SL method is compared with other five state-of-the-art HSI
classification algorithms: Support vector machine (SVM) [8], edge preserving filtering-based classifier
(EPF) [52], image fusion and recursive filtering (IFRF) [53], SuperPCA approach [35], and PCA-SLIC
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method. Among them, the spectral features of pixels are only taken into account in SVM classifier; the
methods of EPF, IFRF, and SuperPCA are three typical spectral–spatial classification methods for HSI.
The PCA-SLIC method is the other version of the proposal, in which superpixels are generated by
taking the first three components in PCA and using the original SLIC algorithm.

3.1. Hyperspectral Datasets

The main features and parameters of three benchmark hyperspectral datasets are described
as follows.

A: Indian Pines dataset. This dataset was acquired by an airborne visible/infrared imaging
spectrometer (AVIRIS) sensor over Indian Pines test site in the northwest of Indian. It consists of 145 ×
145 pixels, 200 spectral bands, and 16 different classes. This HSI has a spatial resolution of 20 m. With
the background removed, 10,249 pixels take part in the classification. Figure 1 shows the false-color
image of Indian Pines dataset and the corresponding reference data.
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B: Salinas dataset. This image was also captured by the AVIRIS sensor over Salinas Valley in
California. This image is of size 512 × 217 × 204 (20 water absorption bands were discarded), which
has a spatial resolution of 3.7 m. The provided data are divided into 16 classes. The false-color image
of this dataset and the corresponding reference data are shown in Figure 2.
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Figure 2. Salinas dataset. (a) False color image. (b) Reference image.

C: University of Pavia dataset. This image was collected by the reflective optics system imaging
spectrometer (ROSIS) over University of Pavia in Italy. It contains nine classes and 103 bands after
removing 12 noise bands. Each band size in this dataset is 610 × 340 with a spatial resolution of 1.3 m.
The false-color image of this dataset and the corresponding reference data are shown in Figure 3.
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3.2. Impact of Segmentation Scale

In order to divide HSI into appropriate superpixels by using the improved SLIC algorithm, the
segmentation scale needs to be pre-specified. The rise of segmentation scale means the increase
of superpixel volume. Figure 4 shows that the classification accuracies of three datasets vary with
the increase of segmentation scale s. For Indian Pines dataset, the best OA reaches 97.52% when
s = 5; then the OA values drop sharply when s is greater than 7. In this dataset, the small volume
of several classes, the spectral similarity between classes, and the spatial proximity of classes lead
to the fact that a large superpixel likely contains different classes. As a result, the probability of
misclassification for these superpixels increases greatly in the process of classification. The OA value
on Salinas dataset shows a slow upward trend with the segmentation scale s varying from 3 to 13,
and then decreases slowly. The reason is that superpixels with the right size can play a better role in
denoising. Furthermore, high classification accuracy also explains the rationality of defined similarity
between two superpixels. When the segmentation scale s is less than 13, the OA value of University of
Pavia dataset is almost 100%. The reasons could be: (i) This dataset has a high spatial resolution; (ii)
classes with similar spectral feature are not adjacent in space, for example, class Broccoligreenweed1
and class Broccoligreenweed2, as shown in Figure 3b. Superpixel technology is just good at dealing
with this situation. For this dataset, we take s = 7 in our experiment. According to the above analysis,
the classification results reported in the following subsection are obtained with a choice of the scales
that is based on the reference ground truth that is not available in general.Appl. Sci. 2020, 10, 463 9 of 15 
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3.3. Classification Results

In Table 1, the lowest classification accuracy (77.63%) is obtained by SVM because only the
spectral features of pixels are used for classification in this method. In contrast, the classification
accuracy of the EPF is improved by about 10% due to the application of spatial information. In
particular, the classification accuracy provided by SSC-SL raises nearly 20%. The classification
result of the superpixel-level SSC-SL is better than those of other three spectral–spatial methods PF,
IFRF and SuperPCA. This indicates that the application of superpixel in classification is helpful to
improve classification accuracy. The reason is that the superpixel-level classification method not only
effectively merges the spectral and spatial information, but also has a good denoising effect on HSI.
The classification result of PCA-SLIC on Oats shows that this method divides it into two or more
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superpixels, and there is always a misclassified superpixel. However, the improved SLIC algorithm can
aggregate class Oats into a superpixel. The classification accuracy of 97.18% on Indian Pines dataset
indicates that the introduced measurement, segmentation technique, and classification method are
effective for unbalanced remote sensing datasets. Figure 5 presents the classification maps of these six
methods on the Indian Pines dataset.

Table 1. The classification results on Indian Pines dataset achieved by SVM, EPF, IFRF, SuperPCA,
PCA-SLIC, and the proposal SSB-SL.

Class Train/Test SVM EPF IFRF SuperPCA PCA-SLIC SSC-SL

Alfalfa 5/41 49.76 ± 16.71 51.22 ± 40.17 94.63 ± 6.97 95.61 ± 1.54 100 ± 0 100.00 ± 0.00
Corn-notill 143/1285 67.87 ± 2.73 81.5 ± 4.22 91.27 ± 0.67 93.6 ± 2.34 95.86 ± 2.4 96.91 ± 2.53

Corn-mintilla 83/747 54.11 ± 2.2 60.48 ± 3.49 94 ± 2.84 95.57 ± 3.65 95.66 ± 3.4 96.13 ± 4.17
Corn 24/213 38.87 ± 7.74 66.95 ± 25.57 87.51 ± 6.59 87.23 ± 6.73 93.01 ± 7.57 93.21 ± 6.58

Grass-pasture 49/434 88.48 ± 2.99 94.45 ± 1.25 96.08 ± 1.73 95.83 ± 2.45 95.85 ± 3.19 96.17 ± 2.83
Grass-trees 73/657 96.41 ± 1.37 99.85 ± 0.16 99.09 ± 0.72 96.74 ± 2.76 97.42 ± 1.87 98.85 ± 0.35

Grass-pasturemowed 3/25 79.6 ± 7.65 96.8 ± 1.69 87.6 ± 14.78 96.4 ± 1.26 90.71 ± 6.9 93.57 ± 2.26
Hay-windrowed 48/430 97.37 ± 1.43 100 ± 0 100 ± 0 99.02 ± 1.79 99.79 ± 0.04 100.00 ± 0.00

Oats 2/18 26.67 ± 9.37 2.22 ± 7.03 15 ± 21.12 80 ± 25.82 100 ± 0 100.00 ± 0.00
Soybean-notill 98/874 65.94 ± 3.09 77.25 ± 2.74 89.99 ± 2.64 92.95 ± 2.66 93.37 ± 1 93.27 ± 2.71

Soybean-mintill 246/2209 84.83 ± 0.95 96.57 ± 0.83 98.47 ± 0.55 98.33 ± 1.35 97.76 ± 1.16 98.21 ± 1.06
Soybean-clean 60/533 64.43 ± 5.12 93.73 ± 8.21 90.51 ± 4.62 92.35 ± 2.56 94.2 ± 2.36 94.35 ± 2.82

Wheat 21/184 97.34 ± 2.15 99.3 ± 0.27 99.41 ± 0.17 97.39 ± 1.08 98.02 ± 1.87 98.69 ± 0.46
Woods 127/1138 96.57 ± 0.64 99.48 ± 0.43 99.68 ± 0.31 99.13 ± 0.88 98.62 ± 0.98 99.49 ± 0.38

Building-grass-trees 39/347 49.31 ± 7 73.31 ± 10.92 96.89 ± 1.94 91.96 ± 5.5 95.9 ± 3.01 96.61 ± 3.68
Stone-steel-towers 10/83 88.07 ± 4.66 99.28 ± 1.9 98.68 ± 1.33 83.73 ± 16.25 97.69 ± 5.19 97.74 ± 0.79

OA – 77.63 ± 0.6 88.34 ± 1.1 95.49 ± 0.26 95.79 ± 0.51 96.61 ± 1.23 97.18 ± 1.26
AA – 71.6 ± 4.74 80.77 ± 6.81 89.93 ± 4.19 93.49 ± 4.91 96.49 ± 2.28 97.07 ± 2.45
κ – 0.7424 ± 0.69 0.8657 ± 1.28 0.9485 ± 0.3 0.9518 ± 0.59 0.960 ± 1.32 0.9649 ± 1.37
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The statistical results of these six methods on Salinas dataset are shown in Table 2. According to 
the OA index value, our algorithm achieves a better classification result of 99.03%. The classification 
result of EPF is slightly better than that of SVM in terms of OA (91.68% vs. 89.16%). It may be 
explained by the fact that the class boundaries of this dataset are relatively neat so that the advantage 
of EPF is not highlighted. The IFRF is superior to EPF and SuperPCA on this dataset. Part of the 
reason is that the transform domain recurrent filtering plays a good role in denoising in IFRF. It is 
easy to see from Table 2 that the classification accuracy of each class is greater than 95.5% in our 
classification result, except class Fallowroughplow (90.17%). It is worth noting that our method is still 
superior to the PCA-SLIC method without using balance parameters. Figure 6 shows the 
classification maps of these six methods on the Salinas dataset. 

Table 2. The classification results on the Salinas dataset provided by SVM, EPF, IFRF, SuperPCA, 
PCA-SLIC, and the proposal SSB-SL. 

Class Train/Test SVM EPF IFRF Super-PCA PCA-SLIC SSL-SL 
Brocoligreenweed1 21/1988 97.64 ± 1.32 99.43 ± 0.63 100 ± 0 98.61 ± 4.39 100 ± 0 99.95 ± 0.01 
Brocoligreenweed2 38/3688 98.81 ± 0.19 99.86 ± 0.08 99.34 ± 0.47 98 ± 2.86 99.7 ± 0 99.59 ± 0.32 

Fallow 20/1956 84.92 ± 4.77 83.64 ± 5.08 99.95 ± 0.15 98.99 ± 0.2 99.59 ± 0.7 99.86 ± 0.13 
Fallowroughplow 14/1380 98.96 ± 0.4 99.37 ± 0.34 96.63 ± 1.84 94.51 ± 4.95 89.45 ± 9.3 90.17 ± 8.6 

Fallowsmooth 27/2651 97.26 ± 1.15 99.55 ± 0.28 99.27 ± 0.27 95.95 ± 5.8 97.26 ± 1.08 98.74 ± 0.26 
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Figure 5. The classification maps of these six methods on the Indian Pines dataset. (a) Reference image.
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The statistical results of these six methods on Salinas dataset are shown in Table 2. According to
the OA index value, our algorithm achieves a better classification result of 99.03%. The classification
result of EPF is slightly better than that of SVM in terms of OA (91.68% vs. 89.16%). It may be explained
by the fact that the class boundaries of this dataset are relatively neat so that the advantage of EPF
is not highlighted. The IFRF is superior to EPF and SuperPCA on this dataset. Part of the reason is
that the transform domain recurrent filtering plays a good role in denoising in IFRF. It is easy to see
from Table 2 that the classification accuracy of each class is greater than 95.5% in our classification
result, except class Fallowroughplow (90.17%). It is worth noting that our method is still superior to
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the PCA-SLIC method without using balance parameters. Figure 6 shows the classification maps of
these six methods on the Salinas dataset.

Table 2. The classification results on the Salinas dataset provided by SVM, EPF, IFRF, SuperPCA,
PCA-SLIC, and the proposal SSB-SL.

Class Train/Test SVM EPF IFRF Super-PCA PCA-SLIC SSL-SL

Brocoligreenweed1 21/1988 97.64 ± 1.32 99.43 ± 0.63 100 ± 0 98.61 ± 4.39 100 ± 0 99.95 ± 0.01
Brocoligreenweed2 38/3688 98.81 ± 0.19 99.86 ± 0.08 99.34 ± 0.47 98 ± 2.86 99.7 ± 0 99.59 ± 0.32

Fallow 20/1956 84.92 ± 4.77 83.64 ± 5.08 99.95 ± 0.15 98.99 ± 0.2 99.59 ± 0.7 99.86 ± 0.13
Fallowroughplow 14/1380 98.96 ± 0.4 99.37 ± 0.34 96.63 ± 1.84 94.51 ± 4.95 89.45 ± 9.3 90.17 ± 8.6

Fallowsmooth 27/2651 97.26 ± 1.15 99.55 ± 0.28 99.27 ± 0.27 95.95 ± 5.8 97.26 ± 1.08 98.74 ± 0.26
Stubble 40/3919 99.56 ± 0.11 99.97 ± 0.02 99.92 ± 0.03 96 ± 5.1 99.92 ± 0 99.9 ± 0.01
Celery 36/3543 99.33 ± 0.25 99.74 ± 0.02 99.66 ± 0.2 96.64 ± 2.27 99.92 ± 0.02 99.92 ± 0.02

Grapesuntrained 113/11158 88.53 ± 2.05 91.35 ± 1.9 92.83 ± 0.81 97.74 ± 1.59 97.83 ± 1.18 99.1 ± 0.23
Soilvinyarddevelop 63/6140 98.54 ± 0.8 99.5 ± 0.32 99.98 ± 0 97.91 ± 3.54 99.89 ± 0.18 99.68 ± 0.29
Cornsenescedgreen 33/3245 87.34 ± 4.17 92.07 ± 3.35 99.67 ± 0.22 95.88 ± 2.2 95.33 ± 3.9 97.51 ± 0.62

Lettuceromaine
4wk 11/1057 90.67 ± 1.85 97.02 ± 1.38 90.59 ± 4.39 73.8 ± 22.74 94.4 ± 3.98 96.69 ± 4.25

Lettuceromaine
5wk 20/1907 99.76 ± 0.31 100 ± 0 100 ± 0.02 89.24 ± 8.71 95.11 ± 0.91 98.58 ± 1.06

Lettuceromaine
6wk 10/906 97.64 ± 0.61 97.79 ± 0.22 81.45 ± 2.9 92.41 ± 9.23 89.67 ± 6.89 97.39 ± 0.06

Lettuceromaine
7wk 11/1059 90.93 ± 4.02 94.24 ± 0.86 92.6 ± 1.32 83.9 ± 10.31 88.59 ± 6.91 95.75 ± 0.11

Vinyarduntrained 73/7195 55.39 ± 4.96 62.68 ± 5.37 93.97 ± 1.84 96.66 ± 3.92 94.98 ± 2.41 95.5 ± 1.8
Vinyardvertical 19/1788 95.35 ± 3.74 97.71 ± 1.87 98.98 ± 0.86 92.25 ± 4.77 98.66 ± 2.4 99.78 ± 0.01

OA – 89.16 ± 0.68 91.68 ± 0.75 96.8 ± 0.27 95.90 ± 0.62 97.39 ± 0.56 98.41 ± 0.13
AA – 92.54 ± 1.92 94.62 ± 1.36 96.55 ± 0.96 93.66 ± 5.8 96.27 ± 2.49 98.01 ± 1.1
κ – 0.879 ± 0.76 0.9071 ± 0.85 0.9644 ± 0.3 0.9543 ± 0.69 0.9710 ± 0.63 0.9823 ± 0.15
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The University of Pavia dataset has the characteristic of good spatial separation of several classes
with similar spectral feature, such as Fallow, Fallowroughplough and Fallowsmooth. There is no doubt
that this characteristic not only reduces the possibility of misclassification of the pixels located near
class boundary, but also enables the obtained superpixels to have a high purity. Therefore, as shown in
Table 3, all five spectral–spatial methods provide good classification results (greater than 95.03%). For
two superpixel-based methods, SSC-SL and SuperPCA, the proposed method SSC-SL achieves better
classification accuracy, which is higher of about 4% than SuperPCA (99.35% vs. 95.03%). Furthermore,
the average accuracy of SSC-SL, 99.02%, also indicates that the proposed method can classify each
class almost correctly. The characteristic of the class boundsary complexity of this dataset highlights
the advantage of the EPF algorithm. This makes the classification results of EPF better than that of
other two spectral–spatial methods of IFRF and SuperPCA. Figure 7 shows the classification maps of
these six methods on University of Pavia dataset.
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Table 3. The classification results on the University of Pavia dataset obtained by SVM, EPF, IFRF,
SuperPCA, PCA-SLIC, and the proposal SSB-SL.

Class Train/Test SVM EPF IFRF Super-PCA PCA-SLIC SSB-SL

Broccoligreenweed1 664/5967 91.68 ± 0.55 99.67 ± 0.21 98.42 ± 0.21 95.55 ± 0.46 99.6 ± 0.23 99.62 ± 0.2
Broccoligreenweed2 1865/16784 97.4 ± 0.3 99.94 ± 0.02 99.93 ± 0.05 99.3 ± 0.07 99.64 ± 0.22 99.77 ± 0.13

Fallow 210/1889 70.05 ± 2.22 72.32 ± 5.26 91.08 ± 4.18 95.74 ± 0.85 99.02 ± 0.53 97.98 ± 0.58
Fallowroughplough 307/2757 93.82 ± 0.95 98.23 ± 0.66 94.85 ± 0.86 83.71 ± 1.63 97.29 ± 0.75 97.36 ± 0.58

Fallowsmooth 135/1210 99.45 ± 0.18 99.93 ± 0.03 99.63 ± 0.18 91.23 ± 1.25 96.68 ± 2.17 99.78 ± 0.04
Stubble 503/4526 76.69 ± 1.25 94.21 ± 1.71 99.8 ± 0.07 98.21 ± 0.37 99.97 ± 0.04 99.8 ± 0.12
Celery 133/1197 82.87 ± 0.96 94.05 ± 1.2 98.52 ± 0.56 98.47 ± 0.42 99.92 ± 0 98.55 ± 0.93

Grapesuntrained 369/3313 88.37 ± 1.32 98.86 ± 0.3 89.36 ± 1.74 97.21 ± 0.36 99.23 ± 0.35 98.66 ± 0.38
Soilvineyarddevelop 95/852 98.88 ± 0.38 98.09 ± 0.63 57.56 ± 4.6 95.82 ± 0.79 99.25 ± 0.71 99.65 ± 0.11

OA – 91.35 ± 0.18 97.43 ± 0.24 96.98 ± 0.19 95.03 ± 0.69 99.31 ± 0.09 99.35 ± 0.09
AA – 88.8 ± 0.9 95.03 ± 1.11 92.13 ± 1.38 96.77 ± 0.17 98.96 ± 0.56 99.02 ± 0.34
κ – 0.8844 ± 0.23 0.9658 ± 0.32 0.96 ± 0.26 0.957 ± 0.23 0.9913 ± 0.12 0.9915 ± 0.12
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3.4. Effect of Different Numbers of Training Samples

The parameters used in EPF, IFRF, and SuperPCA are kept the same as original references. As
shown in Figure 8, the classification accuracies of these six methods present an upward trend with
the increase of label proportion on the three datasets. The proposed SSC-SL approach outperforms
the other five compared methods for different label ratios of training samples on these three datasets.
With the increase of label ratio, the strategy of randomly labeling pixels may not result in a significant
increase of the number of labeled superpixels since it is possible to label more samples within a marked
superpixel. In spite of this, the classifier we design still shows better classification performance. In
particular, our classification result is about 3% better than that of EPF and IFRF on University of Pavia
image in the case of marking limited samples (2%). The fact that SSC-SL is superior to PCA-SLIC on
different datasets and for different label ratios, confirms the success and effectiveness of the improved
SLIC algorithm.
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4. Conclusions

In this work, we suggested an effective spectral–spatial classification method for HSI at superpixel
level. The introduced similarity between two pixels effectively integrates the advantages of the
correlation coefficient being sensitive to the spectra shape and the Euclidean distance being sensitive
to spectra difference. In addition, the improved nonparametric SLIC algorithm can directly partition
HSI with arbitrary dimensionality into superpixels. This facilitates its further application in the field
of agricultural remote sensing. Furthermore, to better measure the similarity of a pair of superpixels
defined, smaller weights are assigned to the noise pixels located in these two superpixels to weaken the
influence of them on it. More important, the proposed superpixel-level classification framework has
made a successful attempt to reduce the hyperspectral data volume. Experimental and comparative
results on three real hyperspectral datasets confirm the validity of the proposed HSI classification
method. Compared with three existing superpixel-level HSI classification approaches, the advantage
of this method is simple to calculate and easy to understand. It means that the proposal is more likely
to be applied in other remote sensing issues. In this work, the choice of the optimal segmentation scale
is based on the experimental result. In the absence of a reference ground truth, it is worth to further
solve this problem better. Moreover, we will also focus on the development of new spectral–spatial
HSI classification method at superpixel level in the case of a limited number of training samples.
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