Adaptive State Observer for Robot Manipulators Diagnostics and Health Degree Assessment
Abstract
:1. Introduction
2. Kinetic Model
3. Fault Detection Algorithm
4. Health Degree Assessment
5. Simulation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, F.Y.; Zhang, J.J.; Wang, X. Parallel intelligence: toward lifelong and eternal developmental AI and learning in cyber-physical-social spaces. Front. Comput. Sci. 2018, 12, 401–405. [Google Scholar] [CrossRef]
- Kong, Z.; Yang, S.; Wang, D.; Hanzo, L. Robust Beamforming and Jamming for Enhancing the Physical Layer Security of Full Duplex Radios. IEEE Trans. Inf. Forensics Secur. 2019, 14, 3151–3159. [Google Scholar] [CrossRef]
- DiCarlo, C. How to Avoid a Robotic Apocalypse: A Consideration on the Future Developments of AI, Emergent Consciousness, and the Frankenstein Effect. IEEE Technol. Soc. Mag. 2016, 35, 56–61. [Google Scholar] [CrossRef]
- Ellefsen, A.L.; Bjørlykhaug, E.; Æsøy, V.; Zhang, H. An Unsupervised Reconstruction-Based Fault Detection Algorithm for Maritime Components. IEEE Access 2019, 7, 16101–16109. [Google Scholar] [CrossRef]
- Rezazadeh, A.S.; Koofigar, H.R.; Hosseinnia, S. Adaptive fault detection and isolation for a class of robot manipulators with time-varying perturbation. J. Mech. Sci. Technol. 2015, 29, 4901–4911. [Google Scholar] [CrossRef]
- Kamel, M.A.; Yu, X.; Zhang, Y. Fault-Tolerant Cooperative Control Design of Multiple Wheeled Mobile Robots. IEEE Trans. Control Syst. Technol. 2018, 26, 756–764. [Google Scholar] [CrossRef]
- García, E.A.; Frank, P. Deterministic nonlinear observer-based approaches to fault diagnosis: A survey. Control Eng. Pract. 1997, 5, 663–670. [Google Scholar] [CrossRef]
- Samy, I.; Postlethwaite, I.; Gu, D.W. Survey and application of sensor fault detection and isolation schemes. Control Eng. Pract. 2011, 19, 658–674. [Google Scholar] [CrossRef]
- Ji, M.; Sarkar, N. Supervisory Fault Adaptive Control of a Mobile Robot and Its Application in Sensor-Fault Accommodation. IEEE Trans. Robot. 2007, 23, 174–178. [Google Scholar] [CrossRef]
- Yang, J.-M.; Kim, J.-H. Optimal fault tolerant gait sequence of the hexapod robot with overlapping reachable areas and crab walking. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 1999, 29, 224–235. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.-M.; Kim, J.-H. Fault-tolerant locomotion of the hexapod robot. IEEE Trans. Syst. Man Cybern. Part B 1998, 28, 109–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotondo, D.; Puig, V.; Nejjari, F.; Romera, J. A Fault-Hiding Approach for the Switching Quasi-LPV Fault-Tolerant Control of a Four-Wheeled Omnidirectional Mobile Robot. IEEE Trans. Ind. Electron. 2015, 62, 3932–3944. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; You, B. Fault Detection in a Microphone Array by Intercorrelation of Features in Voice Activity Detection. IEEE Trans. Ind. Electron. 2011, 58, 2568–2571. [Google Scholar] [CrossRef]
- Xie, B.; Maciejewski, A.A. Kinematic Design of Optimally Fault Tolerant Robots for Different Joint Failure Probabilities. IEEE Robot. Autom. Lett. 2018, 3, 827–834. [Google Scholar] [CrossRef]
- Gómez-de-Gabriel, J.M.; Mandow, A.; Fernández-Lozano, J.; García-Cerezo, A. Mobile Robot Lab Project to Introduce Engineering Students to Fault Diagnosis in Mechatronic Systems. IEEE Trans. Educ. 2015, 58, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.R.; Karki, H.; Shukla, A.; Behera, L.; Jamshidi, M. Fault-Tolerant Formation Control of Nonholonomic Robots Using Fast Adaptive Gain Nonsingular Terminal Sliding Mode Control. IEEE Syst. J. 2019, 13, 1006–1017. [Google Scholar] [CrossRef]
- Brambilla, D.; Capisani, L.M.; Ferrara, A.; Pisu, P. Fault Detection for Robot Manipulators via Second-Order Sliding Modes. IEEE Trans. Ind. Electron. 2008, 55, 3954–3963. [Google Scholar] [CrossRef]
- Capisani, L.M.; Ferrara, A.; Ferreira de Loza, A.; Fridman, L.M. Manipulator Fault Diagnosis via Higher Order Sliding-Mode Observers. IEEE Trans. Ind. Electron. 2012, 59, 3979–3986. [Google Scholar] [CrossRef]
- Ma, H.J.; Yang, G.H. Adaptive output control of uncertain nonlinear systems with non-symmetric dead-zone input. Automatica 2010, 46, 413–420. [Google Scholar] [CrossRef]
- Singh, P.; Agrawal, P.; Karki, H.; Shukla, A.; Verma, N.K.; Behera, L. Vision-Based Guidance and Switching-Based Sliding Mode Controller for a Mobile Robot in the Cyber Physical Framework. IEEE Trans. Ind. Inf. 2019, 15, 1985–1997. [Google Scholar] [CrossRef]
- Xu, T.; Kühnlenz, K.; Buss, M. Autonomous Behavior-Based Switched Top-Down and Bottom-Up Visual Attention for Mobile Robots. IEEE Trans. Robot. 2010, 26, 947–954. [Google Scholar] [CrossRef]
- Ficuciello, F.; Villani, L.; Siciliano, B. Variable Impedance Control of Redundant Manipulators for Intuitive Human—Robot Physical Interaction. IEEE Trans. Robot. 2015, 31, 850–863. [Google Scholar] [CrossRef] [Green Version]
- Ren, T.; Dong, Y.; Chen, K. Collision detection and identification for robot manipulators based on extended state observer. Control Eng. Pract. 2018, 79, 144–153. [Google Scholar] [CrossRef]
- Nie, S.; Ding, L.; Li, W. Multiple Line-outage Detection in Power System with Load Stochastic Perturbations. IEEE Trans. Circuits Syst. II Express Briefs 2019. [Google Scholar] [CrossRef]
- Ma, H.J.; Yang, G.H. Simultaneous fault diagnosis for robot manipulators with actuator and sensor faults. Inf. Sci. 2016, 366, 12–30. [Google Scholar] [CrossRef]
- Wai, R.; Yang, Z. Adaptive Fuzzy Neural Network Control Design via a T–S Fuzzy Model for a Robot Manipulator Including Actuator Dynamics. IEEE Trans. Syst. Man Cybern. Part B 2008, 38, 1326–1346. [Google Scholar] [CrossRef]
- Tavan, M.; Khaki-Sedigh, A.; Arvan, M.R.; Vali, A.R. Immersion and invariance adaptive velocity observer for a class of Euler–Lagrange mechanical systems. Nonlinear Dyn. 2016, 85, 425–437. [Google Scholar] [CrossRef]
- Park, J.; Hur, J. Detection of Inter-Turn and Dynamic Eccentricity Faults Using Stator Current Frequency Pattern in IPM-Type BLDC Motors. IEEE Trans. Ind. Electron. 2016, 63, 1771–1780. [Google Scholar] [CrossRef]
- Folin, T.; Ahmed-Ali, T.; Giri, F.; Burlion, L.; Lamnabhi-Lagarrigue, F. Sampled-Data Adaptive Observer for a Class of State-Affine Output-Injection Nonlinear Systems. IEEE Trans. Autom. Control 2016, 61, 462–467. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, S.; Kong, Z.; Peng, L.; Ji, Y.; Zhang, Y. Adaptive State Observer for Robot Manipulators Diagnostics and Health Degree Assessment. Appl. Sci. 2020, 10, 514. https://doi.org/10.3390/app10020514
Dang S, Kong Z, Peng L, Ji Y, Zhang Y. Adaptive State Observer for Robot Manipulators Diagnostics and Health Degree Assessment. Applied Sciences. 2020; 10(2):514. https://doi.org/10.3390/app10020514
Chicago/Turabian StyleDang, Sanlei, Zhengmin Kong, Long Peng, Yilin Ji, and Yongwang Zhang. 2020. "Adaptive State Observer for Robot Manipulators Diagnostics and Health Degree Assessment" Applied Sciences 10, no. 2: 514. https://doi.org/10.3390/app10020514
APA StyleDang, S., Kong, Z., Peng, L., Ji, Y., & Zhang, Y. (2020). Adaptive State Observer for Robot Manipulators Diagnostics and Health Degree Assessment. Applied Sciences, 10(2), 514. https://doi.org/10.3390/app10020514