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Abstract: Metamaterials are composed of arrays of subwavelength-sized artificial structures; these
architectures give rise to novel characteristics that can be exploited to manipulate electromagnetic
waves and acoustic waves. They have been also used to manipulate elastic waves, but such waves
have a coupling property, so metamaterials for elastic waves uses a different method than for
electromagnetic and acoustic waves. Since researches on this type of metamaterials is sparse,
this paper reviews studies that used elastic materials to manipulate elastic waves, and introduces
applications using extraordinary characteristics induced by metamaterials. Bragg scattering and local
resonances have been exploited to introduce a locally resonant elastic metamaterial, a gradient-index
lens, a hyperlens, and elastic cloaking. The principles and applications of metasurfaces that can
overcome the disadvantages of bulky elastic metamaterials are discussed.

Keywords: elastic metamaterial; phononic crystals; gradient-index lens; elastic hyperlens;
elastic cloaking; elastic metasurface

1. Introduction

A metamaterial (MTM) is an artificial composite material or structure that has physical
properties rarely found in nature. They are constructed by repeatedly arranging man-made
micro-structures. Adjustments to the shape, size and arrangement of the micro-components can
give unique characteristics such as negative parameters that cannot exist in conventional materials.
The concept of MTMs was proposed by Victor Veselago [1]; he predicted that a material that
had simultaneous negative electric permittivity (ε) and negative magnetic permeability (µ) would
have a negative refractive index (n). Subsequently, negative n was realized in electromagnetic
metamaterials (EM-MTMs) [2] by embedding metallic structures appropriately to achieve effective
negative ε and µ. Since then, EM-MTMs have been applied to various fields such as super-resolution
imaging [3–5], invisibility cloaking [6–8] and sensing [9–12]. Acoustic metamaterials (AMTMs) can be
also implemented by adjusting the effective density (ρ) and bulk modulus (B) [13]. ρ is analogous to ε,
and compressibility (κ = 1/B) is analogous to µ. More details can be found in [14] showing the exact
duality of constitutive components in between two different fields at cylindrical coordinates. Studies
of AMTMs that exploit the mechanisms used in EM-MTMs have also been conducted [15,16]. Elastic
metamaterials (EMTMs) can generate elastic waves with meta-characteristics, but this application is
impeded by some special characteristics of elastic waves. Electromagnetic waves generally have two
transverse modes (transverse electric (TE) and transverse magnetic (TM)), and acoustic waves have only
one longitudinal mode. However, elastic waves propagate as vibrational motion of a solid medium,
so they have both transverse and longitudinal modes concurrently to be considered. This coupling of
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transverse and longitudinal modes does not occur in electromagnetic waves and acoustic waves in
the linear approximation, so the techniques used in electromagnetism or acoustics cannot be applied
directly to EMTMs. Therefore, relevant research on EMTMs has been conducted [17].

EMTMs can manipulate elastic waves by exploiting either Bragg scattering or local resonance.
Bragg scattering causes a strong destructive effect on the propagation of scattered waves within
a medium when the distance between two scatterers is one-half of the wavelength. At frequencies
that meet this condition, a bandgap occurs, in which the real-valued wavevector is forbidden, so waves
cannot propagate. Local resonances in a micro-structure can yield negative ρ or negative stiffness K
if significant deformation is applied. Therefore, a local resonator within the micro-structure must be
designed to suppress dynamic external behavior and prevent wave propagation. If a synthetic substance
has either negative ρ or negative K, then waves within that substance have an imaginary-valued
velocity, so they attenuate rather than propagate or reflect. These novel characteristics of EMTMs
lead to various applications such as passive vibration attenuation systems [18–25], active vibration
attenuation systems [26–29], energy harvesters [30–32], energy dissipation systems [33,34], seismic
barriers [35–42], viscoelastic systems [43,44], non-reciprocal elastic wave propagation systems [45–47],
gyroscopic metamaterials [48,49] and elastic topological phononic crystals [50,51].

In this review, we discuss the theoretical and experimental development of applications using EMTMs
in five sections. In Section 2.1, we introduce representative studies of locally resonant EMTMs. In Section 2.2,
we explain the gradient-index lens (GRIN) implemented by phononic crystals. In Section 2.3, we introduce
super-resolution techniques that use EMTM hyperlenses. In Section 2.4, we provide the mechanism of
elastic cloaking using MTMs. Finally, in Section 3, we describe different approaches to achieve elastic
metasurfaces. We wrap up by giving our views on possible applications.

2. Elastic Metamaterials

2.1. Representative Studies of Locally Resonant Elastic Metamaterials

Locally resonant EMTM uses motions of micro-structures exploiting the coupling effect of local
oscillators. The most widely used method is the effective medium theory (EMT) in order to directly
estimate the behavior of them. EMT in a homogenized scheme has been achieved by analyzing
scattering coefficients, so that effective parameters such as effective mass density, ρ, bulk modulus,
κ, and shear modulus, µ can be obtained solely possessing reliance on the filling ratio with respect
to the host and inclusion in a matrix at the long wavelength limit within EMTMs [52,53]. The other
method is the S-parameter retrieval method (SPRM) that numerically extracts effective parameters
through scattering components by a toy model. Notice that only a handful of studies on SPRM in
EMTMs exists, and one can be found that effective mass density and stiffness have been investigated
considering full anisotropy with intrinsic nonlocal responses in the system [54].

One hybrid EMTM that exhibits two different characteristics depends on operation frequency
has been proposed [55]. The proposed EMTM consists of multi-mass locally resonant units which
can generate monopolar, dipolar and quadrupolar resonances. In the higher frequency negative
dispersion band, only pressure waves can be transferred. In the lower frequency negative dispersion
band, compressional waves and shear waves can only propagate in different directions. These novel
properties greatly extend the ability to control elastic waves. A two-dimensional EMTM, including
fluid-solid composites, which can have negative shear modulus and negative mass density over
a large frequency domain has been proposed [56]. The unit cell of proposed EMTM consists of
a lattice of rubber-coated water cylinders (Figure 1a). This composite can generate both dipolar and
quadrupolar resonances in its structures, so negative shear modulus and negative mass density can
be realized. Negative effective refractive index appears in the regime (Figure 1b A to B) where both
mass density and shear modulus have negative value. Negative refraction caused by a negative
effective refractive index has been demonstrated by multiple-scattering theory simulations (Figure 1c).
In addition, mode conversion from transverse waves to longitudinal waves was observed under
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negative refraction conditions. An EMTM with chiral micro-structures has been also demonstrated
to achieve subwavelength negative refraction [57]. Three ribs of the unit cell induce translational
resonance as well as rotational resonance about the central piece. Therefore, by selecting the dimension
of the chirally distributed ribs, simultaneous translational and rotational resonances and negative
refraction at a low-frequency range can be achieved. Negative refraction of the longitudinal elastic
wave at the deep-subwavelength scale was experimentally and numerically demonstrated. This EMTM
can be used for elastic wave focusing. One locally resonant EMTM that exhibits polarization bandgaps
has been designed [58]; it consists of three-dimensional anisotropic locally resonant units (Figure 1d).
The polarization bandgaps allow selective suppression of vibration modes. In particular, a unique
property of fluids was observed; the frequency region where all flexural vibrations are suppressed,
but longitudinal vibration is allowed (Figure 1e). In addition, the frequency region where torsional
vibration can be significantly suppressed was observed (Figure 1f). This EMTM can be used for
separating and controlling elastic waves of different polarizations.

Figure 1. (a) Unit cell of the locally resonant elastic metamaterial (EMTM); (b) Effective medium
parameters of proposed EMTM. Black line: mass density, ρ. Blue line: shear modulus, µ. Red line: bulk
modulus, κ. Green line: κ + µ; (c) Total flux distribution for a transverse wave incidence on the wedge.
Colors: the magnitude. Black Arrows: directions; (d) Unit cell design of a locally resonant EMTM;
(e) The band structure of z-axis alligned EMTM. Blue shaded region: a flexural bandgap. Red shaded
region: a longitudinal bandgap; (f) The band structure of x-axis alliged EMTM. Orange shaded region:
a torsional bandgap. (a–c) adapted from [56]. (d–f) adapted from [58].

2.2. Elastic Gradient-Index Lens Using Phononic Crystals

Phononic crystals (PCs) are artificial structures that are composed of periodic structures, and that
exhibit complete or partial frequency bandgaps of elastic or acoustic waves. The main difference
between a PC and an MTM arises from the geometric size of the structure [59,60]. In the case of MTM,
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the size and periodic spacing of the micro-components are very small compared to the wavelength of
waves passing through them. However, for PCs, the periodic spacing of the structures is similar to the
wavelength. As mentioned in the introduction, these gaps can be used to create band gaps through
Bragg scattering. Due to the importance of bandgap properties, investigating the frequency bandgaps
has been a large part of work on PCs. Since the pioneering work by Kushwaha et al. [61], PCs have
been studied due to their unique physical properties and their ability to manipulate the propagation of
elastic waves. The properties of PCs have potential applications such as sensors [62–65], filters [66–68]
and waveguides [69–71]. In particular, gradient-index (GRIN) PCs designed as another application
have a refractive index (n) that gradually decreases outwards from the center (Figure 2a); they were
developed for elastic focusing. In a GRIN PC, an incident wave gradually tends to bend toward
the center axis at which n is highest, and eventually converges to the focal point with no aberration
following the Lagrangian viewpoint in terms of particle tracking. This focusing phenomenon has many
practical applications such as flat lenses for detection and imaging. In comparison, some examples of
GRIN lenses that do not exploit PCs will be introduced.

Figure 2. (a) Schematic diagram of the principle of a gradient-index (GRIN) lens. Red arrow: incident
beams; (b) GRIN Phononic crystal (PC) realized by adjusting radius of cylinders (left). GRIN PC
realized by changing elastic properties of cylinders (right); (c) Finite-Difference Time-Domain (FDTD)
simulation of displacement fields when wave propagates in the GRIN PC at a reduced frequency of
Ω = 0.05 (top), Ω = 0.10 (center) and Ω = 0.20 (bottom); (d) Schematic of the GRIN PC plate. Green
arrow: wave propagation direction; (e) Displacement amplitude along the x direction measured at
3 MHz. Green contour: area where amplitude > 0.95 times maximum value. (a–c) adapted from [72].
(d,e) adapted from [73].

The first GRIN PCs lens was composed of solid cylinders embedded in an epoxy medium [72].
The refractive index profiles along the direction transverse to the wave propagation has a formula
with hyperbolic secant function; this gradient enables redirection of incident waves and focusing.
The GRIN PC can be realized by controlling n by adjusting the radii of cylinders in each layer or by
changing elastic properties of cylinders (Figure 2b). The GRIN PC allows acoustic waves to converge
over a broad range of operating frequencies (Figure 2c). The following studies of GRIN PCs for elastic
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waves mainly considered the propagation of Lamb waves, which propagate in solid plates. The particle
motion in Lamb waves is perpendicular to the direction of propagation. Many modes of particle
motion exist, but the two most common modes are the symmetric S0 mode and the antisymmetric A0
mode. These two modes are important because they carry more energy than the higher-order modes in
most cases. A GRIN PC in a silicon plate (Figure 2d) can focus the lowest-order antisymmetric A0 Lamb
wave (Figure 2e) [73]. This work was extended to optimize GRIN PC plate design to get a refractive
index gradient that has an approximately parabolic profile and to focus the zero-order antisymmetric
A0 Lamb wave within a broadband frequency region; the finite-element method and a laser-ultrasonic
technique were used to numerically and experimentally demonstrate sub-wavelength focusing of
Lamb waves that had frequencies of 7–10 MHz [74]. GRIN PC plates for focusing and waveguiding
of the Lamb wave A0 without a waveguide (Figure 3a) and with a waveguide (Figure 3b) have been
demonstrated numerically and experimentally [75]; a piezoelectric AT-cut quartz was used as the
material of the plane. The inaccuracy of the location of maximum focusing between the simulation
and experiment may occur from the hole etching. This study may enable development of an active
GRIN PC plate device based on a piezoelectric substrate. GRIN PCs in plates can control both S0
and A0 Lamb waves simultaneously (Figure 3c) in a wide frequency range [76]. Another device
that uses a GRIN PC in which air holes were scattered in a silicon substrate (Figure 3d) has been
proposed [77]; the focusing of a Rayleigh wave was experimentally demonstrated (Figure 3e) using
a laser ultrasonic technique.

Figure 3. (a) GRIN PC plate on an AT-cut quartz plate (top). Arrow: wave propagation direction
(x axis). The simulation of focusing of the lowest A0 mode in the designed GRIN PC lens (center).
The measured amplitude distributions of the GRIN PC plate lens at 10 MHz (bottom); (b) Same as
(a) but a linear waveguide is added; (c) Upper side: Normalized field distribution for a A0-polarized
(left) and a S0-polarized (right) plane waves where the thickness of the plate is designed to focus the
two Lamb modes simultaneously. Lower side: same as the upper side but the thickness of the plate is
constant; (d) GRIN PC on a silicon plate with a thickness 500 µm (left) with simulated (blue squares) and
experimental (green circles) values of the effective refractive index (right); (e) Experimental maximum
of out-of-plane displacement in GRIN PC lens. Dashed black lines: ray trajectories. (a,b) adapted
from [75]. (c) adapted from [76]. (d,e) adapted from [77].
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One GRIN lens without using PCs was made by adjusting the thickness of the plate [78].
The desired n was obtained by designing n to increase as the thickness of the lens decreases. Three kinds
of GRIN lens, Luneburg lens, Maxwell fish-eye lens, 90◦ lens were introduced and numerically
demonstrated [79]. Unlike PCs or using thickness variation of the plate, this study uses resonant
EMTM to design GRIN lenses. A Luneburg lens is a GRIN lens in which n decreases radially from the
center to the perimeter, expressed as

n(r) =
√
(2− (r/R)2, (1)

where R and r denotes the radius of the sphere and the radial distance measured from the center of the
sphere. A Maxwell fish-eye lens is a GRIN lens that focuses the point on the spherical edge to another
point on the opposite edge when a point source is located at the edge of the sphere. n varies according
to the relation expressed as

n(r) =
2

1 + (r/R)2 , (2)

where R and r have the same meaning as in Equation (1). 90◦ rotating lens is a GRIN lens which rotates
a ray about 90◦. The relationship between r and n in this lens is written as

rn4 + 2n + 1 = 0. (3)

Note that the extended version for an arbitrary rotating lens called generalized Eaton lens has
theoretically been introduced [80], and experimentally been conducted [81] in the acoustic regime by
exploiting the index profile described as

n(r, φ) =

(
2R
r
− 1
)φ/(π+φ)

, (4)

for r < R. φ is the arbitrary desired refraction angle.
The focusing of elastic waves in plates can be used in to harvest energy by collecting the energy

of elastic waves. Numerical and experimental studies demonstrated that GRIN PCs that use blind
holes and are coupled with piezoelectric transduction can improve the harvesting of elastic waves [82].
This concept was extended [83] to create a GRIN lens with continuously-varying index profile by
gradually altering the rigidity properties to focus and harvest flexural waves. The GRIN lens coupled
to piezoelectric harvesters can efficiently focus and harvest waves at the designed fixed focal points
and work well in a broad frequency range (Figure 4a,b). The focal harvester was better than the
baseline harvester (Figure 4c). One Luneburg lens enables precise focusing of an omnidirectional plane
wave (Figure 4d,e); the harvested power output by a Luneburg lens was more than 10 times higher
than by the baseline harvester (Figure 4f) [84].
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Figure 4. (a) Non-dimensionalized mean-squared integral of velocity generated by line source
excitation for 20 kHz (top), 40 kHz (center), and 60 kHz (bottom). The focal points match the ray-theory
simulation in the center figure; (b) Corresponding experiment results using a 100-kΩ resistor at (top)
20 kHz, (center) 40 kHz, and (bottom) 60 kHz. Dashed white line: outer edges of the lens; (c) Average
power generated by the GRIN lens of load resistance at 40 kHz; (d) (top) Experimental apparatus,
(lower left) close-up view of the PC lens sample. (lower right) Locations of the Luneburg harvesters
and the baseline harvester; (e) Experimental root mean square (RMS) wave fields for incidence of (top)
0◦; (f) Average power generated by the PC Luneburg harvesters and baseline harvester. (a–c) adapted
from [83]. (d–f) adapted from [84].

2.3. Elastic Hyperlens

Light that is emitted or scattered from an object, is composed of two components: a propagating
component that is composed of low wavevectors, and an evanescent component that is composed of
high wavevectors. The propagating wave encodes large feature information, and can propagate to the
far-field, whereas the evanescent wave encodes fine features, but its power decays exponentially in
a conventional environment and cannot reach the far-field. Because of this property of the evanescent
component, realization of sub-wavelength imaging is a big challenge in a general sense. This problem
can be solved using hyperlenses constructed by MTMs with strong anisotropy. A hyperlens has
very large or unbounded cutoff wavevectors, so it can support the propagation of an evanescent
wave to the far-field [85–87]. This hyperlens shows a remarkable potential for applications, such as
biomedical imaging, nanolithography and optical sensing. The first hyperlens concept was derived
from EM-MTMs [88]. The device is non-resonant, so is unconstrained in terms of material loss.
One acoustic hyperlens does not use local resonance accompanied by negative effective parameters [89];
this design has been used to demonstrate hyperlenses that have elliptical equi-frequency contours
(EFCs) in the elastic regime, and therefore have very strong anisotropy [90]. However, elliptical EFCs
have limited resolution because their wavevectors are still bounded despite having higher cutoff
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wavevectors than spherical EFCs. One solution to this problem is to use hyperbolic EFCs that have
unbounded wavevectors.

EFCs shows the wave vectors along the propagation direction of waves at the same frequency.
The propagation direction of each wave is perpendicular to EFCs with distinct figuration, so diffraction
characteristics can be predicted. The characteristics of spherical EFCs, elliptic EFCs and hyperbolic
EFCs are distinct (Figure 5). In spherical EFCs in an isotropic medium, a cutoff wavevector (kc) limits
the spatial frequency along the tangential direction (θ), so a diffraction limit occurs. In a hyperlens that
uses an elliptic EFC, the magnitude of kc increases due to the strong anisotropy, so sub-wavelength
imaging is possible. However, when the magnitude of the circumferential wavevector (kθ) becomes
larger than the magnitude of kc, the information contained in wavevector cannot be transmitted along
the radial direction r because radial wavevector (kr) becomes imaginary. In a hyperlens that uses
hyperbolic EFCs, the real-valued kr enables kθ to become very large, because the cutoff wavevector is
unbounded, so the wave components of the large circumferential wavevectors kθ can propagate along
the r direction. Therefore, evanescent waves that have high spatial frequency and cannot be resolved by
a conventional lens, are converted to propagating waves. Thus, the hyperbolic EFC hyperlens enables
super-resolution sub-wavelength imaging to strengthen the evanescent waves and imaging features.

Figure 5. Schematics of spherical EFCs (red solid line), elliptic EFCs (blue solid line) and hyperbolic
EFCs (black solid line). Red broken line: an unbounded area of spherical EFCs. Blue broken line:
an unbounded area of elliptic EFCs. Red kc and −kc: cutoff wavevectors of spherical EFCs. Blue kc and
−kc: cutoff wavevectors of elliptic EFCs.

The first hyperbolic EFC elastic hyperlens [91] used different mechanical deformation modes
in two orthogonal directions to make the wave speed much slower in the θ direction than in the r
direction. Because of these characteristics, the wave should not propagate along the θ direction but
only in the r direction. This hyperlens (Figure 6a) was designed without local resonance structures to
realize broadband operation frequency spectrum and to reduce losses. In simulations of hyperbolic
EFCs for varying frequencies and width (Figure 6b), this hyperbolic hyperlens had better resolution
than the previously proposed [90] elliptical hyperlens. The simulation results for their comparison
were valid with a fine resolution (Figure 6c–e).
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Figure 6. (a) Elastic hyperlens (top), close-up view (lower left) and geometry of the unit cell (lower
right); (b) hyperbolic EFCs at 15 kHz for varying the width w of unit cell (upper). Hyperbolic EFCs
for varying frequencies with fixed width 14.4 mm (lower); (c) Comparison of the hyperlenses having
hyperbolic (upper) and elliptic EFCs (lower) with which the distance between two sources is 0.48λ;
(d) 0.45λ; (e) 0.41λ. (a–e) adapted from [91].

Since then, due to the convenience of making a bandgap at an extremely low frequency, many
studies have used internal resonance structures rather than PCs. As we mentioned in the introduction,
the gap of micro-structures in PCs must be comparable to the wavelength. For this reason, it is
impossible to miniaturize the structure smaller than the wavelength while making a bandgap for a low
frequency (long wavelength) wave. However, in locally resonant hyper MTMs which have extreme
anisotropy [92], super-resolution results from the nearly flat branch that occur before the resonance.
A nearly flat dispersion curve directly below the bandgap occurred in hyperbolic MTMs implies that the
magnitude of wave vectors can be significantly increased without changing the frequency. Therefore,
the use of internal resonance structures can effectively reduce its size regardless of the wavelength.
One EMTM lens (Figure 7a) having hyperbolic EFCs (Figure 7b) exploits anisotropic dynamic mass
densities by using a resonance mechanism in the horizontal translational motion [93]. Extreme stiffness
induced by the translational resonance of its local resonators compensates for the decreased effective
mass density and permits total transmission and subwavelength resolution (Figure 7c). Another elastic
hyperlens for a longitudinal elastic wave uses two decoupled resonators as a unit cell (Figure 7d);
in numerical simulations, it achieved super-resolution of λ/3 [94]. A field that includes an elastic lens
having hyperbolic EFCs (Figure 7e) induces two-directional longitudinal wave propagation (Figure 7f,
top), whereas a field that does not include a hyperlens (Figure 7f, bottom) yields an omnidirectional
wave [94]. A single-phase hyperbolic EMTM (Figure 7g) that exploits the anisotropy of effective
mass density was optimized using a topology strategy [95]. This topology optimization realized
a hyperbolic EMTM exhibiting hyperbolic EFCs (Figure 7h) that has the finest super-resolution (λ/64)
to date (Figure 7i).
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Figure 7. (a) Fabricated hyperbolic EMTM lens; (b) EFC of hyperbolic EMTM lens. White contour:
equi-frequency contour of the isotropic aluminum plate at 35.48 kHz; (c) Intensity profiles obtained by
simulation with EMTM (cyan line), without EMTM (red line) and by experiment with EMTM (blue
dot) and without EMTM (purple dot). Gaussian regression was applied for experiment data (blue and
purple line); (d) Unit cell design of EMTM; (e) EFC of EMTM calculated at 15.3 kHz and 16.3 kHz; (f)
Divergence of the displacement fields with hyperlens (upper). Divergence of the displacement fields
without hyperlens (lower); (g) Microstructures for different target frequencies (H1 at 19.5 kHz, H2
at 9.75 kHz and H3 at 3.904 kHz); (h) EFC of the third band for H3; (i) Wave propagations in H1 at
13 kHz (left) and H3 at 2.3kHz (right). The measured resolutions are 0.169λ (left) and 0.02λ (right).
(a–c) adapted from [93]. (d–f) adapted from [94]. (g–i) adapted from [95].

2.4. Cloaking Elastic Waves

Cloaking has been a main topic of research since the discovery of MTMs. Initial work started
in transformation optics [96,97] inspired by earlier results [98]. The characteristic that obscures
an object by using electromagnetic waves is the invariance of Maxwell’s equations which are as follows.
Time-harmonic Maxwell’s equations [99] are written as

∇× E + iωµH = 0, ∇×H + iωεE = 0, (5)

where ω is an angular frequency, µ(x) is a magnetic permeability, and ε(x) is an electrical permittivity.
Consider a mapping transformation x′ = x′(x), E’(x′) = (AT)−1E(x), and H′(x′) = (AT)−1H(x) where

matrix A have elements Akj =
∂x′k
∂xj

. Then the Maxwell’s equation transforms to

∇′ × E
′
+ iωµ′H

′
= 0, ∇′ ×H

′
+ iωε

′
E
′
= 0, (6)

where µ′(x′) = Aµ(x)AT/detA and ε′(x′) = Aε(x)AT/detA. By comparing the Equations (5) and (6),
it can be seen clearly that Maxwell’s equations still retains their form. Most studies of transformation
optics consider electromagnetic waves, but this basic principle applies equally to other types of waves,
as long as the wave equation remains invariant under coordinate transformations. Therefore, cloaking
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has also been applied in acoustics [14,100,101]. However, the equations of motions for elastic medium
do not guarantee their form-invariant and are mapped to a more general system with non-scalar
density according to geometric changes [99], so cloaking of the elastic acoustic waves has been difficult
to achieve with conventional methods. The propagation of a time-harmonic elastodynamic wave
equation [99] is written as

∇ · σ = −ω2ρu, σ = C∇u, (7)

where ρ is the scalar density, u is the displacement vector, C is a rank-4 elasticity tensor, σ(x) is the
stress field. Consider a mapping from an initial space to an arbitrary curvilinear space x→ x′ and u(x)

→ u′(x) = (AT)−1u(x) where Aij =
∂x
′
i

∂xj
. Then the equation becomes

∇′ · σ′ = D′∇′u′ −ω2ρ′u′, σ′ = C′∇′u′ + S′u′, (8)

where S′ and D′ are rank-3 symmetric tensors and ρ′ becomes a rank-2 density tensor. Unlike the
Maxwell’s equation retain its form after conformal mapping (Equations (5) and (6)), it is clear that the
equation after conformal mapping (Equation (8)) has a different form from Equation (7) in the elastic
regime. Therefore, studies have been made to realize elastic wave cloaking for special cases by using
other methods. A cylindrical cloak to control bending waves, one of several forms of elastic wave,
can be achieved by a special case in a thin elastic plate [102]; the elasticity tensor can be represented
by a diagonal matrix that has two non-vanishing entries. Numerical simulations (Figure 8a) suggest
that a heterogeneous orthotropic thin elastic cloak can control the propagation of bending waves,
and thereby extend the electromagnetic and acoustic cloaking mechanisms [103]; in corresponding
experiments [104], the designed sample of elastic cloak (Figure 8b) performed well in the frequency
range of 200 to 450 Hz (Figure 8c).

Figure 8. (a) Left: displacement field scattered by an obstacle for a plane wave of frequency 60 Hz
(upper), 150 Hz (lower). Right: displacement field scattered by obstacle surrounded by cloak layers for
a plane wave of frequency 60 Hz (upper), 150 Hz (lower); (b) Designed elastic cloak before filling with
PDMS; (c) Displacement field for plane waves with frequencies of 200, 300, 400 and 450 Hz from the
top. Left column: without cloak and right column: with cloak. Dashed black circles: outer radius of the
cloak region; white scale bar: 5 cm. (a) adapted from [103]. (b,c) adapted from [104].
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Another cylindrical cloak for coupled shear and longitudinal waves can be described using
a rank-4 asymmetric elasticity tensor [105]. Asymmetric constitutive relations in which only the
major symmetry is preserved were found by applying a cloaking transformation to Navier equations
for isotropic linear elasticity. The elasticity tensor in the transformed coordinates was not fully
symmetric in this study; as a result, the Navier equations remain in shape under this transformation.
A generalization [106] of [99] broadens the transformation theory for elasticity. The material parameters
of the transformed system were explicitly derived; they depend on both the transformation and gauge
matrices, and do not necessarily have symmetric stress. Cloaking of objects from anti-plane elastic
waves can be achieved by using nonlinear elastic pre-stress [107]; this approach does not require
inhomogeneous anisotropic shear moduli and densities.

Nonlinear pre-stress has been proposed as a method to generate elastic cloaks [108]; a finite
cloak for anti-plane elastic waves was designed by applying nonlinear pre-stress to an incompressible
neo-Hookean hyper-elastic material; this method cloaked the anti-plane elastic waves (Figure 9a).
An extention [109] of this idea considered a more-general elastic transformation problem that
includes primary (P) and shear vertical (SV) motions, in addition to shear horizontal (SH) motion.
The constitutive equations required for elastodynamics cloaking, which is restricted in the form for
isotropic elasticity, were obtained; numerical simulations showed that the presence of an elastic cloak
has greatly reduced scattering (Figure 9b).

Figure 9. (a) Total displacement field of anti-plane shear waves. Line source is shown as a white
circle. Left side: a classic elastic cloak (upper) and a designed pre-stress elastic cloak (lower). Right
side: scattering from a cavity of radius ksR = π/20 (upper) and 2π (lower) in an unstressed medium,
where ks is the shear wavenumber of the medium and R is the annulus inner radius of the cavity;
(b) Top: Total displacement field of SH waves without a cloak (left) and with a cloak (right). Center:
Scattered displacement field of P waves without a cloak (left) and with a cloak (right). Bottom: Scattered
displacement field of SV waves without a cloak (left) and with a cloak (right); (c) Displacement field
distributions of cloaked (left) and uncloaked (right) rigid object. White arrows: vector direction.
Colored contours: amplitude. (a) adapted from [108]. (b) adapted from [109]. (c) adapted from [110].

An elastic cloak to control the scattering of bending waves in isotropic heterogeneous thin
plates has also been proposed [110]. The scattering cancellation technique was applied to the
biharmonic operator (∇4) to design the cloak. A fourth-order biharmonic equation with appropriate
boundary conditions to describe the propagation of bending waves in thin plates was derived from the
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generalized elasticity theory [111,112], and yielded the displacement field distributions of an obtained
cloak (Figure 9c). A directional cloak that can protect a region from a flexural wave within a range
of bandgap frequencies has been demonstrated [113]. Recently, elastic cloaking has been extended
to the seismic waves that propagate through the Earth. Seismic MTMs, one of the most important
application in EMTMs, are starting with the use of PCs and metasurface [35–42].

One of the ways to demonstrate elastic cloaking is to realize form-invariant Willis coupling
metamaterial including an additional degree of freedom. Since it is first proposed by Willis [114],
Willis coupling has been explored in elastodynamics and acoustics analogous to the bianisotropy
parameter in electromagnetism. In electromagnetic metamaterials, bianisotropy enables the coupling of
magnetic and electric phenomena at the subwavelength scale. In bianisotropic media, the constitutive
relations in electromagnetism [115] are written as

D = εE + ξH, B = µH + ζE, (9)

where D is the electric displacement field, E is the electric field, B is the magnetic flux density field, H
is the magnetic field, ε is the permittivity tensor and µ is the permeability tensor. ξ and ζ are coupling
tensors. The Willis constitutive relations [114,116] can be expressed as(

〈σ〉
〈p〉

)
=

(
Ce f f Se f f
S̃e f f ρe f f

)(
〈e〉
〈u̇〉

)
, (10)

where S̃e f f is the adjoint of Se f f , e is the strain tensor, σ is the stress tensor, Ce f f is the effective
stiffness tensor, u is the displacement vector, p is the momentum density vector and ρe f f is the effective
mass density tensor. The overdot denotes a time derivative and < > denotes the ensemble average.
Note that Se f f and S̃e f f are called Willis coupling tensors. Willis coupling requires coupling between
strain and momentum fields or stress and velocity fields (Equation (10)). Several approximations
and simplifications to the general approach of Willis media have been published [117–123]. In fact,
most studies of Willis coupling are more active in the acoustics [124–130] than in elastodynamics,
but these developments in acoustics indicate that Willis metamaterial for elastic waves in solid may
become practical. Recently, Willis metamaterial for flexural waves has been reported [131]. Based on
a cantilever bending resonance, effective bianisotropy in a Willis metamaterial for flexural waves was
designed and experimentally demonstrated.

3. Elastic Metasurfaces

Metasurfaces (MSs) are artificially-designed one-dimensional or two-dimensional equivalents of
bulk MTMs. MSs are much smaller, more compact, and simpler than conventional MTMs, but can
still manipulate waves. The physical mechanism of the MSs exploits adjustment of wave phase shifts,
unlike bulk MTMs, in which waves are manipulated by changing the effective parameters of the
material. MSs can be used in applications such as anomalous reflection and refraction [132,133],
polarization conversion [134,135], focal lenses [136–138] and holograms [139–142]. MSs are based on
the generalized Snell’s law with phase discontinuity [143]. The generalized Snell’s law of refraction is
written as

nt sin(θt)− ni sin(θi) =
1
k0

dΦ
dx

, (11)

and for reflection,

sin(θr)− sin(θi) =
1

nik0

dΦ
dx

, (12)
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where k0 denotes the wavenumber of the wave and dΦ/dx denotes the phase gradient parallel to the
plane, θi, θt and θr are the incident, transmission and reflection angle, respectively, and ni and nt are
the refractive indices of two media (Figure 10). This law indicates that the transmitted and reflected
beams can have an arbitrary direction depending on dΦ/dx as well as ni and nt.

Figure 10. Schematics of the generalized Snell’s law of refraction (a) and reflection (b). dx is the distance
between two beams at the plane of incidence. Φ is the phase shift of the blue beam and Φ + dΦ is the
phase shift of the red beam.

An elastic MS that can control both same-mode and mode-converted Lamb waves in plates has
been demonstrated [144]. It is composed of locally-resonant geometric tapers; this design has the
ability to control the phase shift accurately. However, the transmitted field contains unwanted wave
types because of the mode conversion. This mode conversion at the material interface complicates the
modulation. An elastic MS to split SV-waves and P-waves in elastic solids into different propagation
directions without involving mode conversion has been proposed [145]. Transmission of SV-waves are
different from those of P-waves, because the phase speed of the SV-wave only depends on the material
properties while that of P-wave is susceptible to the thickness of the MS. Therefore, SV-waves can be
steered while the MS remains transparent to P waves (Figure 11a,b).

An elastic MS composed of wave guides can steer the incident elastic SH waves by using
an electrorheological elastomer [146]. The deflected elastic SH waves were tuned by adjusting the phase
velocity that depends on the applied electric fields in the waveguides. An elastic phase-controlling
elastic MS using parallel and periodically arranged-micro-sections has been demonstrated analytically
and numerically [147]. Wave propagation properties depend on the periodic length of the meta-layer
element at the sub-wavelength scale. The phase-controlling properties was accomplished by the
frequency dependent elastic properties.

The above three studies on MSs were conducted by changing the wave velocity. However, other
studies have used methods such as changing the propagation distance and adjusting local resonances.
An elastic MS has been produced by changing the heights of three zigzag unit cells [148] (Figure 11c);
this MS can be used in source illusion devices for shifting, transforming, and splitting a point-source
(Figure 11d).
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Figure 11. (a) Schematic of MS design; (b) Left side: the curl of the displacement field showing
anomalous refraction of a normal incident SV-wave (upper) and focusing a cylindrical SV-wave source
at 60 kHz (lower). Right side: the trace of the strain tensor showing anomalous refraction of a normal
incident SV-wave (upper) and cylindrical P-wave incidence (lower) at 60 kHz; (c) Schematic of the
source shifter (lower) and displacement field produced by different heights h of three zigzag unit
cells (upper); (d) Left side: Source shifter; the A0 wave field at 12 kHz with the source placed at (0, 0)
mm (upper) and (25, 0) mm (lower). Center side: source transformer; the A0 wave field at 8 kHz
with the source placed at (0, 0) mm (upper) and (−15, 0) mm (lower). Right side: source splitter; the
target profile (upper) and the experimentally-measured A0 wave field at 8 kHz (lower). (a,b) adapted
from [145]. (c,d) adapted from [148].

An elastic MS has been produced by adjusting the propagation distance [149] (Figure 12a). This
concept extends the concept of an acoustic MS that compensates for the lack of MTM and PCs.
The designed refraction angles obtained by the numerical simulations were in excellent agreement
with the analytical predictions (Figure 12b,c). An elastic MS that exploits local resonance of 3D
column structures can support high transmission and full phase control to deflect flexural waves [150].
Elastic MSs can be applied to manipulate not only flexural waves but also Rayleigh and Love waves.
Rayleigh waves are formed when longitudinal and transverse motions are combined and an elliptical
retrograde motion emerges from a vertical plane along the direction of propagation. Love waves
are formed when the horizontal particle motion is perpendicular to the direction of propagation.
In seismology, both Rayleigh and Love waves are surface seismic waves produced on the Earth. MSs
can applied as protective devices against seismic waves. An elastic MS which can create elastic rainbow
trapping and support mode conversion of Rayleigh waves to bulk shear waves has been designed and
experimentally demonstrated [40] based on the meta-wedge design [39] and the theoretical dispersion
properties of an MS [36]. One elastic MS that manipulates Love waves has been demonstrated using
resonators [151]. By adjusting the interaction coefficient which controls the strength of interaction
between resonators and the Love waves, phase speed and n are controlled. By using this, a Luneburg
and a Maxwell lens were also demonstrated in this study. An adaptive and tunable MS can manipulate
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elastic waves by using piezoelectric circuit integration without change in the host structure [152]; the
proposed elastic MS consists of arrayed piezoelectric devices with individually-connected elements
that have negative capacitance. By adjusting the negative capacitances online, discontinuous phase
profiles can be obtained. A full transmission MS for in-plane longitudinal waves has also been
introduced [153]; its unit cell is composed of separated substructures, so that each property is decoupled
by its own geometrical parameter (Figure 12d); therefore, each substructure embedded in elastic solids
behaves as a mass or as a spring element. Full transmission was achieved by breaking an intrinsic
proportionally-coupled relationship between density and stiffness. The corresponding values of the
discrete phase by both theoretical and experimental approach agreed well (Figure 12e).

Figure 12. (a) Schematic of the MS. L, l, w0 are the widths of the supercell, subunit, groove, respectively
and h is the thickness of MS; (b) Numerical simulations of the wave field of the MS composed of
four subunits. Upper side: vertical incident wave. Below side: oblique incident wave (30◦). Black
arrows: analytical predictions; (c) Numerical simulations of the wave field of the MS composed of
two subunits. Upper side: vertical incident wave. Below side: oblique incident wave (30◦). Black
arrows: analytical predictions; (d) Unit cell consisting of two independent substructures (left) and
the mass-spring model of the unit cell (right); (e) Upper side: simulation of longitudinal wave with
dϕ/dy = π/6h (left), dϕ/dy = π/8h (center) and simulation of focal lens with its focal length is 0.15 m
(right). Lower side: corresponding theoretical and discrete phase profile of upper side. (a–c) adapted
from [149]. (d,e) adapted from [153].

4. Conclusions

MTMs present a new way to manipulate waves. However, in EMTMs, the longitudinal and
transverse elastic waves are coupled, so they cannot be analyzed using techniques that apply to
electromagnetic and acoustic waves. Many important technical challenges must be solved before
EMTMS are appropriate for real-world applications. EMTMs manipulate and control the elastic
waves by arranging micro-structures to exploit Bragg scattering or local resonance. To understand the
current state of EMTMs, important studies that have been conducted are selected and represented.
We introduced representative studies of locally resonant EMTMs. We explained how to handle elastic
waves by using GRIN PC lenses. We have also described hyperlenses for super-resolution beyond
the diffraction limit. Cloaking MTMs that effectively block elastic waves have been introduced.
Also, a new budding field on Willis parameters is discussed. Elastic MSs have been introduced
to overcome the limitations of existing EMTMs. In addition to these applications, EMTM-related



Appl. Sci. 2020, 10, 547 17 of 23

technologies are expected to advance rapidly due to other kinds of EMTM applications such as
mechanical MTMs [154,155]. This would provide deeper understanding of elastic wave manipulation,
energy harvesting, super-resolution imaging, and seismic wave shielding.
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110. Farhat, M.; Chen, P.Y.; Bağcı, H.; Enoch, S.; Guenneau, S.; Alu, A. Platonic scattering cancellation for bending

waves in a thin plate. Sci. Rep. 2014, 4, 4644. [CrossRef]
111. Timoshenko, S.P.; Woinowsky-Krieger, S. Theory of Plates and Shells; McGraw-Hill: New York, NY, USA, 1959.
112. Graff, K.F. Wave Motion in Elastic Solids; Courier Corporation: North Chelmsford, MA, USA, 2012.
113. Colombi, A.; Roux, P.; Guenneau, S.; Rupin, M. Directional cloaking of flexural waves in a plate with a

locally resonant metamaterial. J. Acoust. Soc. Am. 2015, 137, 1783–1789. [CrossRef]
114. Willis, J. Variational principles for dynamic problems for inhomogeneous elastic media. Wave Motion 1981,

3, 1–11. [CrossRef]
115. Marqués, R.; Medina, F.; Rafii-El-Idrissi, R. Role of bianisotropy in negative permeability and left-handed

metamaterials. Phys. Rev. B 2002, 65, 144440. [CrossRef]
116. Milton, G.W.; Willis, J.R. On modifications of Newton’s second law and linear continuum elastodynamics.

Proc. R. Soc. A-Math. Phys. Eng. Sci. 2007, 463, 855–880. [CrossRef]
117. Nemat-Nasser, S.; Srivastava, A. Overall dynamic constitutive relations of layered elastic composites. J.

Mech. Phys. Solids 2011, 59, 1953–1965. [CrossRef]
118. Srivastava, A.; Nemat-Nasser, S. Overall dynamic properties of three-dimensional periodic elastic composites.

Proc. R. Soc. A-Math. Phys. Eng. Sci. 2012, 468, 269–287. [CrossRef]
119. Norris, A.N.; Shuvalov, A.L.; Kutsenko, A.A. Analytical formulation of three-dimensional dynamic

homogenization for periodic elastic systems. Proc. R. Soc. A-Math. Phys. Eng. Sci. 2012, 468, 1629–1651.
[CrossRef]

120. Sieck, C.F.; Alù, A.; Haberman, M.R. Dynamic Homogenization of Acoustic Metamaterials with Coupled
Field Response. Phys. Proc. 2015, 70, 275–278. [CrossRef]

121. Muhlestein, M.B.; Sieck, C.F.; Alù, A.; Haberman, M.R. Reciprocity, passivity and causality in Willis materials.
Proc. R. Soc. A-Math. Phys. Eng. Sci. 2016, 472, 20160604. [CrossRef]

122. Xiang, Z.; Yao, R. Realizing the Willis equations with pre-stresses. J. Mech. Phys. Solids 2016, 87, 1–6.
[CrossRef]

123. Nassar, H.; Xu, X.; Norris, A.; Huang, G. Modulated phononic crystals: Non-reciprocal wave propagation
and Willis materials. J. Mech. Phys. Solids 2017, 101, 10–29. [CrossRef]

124. Koo, S.; Cho, C.; Jeong, J.h.; Park, N. Acoustic omni meta-atom for decoupled access to all octants of a wave
parameter space. Nat. Commun. 2016, 7, 13012. [CrossRef] [PubMed]

125. Muhlestein, M.B.; Sieck, C.F.; Wilson, P.S.; Haberman, M.R. Experimental evidence of Willis coupling in a
one-dimensional effective material element. Nat. Commun. 2017, 8, 15625. [CrossRef] [PubMed]

126. Sieck, C.F.; Alù, A.; Haberman, M.R. Origins of Willis coupling and acoustic bianisotropy in acoustic
metamaterials through source-driven homogenization. Phys. Rev. B 2017, 96, 104303. [CrossRef]

http://dx.doi.org/10.1063/1.2803315
http://dx.doi.org/10.1103/PhysRevLett.106.024301
http://dx.doi.org/10.1103/PhysRevB.79.033102
http://dx.doi.org/10.1103/PhysRevLett.103.024301
http://www.ncbi.nlm.nih.gov/pubmed/19659209
http://dx.doi.org/10.1103/PhysRevLett.108.014301
http://www.ncbi.nlm.nih.gov/pubmed/22304261
http://dx.doi.org/10.1063/1.3068491
http://dx.doi.org/10.1016/j.wavemoti.2011.03.002
http://dx.doi.org/10.1098/rspa.2011.0477
http://dx.doi.org/10.1063/1.4704566
http://dx.doi.org/10.1098/rspa.2012.0123
http://dx.doi.org/10.1038/srep04644
http://dx.doi.org/10.1121/1.4915004
http://dx.doi.org/10.1016/0165-2125(81)90008-1
http://dx.doi.org/10.1103/PhysRevB.65.144440
http://dx.doi.org/10.1098/rspa.2006.1795
http://dx.doi.org/10.1016/j.jmps.2011.07.008
http://dx.doi.org/10.1098/rspa.2011.0440
http://dx.doi.org/10.1098/rspa.2011.0698
http://dx.doi.org/10.1016/j.phpro.2015.08.153
http://dx.doi.org/10.1098/rspa.2016.0604
http://dx.doi.org/10.1016/j.jmps.2015.10.010
http://dx.doi.org/10.1016/j.jmps.2017.01.010
http://dx.doi.org/10.1038/ncomms13012
http://www.ncbi.nlm.nih.gov/pubmed/27687689
http://dx.doi.org/10.1038/ncomms15625
http://www.ncbi.nlm.nih.gov/pubmed/28607495
http://dx.doi.org/10.1103/PhysRevB.96.104303


Appl. Sci. 2020, 10, 547 22 of 23

127. Li, J.; Shen, C.; Díaz-Rubio, A.; Tretyakov, S.A.; Cummer, S.A. Systematic design and experimental
demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts. Nat.
Commun. 2018, 9, 1342. [CrossRef] [PubMed]

128. Quan, L.; Ra’di, Y.; Sounas, D.L.; Alù, A. Maximum Willis Coupling in Acoustic Scatterers. Phys. Rev. Lett.
2018, 120, 254301. [CrossRef] [PubMed]

129. Quan, L.; Sounas, D.L.; Alù, A. Nonreciprocal Willis Coupling in Zero-Index Moving Media. Phys. Rev. Lett.
2019, 123, 064301. [CrossRef] [PubMed]

130. Melnikov, A.; Chiang, Y.K.; Quan, L.; Oberst, S.; Alù, A.; Marburg, S.; Powell, D. Acoustic meta-atom with
experimentally verified maximum Willis coupling. Nat. Commun. 2019, 10, 1–7. [CrossRef]

131. Liu, Y.; Liang, Z.; Zhu, J.; Xia, L.; Mondain-Monval, O.; Brunet, T.; Alù, A.; Li, J. Willis Metamaterial on a
Structured Beam. Phys. Rev. X 2019, 9, 011040. [CrossRef]

132. Ni, X.; Emani, N.K.; Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Broadband light bending with plasmonic
nanoantennas. Science 2012, 335, 427. [CrossRef]

133. Sun, S.; Yang, K.Y.; Wang, C.M.; Juan, T.K.; Chen, W.T.; Liao, C.Y.; He, Q.; Xiao, S.; Kung, W.T.; Guo, G.Y.; et al.
High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 2012, 12, 6223–6229.
[CrossRef]

134. Zhu, H.; Cheung, S.; Chung, K.L.; Yuk, T.I. Linear-to-circular polarization conversion using metasurface.
IEEE Trans. Antennas Propag. 2013, 61, 4615–4623. [CrossRef]

135. Arbabi, A.; Horie, Y.; Bagheri, M.; Faraon, A. Dielectric metasurfaces for complete control of phase and
polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 2015, 10, 937.
[CrossRef] [PubMed]

136. Li, X.; Xiao, S.; Cai, B.; He, Q.; Cui, T.J.; Zhou, L. Flat metasurfaces to focus electromagnetic waves in
reflection geometry. Opt. Lett. 2012, 37, 4940–4942. [CrossRef] [PubMed]

137. Aieta, F.; Genevet, P.; Kats, M.A.; Yu, N.; Blanchard, R.; Gaburro, Z.; Capasso, F. Aberration-free ultrathin flat
lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 2012, 12, 4932–4936.
[CrossRef] [PubMed]

138. West, P.R.; Stewart, J.L.; Kildishev, A.V.; Shalaev, V.M.; Shkunov, V.V.; Strohkendl, F.; Zakharenkov, Y.A.;
Dodds, R.K.; Byren, R. All-dielectric subwavelength metasurface focusing lens. Opt. Express 2014,
22, 26212–26221. [CrossRef]

139. Zheng, G.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S. Metasurface holograms reaching
80% efficiency. Nat. Nanotechnol. 2015, 10, 308. [CrossRef]

140. Li, Z.; Kim, I.; Zhang, L.; Mehmood, M.Q.; Anwar, M.S.; Saleem, M.; Lee, D.; Nam, K.T.; Zhang, S.;
Luk’yanchuk, B.; et al. Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light.
ACS Nano 2017, 11, 9382–9389. [CrossRef]

141. Yoon, G.; Lee, D.; Nam, K.T.; Rho, J. Pragmatic metasurface hologram at visible wavelength: The balance
between diffraction efficiency and fabrication compatibility. ACS Photonics 2017, 5, 1643–1647. [CrossRef]

142. Ansari, M.A.; Kim, I.; Lee, D.; Waseem, M.H.; Zubair, M.; Mahmood, N.; Badloe, T.; Yerci, S.; Tauqeer, T.;
Mehmood, M.Q.; et al. A Spin-Encoded All-Dielectric Metahologram for Visible Light. Laser Photon. Rev.
2019, 13, 1900065. [CrossRef]

143. Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light Propagation with
Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [CrossRef]

144. Zhu, H.; Semperlotti, F. Anomalous Refraction of Acoustic Guided Waves in Solids with Geometrically
Tapered Metasurfaces. Phys. Rev. Lett. 2016, 117, 034302. [CrossRef] [PubMed]

145. Su, X.; Lu, Z.; Norris, A.N. Elastic metasurfaces for splitting SV- and P-waves in elastic solids. J. Appl. Phys.
2018, 123, 091701. [CrossRef]

146. Xu, Y.; Li, Y.; Cao, L.; Yang, Z.; Zhou, X. Steering of SH wave propagation in electrorheological elastomer
with a structured meta-slab by tunable phase discontinuities. AIP Adv. 2017, 7, 095114. [CrossRef]

147. Shen, X.; Sun, C.T.; Barnhart, M.V.; Huang, G. Elastic wave manipulation by using a phase-controlling
meta-layer. J. Appl. Phys. 2018, 123, 091708. [CrossRef]

148. Liu, Y.; Liang, Z.; Liu, F.; Diba, O.; Lamb, A.; Li, J. Source Illusion Devices for Flexural Lamb Waves Using
Elastic Metasurfaces. Phys. Rev. Lett. 2017, 119, 034301. [CrossRef]

149. Cao, L.; Yang, Z.; Xu, Y. Steering elastic SH waves in an anomalous way by metasurface. J. Sound Vibr. 2018,
418, 1–14. [CrossRef]

http://dx.doi.org/10.1038/s41467-018-03778-9
http://www.ncbi.nlm.nih.gov/pubmed/29632385
http://dx.doi.org/10.1103/PhysRevLett.120.254301
http://www.ncbi.nlm.nih.gov/pubmed/29979059
http://dx.doi.org/10.1103/PhysRevLett.123.064301
http://www.ncbi.nlm.nih.gov/pubmed/31491143
http://dx.doi.org/10.1038/s41467-019-10915-5
http://dx.doi.org/10.1103/PhysRevX.9.011040
http://dx.doi.org/10.1126/science.1214686
http://dx.doi.org/10.1021/nl3032668
http://dx.doi.org/10.1109/TAP.2013.2267712
http://dx.doi.org/10.1038/nnano.2015.186
http://www.ncbi.nlm.nih.gov/pubmed/26322944
http://dx.doi.org/10.1364/OL.37.004940
http://www.ncbi.nlm.nih.gov/pubmed/23202097
http://dx.doi.org/10.1021/nl302516v
http://www.ncbi.nlm.nih.gov/pubmed/22894542
http://dx.doi.org/10.1364/OE.22.026212
http://dx.doi.org/10.1038/nnano.2015.2
http://dx.doi.org/10.1021/acsnano.7b04868
http://dx.doi.org/10.1021/acsphotonics.7b01044
http://dx.doi.org/10.1002/lpor.201900065
http://dx.doi.org/10.1126/science.1210713
http://dx.doi.org/10.1103/PhysRevLett.117.034302
http://www.ncbi.nlm.nih.gov/pubmed/27472114
http://dx.doi.org/10.1063/1.5007731
http://dx.doi.org/10.1063/1.4996245
http://dx.doi.org/10.1063/1.4996018
http://dx.doi.org/10.1103/PhysRevLett.119.034301
http://dx.doi.org/10.1016/j.jsv.2017.12.032


Appl. Sci. 2020, 10, 547 23 of 23

150. Cao, L.; Yang, Z.; Xu, Y.; Assouar, B. Deflecting flexural wave with high transmission by using pillared
elastic metasurface. Smart Mater. Struct. 2018, 27, 075051. [CrossRef]

151. Palermo, A.; Marzani, A. Control of Love waves by resonant metasurfaces. Sci. Rep. 2018, 8, 7234. [CrossRef]
152. Li, S.; Xu, J.; Tang, J. Tunable modulation of refracted lamb wave front facilitated by adaptive elastic

metasurfaces. Appl. Phys. Lett. 2018, 112, 021903. [CrossRef]
153. Lee, H.; Lee, J.K.; Seung, H.M.; Kim, Y.Y. Mass-Stiffness substructuring of an elastic metasurface for full

transmission beam steering. J. Mech. Phys. Solids 2018, 112, 577–593. [CrossRef]
154. Bertoldi, K.; Vitelli, V.; Christensen, J.; van Hecke, M. Flexible mechanical metamaterials. Nat. Rev. Mater.

2017, 2, 17066. [CrossRef]
155. Surjadi, J.U.; Gao, L.; Du, H.; Li, X.; Xiong, X.; Fang, N.X.; Lu, Y. Mechanical Metamaterials and Their

Engineering Applications. Adv. Eng. Mater. 2019, 21, 1800864. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/1361-665X/aaca51
http://dx.doi.org/10.1038/s41598-018-25503-8
http://dx.doi.org/10.1063/1.5011675
http://dx.doi.org/10.1016/j.jmps.2017.11.025
http://dx.doi.org/10.1038/natrevmats.2017.66
http://dx.doi.org/10.1002/adem.201800864
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Elastic Metamaterials
	Representative Studies of Locally Resonant Elastic Metamaterials
	Elastic Gradient-Index Lens Using Phononic Crystals
	Elastic Hyperlens
	Cloaking Elastic Waves

	Elastic Metasurfaces
	Conclusions
	References

