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Abstract: When pedestrians walk along a corridor in both directions, a frequently observed
phenomenon is the segregation of the whole group into lanes of individuals moving in the same
direction. While this formation of lanes facilitates the flow and benefits the whole group, it is believed
that results from the actions of the individuals acting on their behalf, without considering others.
This phenomenon is an example of self-organization and has attracted the attention of a number of
researchers in diverse fields. We introduce and analyze a simple model. We assume that individuals
move around a multi-lane circular track. All of them move at the same speed. Half of them in one
direction and the rest in the opposite direction. Each time two individuals collide, one of them moves
to a neighboring lane. The individual changing lanes is selected randomly. We prove that the system
self-organizes. Eventually, each lane is occupied with individuals moving in only one direction. Our
analysis supports the belief that global self-organization is possible even if each member of the group
acts without considering the rest.

Keywords: mathematical modeling; dynamics of crowds; self-organization; probabilistic models

1. Introduction

Spontaneous organization in systems composed of several units is known as self-organization.
Self-organization is pervasive and is observed even when the units act responding to local stimuli,
without considering the rest of the group. Researchers are interested in understanding how local
interactions among units and with the environment leads to self-organization. Some books and review
articles on self-organization in biological systems include [1–4].

Self-organization is observed when humans are walking in crowded environments. As a first
example, consider two adjacent rooms connected by a door that is initially closed. Assume a large
number of individuals is in each room and they all want to go to the other room. Suddenly, the door is
opened. Under these circumstances, the spontaneous formation of an alternating flow is frequently
observed. By alternating flow, we mean that the individuals take turns. Individuals from only one of
the rooms cross the door for a period of time and then there is a sudden switch, individuals from the
other room are the only ones crossing the door after the switch. This switching, or turn taking, persists
while the environment remains crowded [5].

A second example of self-organization due to walking individuals interacting among themselves
and with the environment is the formation of trails. More precisely, assume individuals need to cross,
possibly in different directions, the same mildly dense grass field on a regular basis. Individuals will
try to walk along the areas where the grass is shorter and less dense, even if the path they take as a
result is not the shortest. Stepping on the grass is how the individuals affect the environment. Grass
has a harder time growing in the areas heavily transited. As a result, dirt path trails form [6].
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A third example of self-organization is the different pattern formations observed when the crowd
is a collection of several smaller groups. For example, groups of friends or families. We refer the reader
to [7] for more details. In this and the previous two examples, the coordinated behaviors observed
are not planned by the crowd as a whole or by any member or group of members within the crowd.
Instead, they emerge spontaneously, as a consequence of the individuals acting in response to local
stimuli and motivated by their own goals.

The study of the dynamics of crowds is of interest for several reasons. It is a source of
examples of self-organization. It may lead to strategies to increase the safety in crowded areas
such as bridges [8] or stadiums. It can provide guidelines in the design of movie theaters, shopping
malls, or other similar types of heavily transited buildings, where optimal crowd flow is desired
because of economical and safety reasons. Accordingly, the study of dynamics of crowds, both
theoretically (early works include [9,10], more recent work includes [11–16], see also [1,17] for reviews)
and experimentally [18–20], is a very active area of research.

Microscopic mathematical models to study dynamics of crowds are those that keep track of each
individual. Cellular automata models [18,21–23], lattice gas automata models [24,25], algorithms [26],
and large systems of odes, are all examples of microscopic models. When large systems of odes are
used, the mass times acceleration of each individual is set equal to the sum of generalized or social
forces the individual feels [27–31]. These social forces are not real forces. They model the responses of
the individuals to the environment and the presence and actions of the other individuals [32]. Some
of these models are known as self-propelled particles models [33] and others, as individual based
models [32,34].

Mesoscopic, kinetic or Boltzman-type models to study the dynamics of crowds, are integro-partial
differential equations that describe the evolution of probability densities of the position and velocities
of the individuals [35,36]. Macroscopic or continuum models are partial differential equations
(conservation equations), where the dependent variables are the density and local average velocity of
individuals [1,37–40]. Some works connect microscopic to macroscopic models [41–43]. Also, network
models have been introduced [44] and optimal control theory has been used [45] to study the dynamics
of crowds.

Assume a corridor or street is crowded with persons walking. Some of the pedestrians are
walking in one direction, while the others, in the opposite direction. A self-organizing phenomenon
frequently observed is that the individuals segregate into lanes of individuals moving only in one
direction [46–48]. Needless to say, this formation of lanes benefits the whole group, as it results in
an easier flow in both directions [49]. Motivated by this phenomenon, we introduce and analyze a
new mathematical model. Our work supports the claim that the simple behavior by the individuals of
moving out of the way to avoid imminent collisions leads to the self-organization of the system.

We describe the model in Section 2. Briefly, individuals move around a multi-lane circular track
with the same angular speed. Half of them walk clockwise and the rest, counterclockwise. Each
individual remains in its lane unless it collides with an other individual walking in the same lane
but in the opposite direction. When such a collision occurs, one of the colliding individuals moves
to a neighboring lane. The individual changing lanes is selected randomly. In Section 3, we present
numerical simulations.

This is not the first article of the author studying this problem. The two-lane version of this
model was introduced and studied in [50,51]. However, in the model introduced and studied here,
the number of lanes is not restricted to two, it can have any number of lanes. Going from two to
any number of lanes is not a simple extension. As a result, the analysis and methods used here are
completely different. In short, this is a novel article and not a mere extension of previous work of
the author.

Sections 4–8 consist of analysis of the system. In Section 8, we prove that, with probability 1,
the system will self-organize, i.e., eventually, all the individuals within each lane move in the same
direction. We finish the article with a short discussion in Section 9.



Appl. Sci. 2020, 10, 563 3 of 13

2. The Model

We consider the following scenario: 2N individuals or pedestrians walk around a multi-lane
circular track. Half of the individuals move in a clockwise direction and the other half, in a
counterclockwise direction. Each time two individuals moving in opposite directions and in the
same lane meet, we say they collide. When two individuals collide, exactly one of them, randomly
chosen, with each having the same probability of 1/2 of being chosen, moves to a neighboring lane.
If the collision occurs in the most inner or most outer lane, there is only one neighboring lane. If the
collision takes place in another lane, the neighboring lane to which the individual changing lanes
moves is also chosen randomly.

Next, we enumerate a list of statements. The ith statement will be referred as statement i
from Section 2. These statements are either rules that help precisely define the dynamics of our
system, or observations that are consequences of those rules and will be needed in the analysis in
subsequent sections.

1. 2N individuals move around a circular track with L lanes. Each lane is labeled with a number.
The inner lane is lane 1, the lane next to lane 1 is lane 2, and so on. Note that the outer lane is
lane L.

2. N individuals move in the counterclockwise direction and the other N in the clockwise direction.
3. All individuals move with the same constant angular speed ω and thus, it takes each individual

a time of 2π/ω to complete a loop.
4. Each individual moving counterclockwise is labeled with an integer i, where 1 ≤ i ≤ N. The

position of the individual i moving counterclockwise at time t is described by an angle θ
(+)
i (t)

and by `
(+)
i (t), the number of the lane the individual is at time t. For simplicity, we require

θ
(+)
i (t) to be a continuous function and thus, since the angular speed ω is constant, we have

θ
(+)
i (t) = θ

(+)
i (0) +ωt. For convenience, we assume the initial angles to satisfy 0 ≤ θ

(+)
i (0) < 2π.

Note that the function `
(+)
i (t) will be discontinuous at the times t when the counterclockwise

moving individual i changes lanes. Strictly speaking, `(+)
i (t) is not defined at the times it is

discontinuous. This will not cause any problems.
5. Each individual moving clockwise is also labeled with an integer j, with 1 ≤ j ≤ N. The position

of the individual j moving clockwise at time t is described by the angle θ
(−)
j (t) = θ

(−)
j (0)−ωt,

where 0 ≤ θ
(+)
j (0) < 2π, and by `

(−)
i (t), the number of the lane the individual is at time t.

6. We assume that initially, i.e., at time t = 0, all the 2N angles defined above are different. This
means not only that individuals start at different positions, but also that, at t = 0, any two
individuals do not have positions that correspond to the same angle. If an individual at t = 0
looks to its sides, it will not see any other individual in the other lanes with the same initial angle.

7. Given the last statement, two individuals moving in the same direction will never have the
same angle.

8. Two individuals collide at time t if they reach the same location at that time. Given the last
statement, if two individuals collide, they move in opposite directions. In mathematical terms,
the individual i moving counterclockwise and the individual j moving clockwise collide at time t
if θ

(+)
i (t) = θ

(−)
j (t) + 2πk for some integer k and lims→t− `

(+)
i (s) = lims→t− `

(−)
j (s). In the last

equation, lims→t− denotes the right limit as s tends to t, that is, s approaches t but under the
restriction s < t. This limit is taken because one of the individuals will change lanes at time t and
thus, either θ

(+)
i or θ

(−)
j will not be defined at exactly that time. Note also that the angles of the

colliding individuals do not have to be equal. It is enough that they differ by an integer multiple
of 2π, which includes the case of them being equal. Adding or subtracting 2π to an angle does
not change the position.
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9. For all pairs i, j such that 1 ≤ i, j ≤ N, we define

τij =


θ
(−)
j (0)−θ

(+)
i (0)

2ω if θ
(−)
j (0) > θ

(+)
i (0)

θ
(−)
j (0)−θ

(+)
i (0)

2ω + π
ω if θ

(−)
j (0) < θ

(+)
i (0).

(1)

We assume that τi1 j1 6= τi2 j2 if i1 6= i2 or j1 6= j2. Equation (1) will be further discussed in the
next section. The discussion in that section should make the reader clear that the assumption
τi1 j1 6= τi2 j2 if i1 6= i2 or j1 6= j2 implies that two different collisions never occur at the same time.

10. If two individuals, the individual i moving counterclockwise and the individual j moving
clockwise, collide at time t, exactly one of them changes lanes at that time. The probability that
the individual i changes lanes is 1/2 and thus, 1/2 is also the probability that j changes lanes.
Assume the collision occurs in lane `. If 1 < ` < L, the individual changing lanes moves to lane
`− 1 with probability 1/2 or to lane `+ 1, also with probability 1/2. If ` = 1, the individual
changing lanes moves to lane 2, and if ` = L, it moves to lane L− 1.

11. An individual can only change lanes when it collides with an other individual.

We note that the assumptions in points 6 and 9 above are not restrictive at all. For example, if the
initial angles were to be selected randomly with a uniform probability distribution around the track,
assumptions in points 6 and 9 would be satisfied with probability 1. Those assumptions are made to
simplify the analysis but are not fundamental.

Our model is very simple and is based on local responses only. The selection of the individual
that changes lanes, and the lane it moves to, are independent of the location of all the other individuals.
The individuals do not make smart decisions attempting to prevent future collisions.

3. Numerical Simulations

Figure 1 shows the results of a numerical simulation with 120 individuals in a circular track with
4 lanes. The individuals move at one revolution per unit time. Figure 1 shows the positions of the
individuals at three different times: t = 0, t = 4 and t = 5. The number of collisions that occurred by
those times are also indicated in Figure 1. The initial angles of the individuals were randomly chosen
with uniform probability distribution around the track. The lane where each individual started was
also randomly selected, with each lane having 1/4 as the probability of being chosen.

Note that, in the realization of Figure 1, at t = 5 (in fact slightly before that), after 2192 collisions,
all the pedestrians moving in the counterclockwise direction are in the inner lane, which is lane 1, and
in lane 3. All those moving in the clockwise direction are in lanes 2 and 4, the outer lane. No more
collisions occur after this time. We say that the system has self-organized.

We have run several simulations with different randomly generated initial conditions (not shown
here) and in all those simulations, the system self-organized. Our numerical simulations suggest that
the system always self-organizes. We will prove that this is the case with probability 1.
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Figure 1. Positions of the pedestrians at different times. The circles are the pedestrians moving
clockwise. The exes are the pedestrians moving counterclockwise.

4. Possible Collision Times

We recall the reader that two individuals collide at time t if they are in the same lane at that time
and their angles differ by an integer multiple of 2π. When we say they are in the same lane at time t,
we mean they are in the same lane just before one of them changes lanes. Note that, since 0 is an
integer, the angles differing by an integer multiple of 2π includes the case when the angles are equal.

We define τij to be the first time that the angle of the individual i moving counterclockwise and the
angle of the individual j moving clockwise differ by an integer multiple of 2π. These two individuals
do not collide for any t satisfying 0 < t < τij and they collide at t = τij if and only if they are in the
same lane at that time. Thus, we refer to τij as the first or smallest possible collision time between the
individual i moving counterclockwise and the individual j moving clockwise.

Recall that the angle of the individual i moving counterclockwise and the angle of the individual j
moving clockwise are given by θ

(+)
i (t) = θ

(+)
i (0) + ωt and θ

(−)
j (t) = θ

(−)
j (0)−ωt, respectively. Recall

also that all the initial angles are greater than or equal to 0 and less than 2π. Given these two facts,
little thought is necessary to convince the reader about the validity of the Equation (1). Note that the
time τij always satisfies 0 < τij < π/ω.
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We define Tij to be the set of all positive times when the difference between the angles of the
individual i moving counterclockwise and the individual j moving clockwise differ by an integer
multiple of 2π. Straight forward algebra shows that Tij is the set of all times of the form τij + nπ/ω,
where n is any non-negative integer,

Tij =
{

t = τij + n
π

ω
for some non-negative integer n

}
. (2)

If the individual i moving counterclockwise and the individual j moving clockwise collide, they so
do at some time t in Tij. In fact, these two individuals collide at time t if and only if t ∈ Tij and they are
both in the same lane at time t. Given these facts, we refer to the set Tij as the set of possible collision
times between the individual i moving counterclockwise and the individual j moving clockwise.

We define T to be the union of the sets Tij, where the union is taken over all individuals i moving
counterclockwise and individuals j moving clockwise

T =
⋃

1≤i,j≤N
Tij. (3)

If there is a collision at time t, then t is in the set T . Thus, we refer to T as the set of possible
collision times.

We sort the elements in T and label them as tn with n ≥ 1. In other words, the sequence tn, with
n ≥ 1, is defined by the facts that tn < tn+1 for all positive integers n, and

T = {tn : n ≥ 1‘} . (4)

For convenience, we define t0 = 0, but we do keep t0 out of the set T .
Note that the assumption in Point 9 in Section 2 implies that the sets Tij are pairwise disjoint.

Thus, tn is a first possible collision time between two individuals, i.e., tn = τij for some i and j, if and
only if 1 ≤ n ≤ N2. Thus, we have that tN2 < π/ω < tN2+1. Note also that tN2+n = tn + π/ω for all
n ≥ 1. Also note that, for every pair i, j, with 1 ≤ i, j ≤ N, there exists n such that 1 ≤ n ≤ N2 and
tn = τij.

5. Evolution Equations

Given any positive integer n, the time tn is a possible collision time between two individuals. We
denote by I(n), the integer corresponding to the individual moving counterclockwise and by J(n),
the integer corresponding to the individual moving clockwise involved in the possible collision at
time tn. In other words, the functions I = I(n) and J = J(n) are defined by the following statement:
tn is a possible collision time between the individual i = I(n) moving counterclockwise and the
individual j = J(n) moving clockwise. Following the discussion of Section 4, it can be easily shown
that I(n + N2) = I(n) and J(n + N2) = J(n) for all n.

A simple but important observation is that each individual remains in the same lane in between
consecutive possible collisions times. i.e., `(+)

i and `
(−)
j remain constant in time intervals of the form

tn < t < tn+1 for all n, i and j. Thus, for any n ≥ 0 and 1 ≤ i, j ≤ N, we define

`
(+,n)
i = `

(+)
i (t) and `

(−,n)
j = `

(−)
j (t) where tn < t < tn+1. (5)

For each integer n, we regard `
(+,n)
i as the ith component of a 2N-vector that we call `(n) and we

regard `
(−,n)
j as the (N + j)th component of the same vector,

`(n) =
(
`
(+,n)
1 , . . . , `(+,n)

N , `(−,n)
1 , . . . , `(−,n)

N

)
. (6)
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We also denote the kth component of `(n) by `
(n)
k . Thus, we have `

(n)
k = `

(+,n)
k if 1 ≤ k ≤ N, and

`
(n)
k = `

(−,n)
k−N if N < k ≤ 2N.

We define Ω to be the set of 2N-vectors, whose components are positive integers no greater than L

Ω = {v = (v1, v2, . . . , v2N) such that vi is an integer and 1 ≤ vi ≤ L for all i} . (7)

Note that `(n) is in Ω for all n.
Let u and v be two elements in Ω. Next, we describe the probability that `(n) = v given

that `(n−1) = u. The standard notation for this probability, known as conditional probability, is
P
(
`(n) = v

∣∣∣`(n−1) = u
)

. Before we proceed, note that `(n−1) = u implies that `(+,n−1)
I(n) = `

(n−1)
I(n) =

uI(n) and `
(−,n−1)
J(n) = `

(n−1)
N+J(n) = uN+J(n).

1. If uI(n) 6= uN+J(n), there is no collision at time tn. Thus,

P
(
`(n) = v

∣∣∣`(n−1) = u
)
=

{
1 if v = u
0 otherwise.

(8)

2. If uI(n) = uN+J(n) = 1, at time tn, the individual I(n) moving counterclockwise and the individual
J(n) moving clockwise collide in lane 1. Thus,

P
(
`(n) = v

∣∣∣`(n−1) = u
)
=


1/2 if vI(n) = 2 and vk = uk for all k 6= I(n)
1/2 if vN+J(n) = 2 and vk = uk for all k 6= N + J(n)

0 otherwise.
(9)

The first condition in the above equation corresponds to the individual I(n) moving
counterclockwise, changing from lane 1 to lane 2. The second condition corresponds to the
individual J(n) moving clockwise, changing from lane 1 to lane 2.

3. If uI(n) = uN+J(n) = L, at time tn, the individual I(n) moving counterclockwise and the
individual J(n) moving clockwise collide in lane L. Thus,

P
(
`(n) = v

∣∣∣`(n−1) = u
)
=


1/2 if vI(n) = L− 1 and vk = uk for all k 6= I(n)
1/2 if vN+J(n) = L− 1 and vk = uk for all k 6= N + J(n)

0 otherwise.
(10)

The first condition in the above equation corresponds to the individual I(n) moving
counterclockwise, changing from lane L to lane L− 1. The second condition corresponds to the
individual J(n) moving clockwise, changing from lane L to lane L− 1.

4. If uI(n) = uN+J(n) = `, with 1 < ` < L, at time tn, the individual I(n) moving counterclockwise
and the individual J(n) moving clockwise collide in a lane other than lanes 1 and L. Thus,

P
(
`(n) = v

∣∣∣`(n−1) = u
)
=



1/4 if vI(n) = `− 1 and vk = uk for all k 6= I(n)
1/4 if vI(n) = `+ 1 and vk = uk for all k 6= I(n)
1/4 if vN+J(n) = `− 1 and vk = uk for all k 6= N + J(n)
1/4 if vN+J(n) = `+ 1 and vk = uk for all k 6= N + J(n)

0 otherwise.

(11)

The first condition in the above equation corresponds to the individual I(n) moving
counterclockwise, changing from lane ` to lane ` − 1. The second condition corresponds to
the individual I(n) moving counterclockwise, changing from lane ` to lane ` + 1. The third
condition corresponds to the individual J(n) moving clockwise, changing from lane ` to lane
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`− 1. The fourth condition corresponds to the individual J(n) moving clockwise, changing from
lane ` to lane `+ 1.

6. Self-Organized Configurations

We say that the system is self-organized if there are no more collisions. This can only occur
if each lane contains only individuals moving in the same direction. Note that once the system is
self-organized, it remains self-organized for all later times since there are no more collisions and thus,
no more lane changes by any individual.

Assume the system is self-organized after the nth possible collision time, i.e., for t > tn. Thus, for
any pair i, j, where 1 ≤ i, j ≤ N, the individual i moving counterclockwise is in a different lane than the
individual j moving clockwise, i.e., `(+,n)

i 6= `
(−,n)
j . Equivalently, `(n)i 6= `

(n)
j+N . A more mathematical

description is possible. We define the set

A =
{

v ∈ Ω such that vi 6= vj+N for all 1 ≤ i, j ≤ N
}

. (12)

The system is self-organized for t > tn if and only if `(n) is in A.

7. Probabilities to Reach Self-Organization

For each non-negative integer n and each v in Ω, we define fn(v) to be the probability that the
system eventually self-organizes given that `(n) = v. According to the discussion of the last section,

fn(v) = P
(
`(k) is in A for some k ≥ n

∣∣∣`(n) = v
)

. (13)

Given the periodicity of the pairs of individuals involved in the possible collisions, i.e., I(n +

N2) = I(n) and J(n + N2) = J(n), we have that fn+N2(v) = fn(v) for all non-negative integers n and
all v in Ω. Note also that fn(v) = 1 for all v in A.

Following standard arguments in the analysis of Markov Chains, we can obtain the
following equation

fn(u) = ∑
v∈Ω

P
(
`(n+1) = v

∣∣∣`(n) = u
)

fn+1(v). (14)

8. Self-Organization Occurs with Probability 1

Since Ω has only a finite number of elements, L2N to be precise, and fn+N2(v) = fn(v) for all
non-negative integers n and all v in Ω, the set { fn(v) such that n is a non-negative integer and v is in
Ω} contains, at most, N2L2N different numbers. Thus, since it is finite, this set has a minimum. For
future reference, we summarize this statement in the next observation.

Observation 1. There exists a non-negative integer n, that can be taken to be no greater than N2, and v in Ω
such that fn(v) ≤ fk(u) for any non-negative integer k and u in Ω. For future reference, we call this minimum
value λ, i.e.,

λ = min
k,u

fk(u), (15)

where the minimum is taken over all non-negative integers k and all u in Ω.

Let x, x1, . . . , xr be all real numbers. We say that x is a convex combination of x1, . . . , xr if there
exits non-negative numbers a1, . . . , ar such that a1 + . . . + ar = 1 and x = a1x1 + . . . + arxr. There is
a very simple and well known fact that will be useful to us. Namely, if x is a convex combination of
x1, . . . , xr with positive coefficients (i.e., ai > 0 for all i) and x ≤ xi for all i, then xi = x for all 1 ≤ i ≤ r.
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Note that Equation (14) implies that fn(u) is a convex combination of fn+1(v) with v in
Ω. By restricting the sum on the right hand side of Equation (14) to only those v such that
P
(
`(n+1) = v

∣∣∣`(n) = u
)
> 0, we can apply the fact stated in the previous paragraph to prove the

validity of the following observation.

Observation 2. Let n be a non-negative integer and u in Ω. Assume fn(u) = λ (as defined in Equation (15)).
Let v be also in Ω. If P

(
`(n+1) = v

∣∣∣`(n) = u
)
> 0, then fn+1(v) = λ

Repeated applications of Observation 2 leads to the next Observation.

Observation 3. Let m be a non-negative integer and u(0) in Ω. Assume fm

(
u(0)

)
= λ. Let u(1), . . . , u(s)

be elements in Ω. Assume that P
(
`(m+k+1) = u(k+1)

∣∣∣`(m+k) = u(k)
)

> 0 for all 0 ≤ k < s, then

fm+s

(
u(s)

)
= λ.

For each positive integer n, we define a set of functions Fn defined on Ω that also take values on
Ω. Setting v = Fn(u), these functions are determined by the following rules:

1. If uI(n) 6= uN+J(n) then v = u.

2. If uI(n) = uN+J(n) = 1 then vN+J(n) = 2 and vi = ui for all i 6= N + J(n).

3. If uI(n) = uN+J(n) 6= 1 then vI(n) = uI(n) − 1 and vi = ui for all i 6= I(n).

Note that, if `(n−1) = u and `(n) = Fn(u) , each individual stayed in its lane if there was no
collision at time tn; the J(n) individual moving clockwise moved to lane 2 if there was a collision at
time tn and that collision occurred in lane 1; the I(n) individual moving counterclockwise moved to
lane `− 1 if there was a collision at time tn and that collision occurred in lane ` with ` > 1.

Note that, when we think of the individuals moving around the track, the effect of applying the
functions Fn successively, i.e., for n = 1, 2, . . . is to get any clockwise moving individual out of lane 1
and into lane 2, and to move any counterclockwise moving individual toward lane 1. All these changes
of lanes are possible within our model with positive probability.

Observation 4. P
(
`(n) = Fn(u)

∣∣∣`(n−1) = u
)
> 0 for all positive integers n and all u in Ω.

The validity of this last Observation can be easily verified using the discussion of Section 5 and
the definition of the functions Fn. In fact, we have

P
(
`(n) = Fn(u)

∣∣∣`(n−1) = u
)
=


1 if uI(n) 6= uN+J(n)
1/2 if uI(n) = uN+J(n) = 1
1/2 if uI(n) = uN+J(n) = L
1/4 otherwise.

(16)

Observation 5. Let v = Fn(u). Then, vi ≤ ui and vj+N ≥ uj+N for all 1 ≤ i, j ≤ N, with exactly one of
these inequalities being a strict inequality unless uI(n) 6= uN+J(n).

The validity of this last Observation is immediate from the definition of the functions Fn.

Observation 6. Let r be a non-negative integer. Let v(r) be in Ω and let v(n) be defined recursively by
v(n) = Fn(v(n−1)), where n > r. Assume there exist k ≥ r such that v(k+1) 6= v(k). Then, v(n) 6= v(k) for all
n > k.

This Observation results from Observation 5. For any 1 ≤ i ≤ 2N, the ith component of v(n) with
n ≥ k forms a monotone sequence. Thus, unless it remains constant, it can not return to its initial value
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(with n = k). Since v(k+1) 6= v(k), there exists i0 such that the i0th component of v(k+1) is different than
the i0th component of v(k). Thus, the i0th component of v(n) is different to the i0th component of v(k)

for all n > k.
We recall that the set A was defined in Equation (12). The system is self-organized for t > tn if

and only if `(n) is in A.

Observation 7. Let r be a non-negative integer. Let v(r) be in Ω and let v(n) be defined recursively by
v(n) = Fn(v(n−1)), where n ≥ r. Assume there exist k ≥ r and m ≥ N2 such that v(k+m) = v(k). Then, v(k)

belongs to A.

From Observation 6, v(k+m) = v(k) implies that v(n) = v(k) for all n satisfying k ≤ n ≤ k + m.
This can only happen if v(k)I(n) 6= v(k)N+J(n) for all k < n ≤ k + m. Thus, since I(s + N2) = I(s) and

J(s + N2) = J(s) for all s, and m ≥ N2, we have that in fact v(k)I(n) 6= v(k)N+J(n) for all k < n. However,

this implies that there will no be any more collisions for t > tk if `(k) = v(k) and thus, v(k) belongs to A.

Observation 8. Let r be a non-negative integer. Let v(r) be in Ω and let v(n) be defined recursively by
v(n) = Fn(v(n−1)) for n > r. Then, there exists k ≥ r such that v(k) belongs to A.

The proof of this Observation is as follows. Ω is a finite set. Thus, there exists k ≥ r integer and
m > N2 such that v(k+m) = v(k). Then, from Observation 7, v(k) belongs to A.

Observation 9. Let λ be as defined in Equation (15). Then λ = 1.

Let w be in Ω and r an integer satisfying 0 ≤ r < N2 such that λ = fr(w). Let v(r) = w and let
v(n) be defined recursively by v(n) = Fn(v(n−1)) for all n > r.

Apply Observation 4 with u = v(n−1) to get P
(
`(n) = Fn(v(n))

∣∣∣`(n−1) = v(n−1)
)

> 0 for all
n > r.

Now apply Observation 3, with the role of u(s) in that observation being played by v(r+s) for all
s ≥ 0 and the role of m being played by r to get that fr+s(v(r+s)) = λ for all s ≥ 0. Note that we are
under the hypothesis of that Observation since fr(v(r)) = fr(w) = λ.

From Observation 8 there exists k ≥ r such that v(k) belongs to A. Thus, fm(v(k)) = 1 for all
integers m. However, we have obtained that fr+s(v(r+s)) = λ for all s ≥ 0. Setting s = k− r, we get
fk(v(k)) = λ and thus, the statements of this paragraph imply that λ = 1.

Theorem 1. The system self-organizes with probability 1 no matter the initial conditions. In other words, let v
in Ω. Assume `(0) = v. Then, P

(
`(k) is in A for some k ≥ n

∣∣∣`(0) = v
)
= 1.

The proof is immediate. By definition, f0(v) = P
(
`(k) is in A for some k ≥ n

∣∣∣`(0) = v
)

.
However, λ ≤ f0(v). Since we proved that λ = 1 and probabilities can not exceed 1, the theorem
is proved.

9. Discussion

We have introduced a simple model to study the formation of lanes in crowds of individuals
moving in opposite directions. Our model has proved simple enough to be amenable to
analytical analysis.

The model studied in this article is different in nature from the existing models that can be
found in the literature. This model is the simplest model we could think of that isolates the effect
of pedestrians avoiding collisions in a very simple way. This model, that could be considered a toy
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model, has the usual advantage of simple models: (1) The results obtained are clear, concrete and easy
to interpret, (2) Its simplicity makes it amenable to analytical analysis.

Our model belongs to the class of microscopic models, i.e., the model follows the trajectory of each
individual. Many microscopic models that can be found in the literature consist of a set of coupled
odes. Our model is different. Our model is a Markov Chain. Cellular automata models are somewhat
closer in flavor to our model, but our set up and the rules governing the dynamics of our system are
different to what can be found in the literature.

Our model, as presented and analyzed here, cannot be used to make any deep comparison
with experimental data. The only comparison that can be made is that our model predicts that
self-organization occurs.

There is a trade off, and with simplicity we sometimes lose generality. Most models in the literature
do not lend themselves to the simple analytical analysis presented in this article. Instead, they have
to be solved numerically. However, they are more general in the sense that different phenomena can
be studied by simply changing boundary or initial conditions or parameters. We believe that both
strategies, the study of simple toy models, as in this article, and the study of comprehensive more
complex models, as most of the studies found in the literature, are very valuable and complement
each other.

While several extensions of the work presented here are possible, understanding the expected time
that it takes the system to self-organize is, in the view of the author, both challenging and interesting.
The author plans to pursue this research direction.

We believe this article is a step towards the understanding of self-organization in biological
systems, and we hope the modeling style of this article will be adopted by other researchers to study
this and other self-organization phenomena in biological systems.
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