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Abstract: The building is an indispensable part of human life which provides a place for people to live,
study, work, and engage in various cultural and social activities. People are exposed to earthquakes,
and damaged buildings caused by earthquakes are one of the main threats. It is essential to retrieve
the detailed information of affected buildings after earthquakes. Very high-resolution satellite imagery
plays a key role in retrieving building damage information since it captures imagery quickly and
effectively after the disaster. In this paper, the pretrained Visual Geometry Group (VGG)Net model
was applied for identifying collapsed buildings induced by the 2010 Haiti earthquake using pre-
and post-event remotely sensed space imagery, and the fine-tuned pretrained VGGNet model was
compared with the VGGNet model trained from scratch. The effects of dataset augmentation and
freezing different intermediate layers were also explored. The experimental results demonstrated
that the fine-tuned VGGNet model outperformed the VGGNet model trained from scratch with
increasing overall accuracy (OA) from 83.38% to 85.19% and Kappa from 60.69% to 67.14%. By taking
advantage of dataset augmentation, OA and Kappa went up to 88.83% and 75.33% respectively, and
the collapsed buildings were better recognized with a larger producer accuracy of 86.31%. The present
study showed the potential of using the pretrained Convolutional Neural Network (CNN) model to
identify collapsed buildings caused by earthquakes using very high-resolution satellite imagery.
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1. Introduction

Earthquakes have a consistently high frequency of occurrence and usually lead to secondary
damage such as landslide and tsunami. The building is an essential part of modern human lives, which
is vulnerable to earthquakes. Damaged buildings commonly lead to the main fatalities. Therefore,
it is important to monitor structural health and rapidly assess building damage after earthquakes.
Remote sensing can quickly and accurately capture the surface change of the earth, and the application
of remote sensing for assessing damaged buildings has shown its values for post-event emergency
response and reconstruction. For instance, near real-time satellite mapping played a vital role to
support the government in emergency response of post-disaster relief after the 2015 Gorkha earthquake
in Nepal [1].

With the development of remote sensing technologies, the amount of data obtained after an
earthquake has been gradually increasing. Feature extraction is the key to make use of remotely
sensed data to automatically identify damaged buildings after earthquakes. The common methods for
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image features can be roughly divided into 2 categories (the hand-crafted and learned features) when
dealing with images. Hand-crafted features are typically derived using statistical functions based on
expert knowledge. The commonly applied hand-crafted features are local binary pattern (LBP) [2],
scale-invariant feature transform (SIFT) [3], and histogram of oriented gradients (HOG) [4] features.
Hand-crafted features have achieved remarkable performance on various tasks. For deep learning,
features can be automatically learned by training a deep neural network model. Learnt features are
more effective than hand-crafted features in image classification and object representation [5,6]. The
learnt features from the Convolutional Neural Network (CNN) model showed better performance
than six typical texture features calculated from pre- and post-event satellite data obtained before and
after the 2010 Haiti earthquake [7].

In recent studies, CNNs have been applied in the field of identifying damaged buildings caused by
the earthquake using remote sensing imagery and shown its potential in automatically discriminating
damaged buildings [8]. CNNs were applied for collapse classification and spalling detection in
concrete structures caused by earthquakes [9]. The results demonstrated that the proposed method
achieved accurate and rapid identification of visual contents in a large volume of real-world imagery.
A deep CNN was proposed to estimate the pre-event digital height model (DHM) from the single
satellite image, and the DHM was trained by the post-event satellite imagery and light detection
and ranging (LiDAR) data [10]. The collapsed buildings were successfully identified by analyzing
the difference between pre- and post-event DHMs. The single-short multibit detector (SSD) [11]
based on CNN pre-trained on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
classification-localization (CLS-LOC) dataset was applied to detect building damage using extremely
few training samples [12]. The experiment proved that the pre-training method can effectively increase
various indicators of the model. Deep transfer learning (TL) based on Visual Geometry Group
(VGG)Net was applied for image-based structure damage recognition, and the results revealed the
potential to use deep TL in image-based structural damage recognition [13]. While CNN features are
more effective compared to conventional hand-crafted features, it is also possible to further improve the
performance in damage detection by combing 3-dimensional (3D) point cloud features. The integration
of CNN and 3D point cloud features derived from very high-resolution (VHR) oblique aerial images
significantly improved the model transferability accuracy compared to the accuracy achieved by CNN
features alone [14].

While CNNs have great potential for the task of identifying the damaged buildings, there are
some problems in training a deep CNN model from scratch. First, it requires a large amount of labeled
data, while the number of training data is usually not enough to train the CNN model in the real world.
Second, the training process is often time consuming if there are not extensive computational and
memory resources. Pretrained CNNs have been proposed to function as generic feature extractors.
In the training phase, there is a process, named as fine-tuning to take a network model that has already
been trained for a given task, and make it perform on a new task. Fine-tuning a pretrained CNN is a
promising alternative to training a CNN from scratch, especially when there is a limited dataset, and
fine-tuned pretrained CNNs has an advantage of the speed of convergence. Pretrained CNNs have
been successfully applied in imagery classification as a feature extractor or as a baseline for transfer
learning. The pretrained CaffeNet [15] was fine-tuned to classify the remote sensing scenes solving the
overfitting problem due to the lack of labeled images [16]. A pretrained model was applied to classify
SAR targets with limited labeled data and achieved a superior performance than the methods based
on CNNs [17]. Moreover, pretrained CNNs have been applied in disaster identification and achieved
satisfactory performance. In order to achieve a good recognition performance toward small dataset
tasks, instead of training deep CNN from scratch, deep transfer learning (TL) with a Visual Geometry
Group (VGG) [18] pretrained model is implemented, and feature extractor and fine-tuning as two
TL strategies. The results showed the potential use of deep TL in image-based structural damage
recognition [13].
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CNNs have been widely adopted in image classification, while there are still limited studies
related to the detection of damaged buildings after an earthquake. VGGNet is a popular CNN structure.
It achieved excellent performance on ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
classification and localization tasks, and it can generalize well to a wide range of tasks and datasets [18].
In remote sensing, it is difficult to obtain a large number of labeled samples. VGGNet could be adopted
as the base model which was pretrained using a large amount of labeled data, and then a small
amount of target data was applied to fine-tune the pretrained network for tasks including remotely
sensed imagery classification and target detection [19,20]. In this study, a pretrained VGGNet model
was proposed to recognize collapsed buildings caused by the 2010 Haiti earthquake using pre- and
post-event remotely sensed overhead imagery, and the performance of fine-tuned pretrained VGGNet
model and VGGNet model trained from scratch were compared. Dataset augmentation was also
considered to enlarge the training dataset to improve identification accuracy. The study area and data
sources were described in Section 2. The detailed methodology is illustrated in Section 3. The results
achieved by the applied methods and discussion were shown in Section 4. Section 5 demonstrated
the conclusion.

2. Study Area and Data Sources

The present study focused on the capital Port-au-Prince area, Haiti, which was severely damaged
by the 2010 Haiti earthquake. More than 100,000 houses were heavily destroyed. One of the main
reasons that led to more than 100,000 buildings being heavily destroyed is that these buildings had no
or little consideration for seismic design. The post- and pre-earthquake satellite images were acquired
after the 2010 Haiti earthquake through WorldView-2 on 9 January 2010 and QuickBird on 15 January
2010, respectively. The damaged level of buildings can be divided into five grades based on the
European Macroseismic Scale 1988 (EMS-98) [21]. The building damage inventory was provided by
UNITAR/UNOSAT [22] in which only four building damage levels existed (G 1, 3, 4, and 5). Figure 1
shows the comparison of pre- and post-event remote sensing imagery for each damage level. There is
no difference of G1 buildings between pre- and post-event imagery. Even though G3 buildings have
significant change on the roofs and its surroundings between pre- and post-event, the change is still
difficult to be identified by remote sensing imagery. The debris around G4 can be identified, however,
it is difficult to identify the difference of the G4 roofs. On the contrary, the roofs of G5 buildings are
completely destroyed which indicated that it is feasible to identify the collapsed buildings from the
images. Thus, it is difficult to find any edges and house boundaries using remote sensing imagery even
with VHR 0.5 m. As mentioned above, heavy damage grades such as collapsed buildings are generally
detected, and it remains challenges to identify low damage grades using the overhead imagery [23].
Thus, several low damage grades are usually aggregated as one grade. In this study, buildings with
the damage grade from G1 to G4 were grouped as the non-collapsed category, and buildings with
the damage grade of G5 were labeled as collapsed ones. There are 1789 buildings in the study area,
and 610 buildings were labeled as collapsed ones. Figure 2 displays the distribution of collapsed and
non-collapsed buildings in the study area.



Appl. Sci. 2020, 10, 602 4 of 13

Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 12 

 

structure. It achieved excellent performance on ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) classification and localization tasks, and it can generalize well to a wide range of tasks and 
datasets [18]. In remote sensing, it is difficult to obtain a large number of labeled samples. VGGNet 
could be adopted as the base model which was pretrained using a large amount of labeled data, and 
then a small amount of target data was applied to fine-tune the pretrained network for tasks 
including remotely sensed imagery classification and target detection [19,20]. In this study, a 
pretrained VGGNet model was proposed to recognize collapsed buildings caused by the 2010 Haiti 
earthquake using pre- and post-event remotely sensed overhead imagery, and the performance of 
fine-tuned pretrained VGGNet model and VGGNet model trained from scratch were compared. 
Dataset augmentation was also considered to enlarge the training dataset to improve identification 
accuracy. The study area and data sources were described in Section 2. The detailed methodology is 
illustrated in Section 3. The results achieved by the applied methods and discussion were shown in 
Section 4. Section 5 demonstrated the conclusion. 

2. Study Area and Data Sources  

The present study focused on the capital Port-au-Prince area, Haiti, which was severely 
damaged by the 2010 Haiti earthquake. More than 100,000 houses were heavily destroyed. One of the 
main reasons that led to more than 100,000 buildings being heavily destroyed is that these buildings 
had no or little consideration for seismic design. The post- and pre-earthquake satellite images were 
acquired after the 2010 Haiti earthquake through WorldView-2 on 9 January 2010 and QuickBird on 
15 January 2010, respectively. The damaged level of buildings can be divided into five grades based 
on the European Macroseismic Scale 1988 (EMS-98) [21]. The building damage inventory was 
provided by UNITAR/UNOSAT [22] in which only four building damage levels existed (G 1, 3, 4, 
and 5). Figure 1 shows the comparison of pre- and post-event remote sensing imagery for each 
damage level. There is no difference of G1 buildings between pre- and post-event imagery. Even 
though G3 buildings have significant change on the roofs and its surroundings between pre- and 
post-event, the change is still difficult to be identified by remote sensing imagery. The debris around 
G4 can be identified, however, it is difficult to identify the difference of the G4 roofs. On the contrary, 
the roofs of G5 buildings are completely destroyed which indicated that it is feasible to identify the 
collapsed buildings from the images. Thus, it is difficult to find any edges and house boundaries 
using remote sensing imagery even with VHR 0.5 m. As mentioned above, heavy damage grades 
such as collapsed buildings are generally detected, and it remains challenges to identify low damage 
grades using the overhead imagery [23]. Thus, several low damage grades are usually aggregated as 
one grade. In this study, buildings with the damage grade from G1 to G4 were grouped as the non-
collapsed category, and buildings with the damage grade of G5 were labeled as collapsed ones. There 
are 1789 buildings in the study area, and 610 buildings were labeled as collapsed ones. Figure 2 
displays the distribution of collapsed and non-collapsed buildings in the study area. 

 
Figure 1. Comparison of pre- and post-event remote sensing imagery for each damage level. (G1: 
negligible to slight damage; G3: substantial to heavy damage; G4: very heavy damage; G5: 
destruction.) [24]. 

Figure 1. Comparison of pre- and post-event remote sensing imagery for each damage level.
(G1: negligible to slight damage; G3: substantial to heavy damage; G4: very heavy damage; G5:
destruction.) [24].Appl. Sci. 2019, 9, x FOR PEER REVIEW 4 of 12 

 

 

Figure 2. Distribution of collapsed and non-collapsed buildings in the study area. Red indicates 
collapsed buildings; green indicates non-collapsed buildings. 

3. Methodology  

In this section, the methods for detecting collapsed buildings are described in detail. Firstly, 
building patches were extracted from pre- and post-event satellite images with manually prepared 
building footprints. Then, the building patches with 96 × 96 pixels are functioned as input data to be 
applied to explore the effect of dataset augmentation and the number of fine-tuning layers for the 
performance of applied pretrained VGGNet. Section 3.1 describes the basic concept of CNNs and the 
adopted VGGNet structure. The concept of fine-tuning method and the detailed fine-tuning process 
is demonstrated in Section 3.2. Six incremental fine-tuning methods were applied to study the effect 
of the number of fine-tuning layers for the performance of CNNs. Section 3.3 shows what dataset 
augmentation is and its characters. To assess the performance of applied methods, the evaluation 
metrics are described in Section 3.4. 

3.1. CNNs 

CNNs usually consists of several convolutional, pooling, and fully-connected layers, and it has 
shown its effective performance in analyzing images due to their remarkable performance on 
benchmark datasets such as ImageNet. CNNs have the ability to extract features and classify classes 
with a large number of parameters learned from the training dataset. VGGNet [18] can achieve good 
classification accuracy and it is relatively simpler compared to ResNet [25] and Inception [26]. 
Pretrained VGGNet model is easy to be fine-tuned for different classification tasks, and it can be used 
as the base model instead of training a model from scratch. The process of fine-tuning a pretrained 
CNN can be shown in Figure 3. In this study, the VGGNet-16 model was chosen as the basic 
architecture for detecting collapsed buildings using pre- and post-event VHR remote sensing 
imagery. The VGGNet-16 model contains 16 weight layers including 13 convolutional layers and 3 

Figure 2. Distribution of collapsed and non-collapsed buildings in the study area. Red indicates
collapsed buildings; green indicates non-collapsed buildings.

3. Methodology

In this section, the methods for detecting collapsed buildings are described in detail. Firstly,
building patches were extracted from pre- and post-event satellite images with manually prepared
building footprints. Then, the building patches with 96 × 96 pixels are functioned as input data to
be applied to explore the effect of dataset augmentation and the number of fine-tuning layers for the
performance of applied pretrained VGGNet. Section 3.1 describes the basic concept of CNNs and the
adopted VGGNet structure. The concept of fine-tuning method and the detailed fine-tuning process is
demonstrated in Section 3.2. Six incremental fine-tuning methods were applied to study the effect
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of the number of fine-tuning layers for the performance of CNNs. Section 3.3 shows what dataset
augmentation is and its characters. To assess the performance of applied methods, the evaluation
metrics are described in Section 3.4.

3.1. CNNs

CNNs usually consists of several convolutional, pooling, and fully-connected layers, and it
has shown its effective performance in analyzing images due to their remarkable performance on
benchmark datasets such as ImageNet. CNNs have the ability to extract features and classify classes
with a large number of parameters learned from the training dataset. VGGNet [18] can achieve
good classification accuracy and it is relatively simpler compared to ResNet [25] and Inception [26].
Pretrained VGGNet model is easy to be fine-tuned for different classification tasks, and it can be used as
the base model instead of training a model from scratch. The process of fine-tuning a pretrained CNN
can be shown in Figure 3. In this study, the VGGNet-16 model was chosen as the basic architecture for
detecting collapsed buildings using pre- and post-event VHR remote sensing imagery. The VGGNet-16
model contains 16 weight layers including 13 convolutional layers and 3 fully-connected layers, and
it utilizes small-size convolutional filters (3 × 3) with a fixed stride of 1 for convolutional layers and
2 × 2 pixels with a stride of 2 for max-pooling from the beginning to the end. The dropout probability
is set at 0.5 to reduce overfitting. Each convolutional block contains two or three convolutional layers
and a pooling layer. There are five convolutional blocks, in which the first and second convolutional
blocks have two convolutional layers, and the last three blocks have three convolutional layers.
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3.2. Fine-Tuning with the Pretrained CNN Model

Figure 3 illustrates the process of fine-tuning a pretrained CNN. The VGGNet model was
pretrained with the ImageNet dataset to learn features which were transferrable to further training on
the target dataset. ImageNet dataset consists of 1.2 million images with over 1000 categories which
could be divided into two big groups (animals and objects) and has been applied to several popular
architectures, including VGGNet, ResNet, and Inception. The weights and biases were updated by
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retrained different convolutional blocks using the target dataset, and the output layer was replaced
with two neurons which respond to the binary classification of buildings. The comparison between
incremental fine-tuning was applied to determine the number of fine-tuning layers with optimal
performance. When fine-tuning part of layers, the rest of weights are frozen during training in this
network, meaning that they only participate in the forward propagation of the network and will not
be updated via backpropagation. The learning rate determines how much weights change at each
iteration, and a higher learning rate comes with faster-changing weights. The network was trained with
a small learning-rate, since our dataset is small and very different from the ImageNet. The network
has been trained via 200 epochs with the learning-rate equal to 0.001, momentum 0.9.

3.3. Dataset Augmentation

CNN models are prone to overfitting when the training dataset is limited. To alleviate the problem,
the easiest and most common method is to artificially enlarge the dataset. Dataset augmentation is an
effective way to reduce the effect of overfitting for CNN, which generates more training data by making
minor alterations (flip, translation, and rotation) to an existing dataset. Moreover, the architecture of
CNNs enables extraction of scale, translation, and rotation tolerant features for classifying images or
object categories [9]. The key concept of dataset augmentation is that the method applied to the labeled
data does not change the semantic meaning of the labels while producing additional training data.
When an additional dataset was trained in the network, the network can become invariant to those
deformations and generalizes better for unseen data [27].

3.4. Evaluation Metrics

In this study, overall accuracy (OA), Kappa, producer accuracy (PA), and user accuracy (UA)
were chosen as evaluation metrics. OA can be used as a standard that the proportion of non-collapsed
and collapsed buildings were correctly identified. However, there is no thresholds of OA for image
classification. In addition, it cannot tell the exact identified proportion of non-collapsed and collapsed
buildings, respectively. Kappa has threshold provided by Landis and Koch [28], which values between
0.01 and 0.20 are slight, between 0.21 and 0.40 are fair, between 0.41 and 0.60 are moderate, between
0.61 and 0.80 are substantial, and between 0.81 and 1.00 are almost perfect. PA is the probability that
collapsed or non-collapsed buildings are classified correctly. UA is the probability of predicting that it
is indeed of this type in collapsed or non-collapsed buildings.

4. Experimental Results and Discussion

4.1. Pretrained VGGNet Model for Collapsed Building Detection

For the VGGNet structure, we slightly modified the layers after convolutional layers. The flatten
layer was replaced by a global average pooling layer to reduce the total number of parameters in the
model. Correspondingly, the number of neurons in the dense layer was reduced to 64. As the target is
to classify collapsed and non-collapsed buildings, the softmax layer was replaced by a new layer with
two neurons. The total number of network weights is 1.47 million. More details about VGGNet can be
found in [18]. In this study, pretrained CNN model was fine-tuned using the target dataset and the
model trained from scratch was also obtained using the same dataset. There are 1789 buildings utilized
in the present study, including 716 and 1073 for testing and training, respectively. The results were
shown in Table 1. It is obvious that the pretrained VGGNet model outperformed the VGGNet model
with improvements of overall accuracy (OA) values from 83.38% to 85.19% and Kappa values from
60.69% to 67.14%. Even though VGGNet model achieved a higher value of OA, nearly half-collapsed
buildings were misclassified as non-collapsed ones, which could be partly caused by that the target
training dataset was too small for training VGGNet model since deep CNN requires a large amount
of training dataset to obtain a satisfied classifier. On the contrary, the collapsed and non-collapsed
buildings were relatively well identified by the pretrained VGGNet model, which indicated that
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pretrained CNNs can perform satisfactorily under a limited dataset. The pretrained weights have
been proved to outperform randomly initialized weights [17,29,30]. Neural network models trained
from scratch were compared to pretrained models fine-tuned by target dataset in [31], and the results
indicated that fine-tuned pretrained models achieved better performance, which corresponds to the
results obtained in the present study.

Table 1. Performance of identification of collapsed buildings using Visual Geometry Group (VGG)Net
model and fine-tuned VGGNet model.

Method OA 1 (%) Kappa (%)
Collapsed Non-Collapsed

PA 2 (%) UA 3 (%) PA (%) UA (%)

Pretrained VGGNet 85.19 67.14 81.70 75.29 86.90 90.67
VGGNet 83.38 60.69 59.21 90.96 96.75 81.09

1 Overall accuracy; 2 Producer accuracy; 3 User accuracy.

4.2. Impact of the Dataset Augmentation

In general, the model that fine-tunes the entire network (such as updating all the weights) is prone
to suffer the overfitting problem, especially among the first few layers when the new dataset is not
large enough [32]. Dataset augmentation is a simple but effective technique to reduce the effect of
overfitting and to improve performance. While pretrained CNNs can be applied to reduce the effect of
the problem of a limited dataset, dataset augmentation still has the potential to improve classification
performance, which was verified by Hu et al., 2015 [31]. It is common that the more training dataset
CNNs have, the better results could be obtained. Agrawal et al., 2014 [33] pointed out that fine-tuning
a network pretrained with the ImageNet dataset has a positive effect on a target task, such as image
classification and object detection, and this effect increases when more data is used for fine-tuning.
Thus, there is still potential to improve the classification accuracy by increasing the number of training
dataset, and dataset augmentation can be applied to reduce the effect of overfitting problem in the
fine-tuning procedure.

Figure 4 shows the loss curves and consumed time when dataset augmentation was considered.
The VGGNet model was using pre-trained weights rather than random weights. The loss curve can be
used for supervised learning procedure, if the loss is decreasing, it indicates that the network is learning
effective features. Fine-tuned CNNs has an advantage of the speed of convergence. The loss decreased
sharply along with the number of increasing epochs at the beginning for all dataset augmentation size.
For the 1× and 2× dataset augmentation (× represents the multiple of the data increased by dataset
augmentation), the loss values significantly increased after 60 epochs which implies that overfitting
significantly affects the performance of the fine-tuned pretrained VGGNet model, and slight overfitting
took place for 4× and 8× dataset augmentation. After 160 epochs, both loss curves for 16× and 32×
became flat and vibrates in a small range, which indicated that it is hard to obtain more improvement
with further training based on the current parameter complexity. Figure 4B shows that the training
time increased with the increase of training data. It was noteworthy that the model with 32× obtained
the lowest loss value, however, it needs about twice as much time to perform the model compared
to the model with 16×. Time is precious for planning a rescue after an earthquake. The experiment
demonstrated the 16×method achieved relatively fast training and high accuracy. Therefore, 16× was
chosen as the dataset augmentation coefficient.
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Figure 4. Performance of dataset augmentation. (A) Loss curves. (B) Time consumption for training
the model.

4.3. Effect of Fine-Tuning Different Layers for the Detecting Collapsed Buildings

The comparison between incremental fine-tuning was applied to investigate the impact of the
depth of fine-tuning on the performance of pretrained VGGNet model with dataset enlarged by
16 times (16×). The results were shown in Figure 5. It is obvious that the performance of pretrained
VGGNet model increases with the increased of fine-tuned convolutional blocks. The worst result
was obtained by only fine-tuning the fully-connected layer. One of the reasons is that the dataset for
pre-training and the dataset for fine-tuning are significantly distant. The pretrained VGGNet model
with fine-tuning each layer performed best with 88.83% of OA, 75.33% of Kappa, and 11.18% of total
disagreement values. The results also indicate that, the more layers that are used for backpropagation,
the better the learning process could be obtained.
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4.4. Performance of Pretrained VGGNet for the Detection of Collapsed Buildings

The classification results of collapsed buildings by means of the pretrained VGGNet model with
fine-tuning all layers were shown in Table 2 and Figure 6. The overall accuracy is 88.83%, which is
better than the results achieved in [34]. It can be seen that the applied model performed satisfactorily
for identifying collapsed and non-collapsed buildings with relatively high producer accuracy (PA)
and user accuracy (UA) values, which could be utilized as a guidance for the monitoring of disaster
conditions and the responding emergency rescue. The non-collapsed buildings were better classified
than collapsed buildings, which is partly caused by the effect of imbalanced data in which there were
more non-collapsed buildings than collapsed ones. In addition, there were many steel or wooden
frame buildings with metal sheet roofs, which had no visible deformation or textural change of the
metal sheet roofs on the overhead satellite imagery when the buildings had been collapsed.

Table 2. Results of fine-tuned pretrained VGGNet model with dataset augmentation.

Confusion Matrix
Ground Truth

UA (%)
Building Damage Grade Collapsed Non-Collapsed

Predicted
Collapsed 208 47 81.57

Non-collapsed 33 428 92.84
PA (%) 86.31 90.11
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5. Conclusions

Deeply pretrained CNNs have shown their potential in many fields. In this study, to explore
the capability of pretrained CNN models for classifying collapse and non-collapse buildings induced
by the 2010 Haiti earthquake, a pretrained VGGNet model was applied and a CNN model trained
from scratch was also obtained for comparison. The results demonstrated that the pretrained VGGNet
model performed better than the one learned from scratch to classify collapsed and non-collapsed
buildings. Dataset augmentation was used to reduce the effect of the overfitting problem induced by
the limited dataset. The appropriate dataset augmentation multiple was ensured by comparing the
effect of dataset augmentation for validation loss curves and consumed time. As the available dataset
was far more different from ImageNet, the pretrained VGGNet model fully fine-tuned layers achieved
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the best results with an OA of 88.83% and a Kappa of 75.33%. These findings not only can promote
the use of CNNs that have been fine-tuned but also emphasize that large training sets are important
to effective training and fine-tuning of CNNs. However, it should be pointed out that the building
footprints were manually prepared in the present study, which is a limitation for rapid building
damage mapping. An automatic approach should be considered to extract building footprints from
high-resolution imagery. It is also possible to directly use an existing building database if available.

The advantages of using CNNs to detect damaged buildings include feature learning without
feature engineering, the ability to extract invariant features, often with high accuracy. CNN technology
based on remote sensing images is still in the early stages of detecting damaged buildings since the
image features are complex and limited training dataset after earthquakes. There are some other
factors that affect the accuracy of classification. For instance, the buildings on remote sensing imagery
might be obscured by other objects such as trees, and there might be no visible distortion of collapsed
buildings with metal roofs. Therefore, some additional datasets could be applied to improve the
classification accuracy if it is available, such as airborne oblique dataset which can reveal cracks of a
building facade and LiDAR data which can acquire failure geometrics of earthquake-affected buildings.
In addition, it is still interesting to explore how to combine CNNs with conventional methods to take
full advantage of existing techniques in order to improve the quality of derived building-damage
information from remotely sensed imagery.
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