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Abstract: For model verification and validation (V & V) in computational mechanics, a hypothesis
test for the validity check (HTVC) is useful, in particular, with a limited number of experimental
data. However, HTVC does not address how type I and II errors can be reduced when additional
resources for sampling become available. For the validation of computational models of safety-related
and mission-critical systems, it is challenging to design experiments so that type II error is reduced
while maintaining type I error at an acceptable level. To address the challenge, this paper proposes
a new method to design validation experiments, response-adaptive experiment design (RAED).
The RAED method adaptively selects the next experimental condition from among candidates of
various operating conditions (experimental settings). RAED consists of six key steps: (1) define
experimental conditions, (2) obtain experimental data, (3) calculate u-values, (4) compute the area
metric, (5) select the next experimental condition, and (6) obtain additional experimental datum.
To demonstrate the effectiveness of the RAED method, a case study of a numerical example is
shown. It is demonstrated that additional experimental data obtained through the RAED method
can reduce type II error in hypothesis testing and increase the probability of rejecting an invalid
computational model.
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1. Introduction

Computer simulations are widely used to predict the performance of engineered products [1,2].
It is generally adequate to ensure the accuracy of computer simulation results. To address the
need, the concept of verification and validation (V & V) was studied. Several decades ago, the
software development community developed V & V guidelines for software quality assurance (SQA).
The Institute of Electrical and Electronic Engineers (IEEE) adopted the V & V guidelines for SQA [3].
However, the V & V guidelines were not sufficient to cover the nuances of computational physics and
engineering. For example, the V & V guidelines did not consider the details of first principle analyses
for computational physics and engineering. To fill the gap, application-specific V & V guidelines
were developed.

The American Society of Mechanical Engineers (ASME) developed a V & V guideline for validation
of computational models in solid mechanics. According to the ASME guideline published in 2006 [4],
the goal of validation is “to determine the predictive capability of a computational model for tis
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intended use”. As presented in Figure 1, model validation in computational mechanics is defined as
a series of activities that aim to maximize the agreement between responses from simulations and
experiments [5,6]. In the activity of validity check, it is desirable to prepare a set of simulation and
experimental responses that incorporate various uncertainties in product geometry, material properties,
and environmental and operational loading. For physical testing in the validation domain, a sufficient
number of test samples; ideally, an infinite number of test samples should be prepared. Then, the
agreement between the computational and experimental responses can be evaluated without any
uncertainty. To this end, a mean-based comparison approach can be used [7]. The mean of experimental
responses is compared to the simulation response. If two responses coincide, it is concluded that the
computational model is valid. However, in reality, available resources (e.g., time, budget, facilities)
for actual testing are always limited. The mean-based comparison approach can provide an incorrect
conclusion due to epistemic uncertainty that is attributed to a limited number of test samples.
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Figure 1. Validation activities for computational models in mechanics [8].

Another approach based on Bayes’ theorem was developed to determine the validity of a
computational model with a limited number of samples [9,10]. The Bayesian approach was shown
to be effective for a particular type of problems, e.g., thermal challenge problem [11]. However, the
Bayesian approach is often limited in that initial lack of information due to limited samples should be
presented by prior distributions. The prior distributions will deviate depending on the user’s domain
knowledge and engineering decisions. Therefore, the Bayesian approach cannot be an ideal solution to
determine the validity of a computational model with limited samples.

Recently, a hypothesis testing-based approach was proposed as an alternative for validity check
in model validation [12]. The hypothesis testing-based approach does not require prior distributions.
The epistemic uncertainty is represented in the form of type I error in hypothesis testing, which is the
probability of incorrectly rejecting a valid computational model (e.g., a false positive). The second
type of error, type II error, refers to the probability of improperly accepting an invalid computational
model (e.g., a false negative). Type I and II errors can be reduced if additional samples are tested.
In safety-related and mission-critical systems, type II errors should be considered more serious than
type I errors, as accepting an invalid model can have significant consequences. However, it is not
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feasible to quantify type II errors without knowing the mother distribution of the experiments. Thus,
to minimize type II errors, test procedures should be devised in such a way that type II errors are
unlikely to occur.

This paper proposes a new method for design of validation experiments in computational
mechanics called response-adaptive experiment design (RAED). RAED is devised to reduce type
II errors. When the number of experimental data is limited, RAED allocates available resources
in a systematic manner within the validation domain so that the possibility of rejecting an invalid
computational model is increased. It should be noted that the terms and concepts of validation are
numerous and complex. In different research communities such as machine learning (ML), cross
validation is a generally-accepted model validation technique. It assesses how the results of data-driven
models such as multi-class support vector machines (MC-SVM) will generalize to an independent data
set [13]. However, cross validation techniques do not provide the user with decisions (i.e., accept or
reject) whether the data-driven models after training should be accepted for intended use or not. It is
the user’s responsibility to accept trained data-driven models for intended use or not. To address this
challenge, the RAED method in the paper is proposed for the physics-based models in computational
mechanics that are typically governed by Newton’s laws of motion, and laws of thermodynamics and
fluid dynamics.

The remainder of this paper is organized as follows. Section 2 provides an overview of hypothesis
testing for the validity check. Section 3 explains the methodology of the proposed RAED method.
In Section 4, the effectiveness of RAED for reducing type II error is demonstrated through a numerical
example. Finally, Section 5 offers conclusions and discusses future work.

2. Hypothesis Test for Validity Check

It is desirable to employ a sufficient amount of experimental data for a validity check. However,
in the design of engineered products, it is extremely challenging to increase the sample size for the
validity check due to high cost and lengthy required test time. Validity check with limited experimental
data raises two issues. The first issue is how to incorporate the evidence of limited experimental data
collected from different experimental settings (testing conditions) into a single measure that quantifies
overall mismatch. The second issue is how to determine whether a particular value of the single
measure is acceptable for the validity check, while considering the uncertainty in the single measure
due to a small sample size of experiments. A hypothesis testing-based approach called “hypothesis
test for validity check” (HTVC) [12] was devised to address the issues in the field.

In HTVC, the null hypothesis (H0) is the claim that the computational model is valid, while the
alternative hypothesis (Ha) is the claim that the computational model is not valid. H0 can be rejected
only if a metric for the validity check exceeds a critical value. Otherwise, H0 cannot be rejected. HTVC
employs the u-pooling method for the validity check. One advantage of the u-pooling method is that
it can integrate evidence collected from all experimental data under various experimental settings
(e.g., environmental loading and boundary conditions) into a single mismatch metric. In the u-pooling
method, the u-value (ui) obtained from the ith experimental setting can be obtained by transforming
every datum (xi) with the prediction distribution (Fi) of a computational response.

ui = Fi(xi) (1)

With the assumption that the datum (xi) is distributed in accordance with the corresponding
prediction distribution (Fi), the u-value (ui) follows a uniform distribution of [0, 1]. This is
called the probability integral transform theorem in statistics [14]. All observations from different
experimental settings can be transformed into a single universal probability scale. The u-value can be
back-transformed through a suitable distribution function G.

yi = G−1(ui) (2)
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The appropriate distribution function of G was found in [15]. When a uniform distribution is
chosen for G, cumulative distribution functions (CDF) of yi can be obtained with responses from
experiments. The mismatch between the prediction distribution and the empirical distribution can
be quantified by integrating the area between the CDF of the uniform distribution (Funi(u)) and the
empirical CDF (Fu(u)) of u-values corresponding to the experimental data.

U = area(Funi, Fu) =

∫ 1

0

∣∣∣Funi(u) − Fu(u)
∣∣∣du, 0 ≤ U ≤ 0.5 (3)

where U is the area metric. As the similarity between the predicted CDF and the empirical CDF is
increased, the calculated area metric is decreased. For example, if the model is valid and enough
experimental data exists, the area metric gets close to zero.

If infinite experimental data are used for the validity check, we can reject the null hypothesis
unless the area metric is zero. It is because epistemic uncertainty in the area metric due to limited
experimental data can be eliminated theoretically. However, in practice, uncertainty exists in the
area metric due to limited sampling, although the model is valid (i.e., predicted and experimental
results follow an identical distribution). As shown in Figure 2, uncertainty in the area metric can be
characterized for a given size (n) of experimental data. The minimum value of the area metric gets
close to zero as the number of experimental data increases infinitely [12]. The statistical moments of
the probability density functions (PDFs) of the area metric in in Figure 2 are summarized in Table 1.
Details on how to construct the PDFs in Figure 2 are explained in [12].
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Figure 2. Probability density functions (PDFs) of the area metric according to experimental data sizes.

Table 1. Statistical moments of the PDFs of the area metric (all rows follow a Pearson’s type I distribution).

n Mean Standard Deviation Skewness Kurtosis

6 0.1296 0.0535 1.1326 4.2585
12 0.0914 0.0389 1.2337 4.7938
18 0.0741 0.0319 1.2177 4.6966
30 0.0569 0.0247 1.4871 6.3728
60 0.0407 0.0178 1.3245 5.3782

HTVC evaluates the validity of the computational model using an upper-tailed test with a
predetermined rejection region. The null hypothesis is the claim that the computational model is valid,
while the alternative hypothesis is the claim that the computational model is not valid.

U > Dn(α) (4)

where Dn(α) is the critical value of the area metric; α is the significance level for a given size (n)
of experimental data. For example, D18(0.05) is 0.137, when the significance level is set to 0.05.
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The significance level is referred to as type I error (i.e., the probability that a predicted model is rejected
although it is valid). The type I error can be calculated.

Type I error =
∫
∞

Dn(α)
fu,n(x)dx (5)

where f u,n(x) is the PDF of the area metric for a given size (n) of experimental data. If the calculated
area metric falls in the rejection region, the null hypothesis should be rejected. Otherwise, the null
hypothesis should not be rejected since it is still plausible.

In the model validation, type II error can be defined as the risk (probability) that a computational
model is not rejected when it is invalid. In [12], HTVC does not consider type II error. The type II
error needs to be considered for validating computational models of safety-related and mission-critical
systems. As a simple approach, we can consider employing higher type I error (significance level)
since an increase of type I error results in a decrease of type II error. However, doing so causes an
increase in the validation cost (i.e., more experiments are required for the validity check). To this end,
this study attempted to devise an effective experiment design method that can reduce type II error
while maintaining type I error at an acceptable level. To the best of our knowledge, this study is the
first attempt to address type II errors in validity check for model validation.

The focus of this paper is not on data-driven models but on physics-based models in computational
mechanics. The physics-based models are typically governed by Newton’s laws of motion and laws of
thermodynamics and fluid dynamics. Examples are to predict the friction of rubber materials and
fatigue crack of solder joints in engineered products. The physical testing of the engineered products
is very costly, while a couple of samples are available in the early stage of product development. It
should be noted that the number of samples used in validating physics-based models is very small
(typically less than ten samples) compared to the number of samples in validating data-driven models
(maybe more than hundreds or thousands of samples).

In adaptive control of nonlinear systems, the acquisition of a number of additional data online
may be feasible. For example, Mohammadi et al. [16] used a radial basis function neural networks
(RBFNN)-based controller to approximate the functions of uncertain nonlinear systems. The focus
was on how to deal with uncertainty in model parameters. In [17], an adaptive neural network
(NN)-based observer was implemented to nonlinear systems subjected to disturbances. The meaning
of “adaptive” in [16,17] can be identical to the meaning of “adaptive” in this paper. However, there is a
difference between them. The RAED method proposed in this paper can be used when the number of
experimental samples are very limited (e.g., less than ten samples), which is different from adaptive
controls that may allow the acquisition of a number of additional data online. It is worth noting that
the validation of data-driven models in the AI research community is out of the scope of this paper.

3. Response-Adaptive Experiment Design

In this section, a novel response-adaptive experiment design (RAED) method is presented. RAED
is designed to help engineers decide better experimental conditions among many candidates to inform
the next experiment. RAED allows test datum to be obtained for a specifically selected condition to
help reduce type II error without increasing type I error rather than spending time gathering data at
irrelevant experimental conditions.

3.1. Procedure of Experimental Design

The relationship between the observed response (y) and the predicted response (ψ) of a
computational model can be defined.

y(ζ) + e = ψ(ζ, β) + δ, ζ ∈ Ωs, β ∈ Ωl (6)
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where ζ is the vector of operation variables {ζ1, ζ2, . . . , ζs} (e.g., operational conditions and
environmental temperature); β is the vector of model variables {β1, β2, . . . , βl}; s and l are the
number of the operation and model variables, respectively; and e and δ are the measurement and
modeling errors, respectively. In HTVC, e and δ are considered to be encompassed in y and ψ, unless
the true functions of e and δ are quantified explicitly [18]. The effect of bad and missing data on
classification problems was discussed in [13].

For the model validation, additional experimental data in a validation domain are required.
Experimental conditions are typically designed with model variables and operation variables in a
validation domain. Thus, the vector of design variables (θ) can be defined.

θ =
{
β1, β2, . . . , βv, ζ1, ζ2, . . . , ζw

}
,θ ∈ Ω(v+w), v ≤ l, w ≤ s (7)

The procedure for RAED consists of six steps as shown in Figure 3.
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Step 1: Determine design variables and levels for factorial design. The level of individual design
variables can be determined based on characteristics of the predicted model (e.g., linearity, nonlinearity,
statistical variance), characteristics of design variables (e.g., continuous variable, discrete variable,
boundary of the variables), the number of available test specimens, and expert opinions. Then, define
experimental conditions based on the selected factorial design (e.g., full factorial and fractional factorial).
The total number of experimental conditions (N) is calculated based on the number of design variables,
levels of design variables, and the selected factorial design. The vector of experimental conditions can
be defined as e = {e1, e2, . . . , eN}. Individual experimental conditions are the combination of various
environmental and operational conditions.

Step 2: Obtain a single experimental datum (yi) at individual experimental conditions. i expresses
the order of the test data. j is set to be one. Then, N number of experimental data is obtained. The sets
of an experimental datum for given experimental conditions are {y1 | e1}, {y2 | e2}, . . . , {yN | eN}.

Step 3: Calculate u-values by using Equation (1) for experimental data. A list of a set that combines
the u-value with the experimental datum for the given test condition is {u1, y1| e1}, {u2, y2| e2}, . . . , {uN,
yN| eN}.
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Step 4: Calculate the area metrics (U) of each set in Step 3 using all u-values except ui. For example,
U1 is calculated using {u2, u3, . . . , uN} and UN is calculated using {u1, u2, . . . , uN−1}. The sets of the
area metric, u-value, experimental datum and test condition are {U1, u1, y1| e1}, {U2, u2, y2| e2}, . . . , {UN,
uN, yN| eN}.

Step 5: Make groups of U values that have an identical experimental condition and calculate
the mean of the U values for each group. The sets of means of U values and test conditions are {U1|

e1}, {U2| e2}, . . . , {UN | eN}. Find the set having the smallest U value mean and define the (N + j)th
experimental condition, es(N+j), as the same experimental condition of the selected set. The subscript s
indicates the number of the experimental condition, which is between 1 and N. If untested specimens
remain, go to Step 6. Otherwise, terminate.

Step 6: Obtain (N + j)th experimental datum at the experimental condition, es(N+j). The sets of an
experimental datum for each given experimental condition are {y1 | e1}, {y2 | e2}, . . . , {yi | eN}, {yN+1 |

es(N+j)}. Set j = j + 1. Go to Step 3.
To present the procedures step by step, an example is shown in Figure 4. In this example, a

two-level factorial design with two design variables is shown. However, any variation of the design
can be made.
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3.2. Experimental Design for Reduction of Type II Error

As explained in Section 3.1, RAED selects the next experimental setting as the condition where
the calculated area metric (U) is smaller than other conditions. The lower area metric indicates that
the predicted PDF is not closer to the mother distribution of the experimental data. In this section,
with deductive reasoning, the relation between the low area metric and the reduction of type II
error is studied. The type II errors of two hypothetical experimental conditions are compared. It is
worth noting that any variation of the experimental conditions can be made. The use of a particular
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set of experimental conditions does not limit the applicability of the proposed RAED method to
extended problems.

Experimental condition I: The mother distribution of the experimental results (i.e., performance
of interest (PoI)) is a standard normal distribution (f 0 ~ Normal (0, 1)) and the PDF of the predicted
results is a normal distribution (e.g., f 1 ~ Normal (0.56, 1)), as shown in Figure 5. A predefined
number of experimental data (e.g., eighteen) are randomly obtained from the f 0 to calculate the area
metric. The number of experimental data is determined by considering the additional experimental
resources available.
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Experimental condition II: The mother distribution of the experimental results is also a standard
normal distribution (f 0). However, the PDF of the predicted results is a normal distribution (e.g., f 2 ~
Normal (1.05, 1)), as shown in Figure 5. A predefined number of experimental data (e.g., eighteen) are
randomly obtained from the f 0 to calculate the area metric.

It is certain that the predicted model, f 2, is more invalid and has a lower area metric than the
predicted model, f 1, when they are compared with the mother distribution of the experimental results,
f 0. The type II error of each experimental condition can be calculated using the PDF of the area metric
(f u,n(x)) and the following equation. The null hypothesis is the claim that the computational model is
valid, while the alternative hypothesis is the claim that the computational model is not valid.

Type II error =
∫ Dn(α)

0
fu,n(x)dx (8)

For the quantification, it is assumed that type I error is 0.1 (the significant level in Equation (3)).
Figure 6 shows the PDF of the area metric of experimental conditions I and II. The procedure for
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Step 1: Determine a virtual sampling size (k) and the experimental data size (n). Here, k and n are
5000 and 18, respectively.

Step 2: Generate samples (x1, x2, . . . , xn) randomly from the mother distribution of the
experimental data.

Step 3: Calculate the CDF values (u1, u2, . . . , un) corresponding to yi using Equation (1).
Step 4: Calculate the area metric (U) using Equation (2).
Step 5: Repeat Steps 2 to 4, k times to generate random data (U1, U2, . . . , Uk). Then construct the

empirical PDF of area metric (f u,n(x)) using U values. In this paper, the Pearson system [19] is used to
construct empirical PDFs of the U values.

Table 2 shows the calculated type II error of experimental conditions I and II. The type II error of
experimental condition II is lower than that of experimental condition I. The calculated results show
that type II error can be minimized if more test data are sampled at the experimental condition where
the difference between the PDF of predicted results and the mother distribution of the experimental
data is larger than other conditions.

Table 2. Calculated type II errors.

Cases Type II Error

Condition I 0.35
Condition II 0.00

The difficulty in designing experiments for model validation is that we do not have any idea
about the mother distribution of the experimental data. Thus, RAED employs an adaptive process to
determine the next experimental condition based on pre-obtained experimental results.

4. Case Study

In real engineering applications, it is almost impossible to know the mother distribution of the
experimental data since this would require an infinite number of experimental samples. To overcome
the challenge, simulation samples generated by numerical models are often used. For instance, the
use of numerical models is considered as a natural way in the study of phenomena arising in applied
sciences [20,21] such as the diffusion and transport of pollutants in the atmosphere [22], the dissipation
of nonlinear waves [23,24], and the growth models in ecology and oncology. In this case study, a
numerical model is employed to quantify type II error and to show the effectiveness of the proposed
RAED method. The numerical model (ψ) is devised to have a generic exponential form with one
random variable (β), one operating variable (ζ), and two model parameters (p and q).

ψ = (p × β) × ζq (9)

The exponential form well represents various engineering applications, such as friction of a
rubber material [25], fatigue of a solder joint [26], and transient thermal conduction [27]. For example,
the friction model (µ) of a rubber material [25] is a function of contact pressure (ϕ) with two model
parameters: (1) friction coefficient µ0 at a reference contact pressure ϕref and (2) pressure exponential
parameter υ0. Two model parameters can be figured out with experimental data obtained at different
operating conditions of contact pressure.

µ = µ0 ×

(
ϕ

ϕre f

)−ν0

(10)

To demonstrate the proposed RAED method, we assumed that the predicted model and the
mother function of the experimental results have different parameter values.
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Predicted model:
ψ = (p × β) × ζq; p = 1.0, q = 1.0 (11)

Mother function of experimental results:

y = (p × β) × ζq; p = 0.896, q = 1.1 (12)

where β is the random variable that follows a normal distribution with the mean of 1.0 and the
standard deviation of 0.5; ζ is the operating variable that is assumed to be between three and seven
(i.e., 3 ≤ ζ ≤ 7). The confidence intervals of the mother function of the experiments (y) and the predicted
model (ψ) are in the validation domain, as depicted in Figure 7. The predicted model represents the
experimental results when ζ is set to three. In contrast, the difference between y and ψ stays larger as
ζ is increased to seven. With an assumption of having eighteen samples for model validation, three
different experimental designs were considered to show the benefits of RAED, including:
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Experimental Design A: Consider three levels of different operating conditions (ζ = 3, 5 and 7)
and obtain six data points at each level.

Experimental Design B: Obtain eighteen data points at operating conditions evenly distributed
between 3 ≤ ζ ≤ 7.

Experimental Design C: Consider three levels of different operating conditions (ζ = 3, 5 and 7)
and obtain eighteen data points using RAED.

The PDFs of the area metric (U) were constructed according to the three designs by following
the steps outlined in Section 3.1. It was assumed that the virtual sampling size (k) was 10,000 and the
number of sampled data (i.e., the number of test specimens) was eighteen. The PDFs of individual
area metrics are shown in Figure 8. Experimental data were sampled based on the three designs A, B
and C. It was confirmed that the fu,18 of Design C shifted further to the right than the distributions of
Designs A and B. Table 3 summarizes the statistical information and type II error of the PDFs. It was
confirmed that type II error of Design C was lower than the error of the other designs. A histogram
in Figure 9 shows the number of data obtained at each operating condition in the case of Design C.
A single experimental datum was first obtained at each operating condition as explained in Step 2 in
Section 3.1. For example, one datum was obtained at individual operating conditions, ζ = 3, 5 and 7.
Next, the remaining data of 15 were obtained one by one at operating conditions determined by Steps 3,
4, and 5. Since at least two data were obtained at identical operating conditions, the maximum number
of sampled data at individual operating conditions was 16 as shown in Figure 9. It was confirmed that
more samples were obtained at the condition where the operating condition (ζ) was seven. At that
condition, the difference between the predicted and experimental results was larger than that observed
for other operating conditions (ζ was three and five).
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Table 3. Statistical information of the f u,18 for the three experimental designs.

Experimental
Design Mean Standard

Deviation Skewness Kurtosis Pearson
System Type

Type II
Error

Design A 0.2190 0.0542 −0.0566 2.8346 Type I 0.068
Design B 0.2390 0.0562 −0.1761 2.8332 Type I 0.040
Design C 0.3206 0.0675 −1.0643 4.6404 Type I 0.016
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5. Conclusions

This paper presented a new method to design validation experiments called response-adaptive
experiment design (RAED) for computational models in mechanics. The RAED method adaptively
selects the next experimental condition from among candidates of various operating conditions
(experimental settings). RAED consists of six key steps: (1) define experimental conditions, (2) obtain
experimental data, (3) calculate u-values, (4) compute the area metric, (5) select the next experimental
condition, and (6) obtain additional experimental datum. To demonstrate the effectiveness of the
RAED method, a case study of a numerical example was shown. The case study accounted for real
engineering applications in the field. It was shown that RAED can effectively reduce type II error (the
possibility of accepting an invalid computational model) during model validation. RAED can also help
to avoid unnecessary experiments for model validation by allocating validation resources effectively.

The existing study based on HTVC only considered type I error (or significance level) to
evaluate whether a computational model is valid. The HTVC-based approach does not provide
any way to reduce type II error. Different from the HTVC-based approach, this study proposed a
response-adaptive experiment design (RAED) approach for model validation with limited experimental
samples. The RAED-based approach can reduce type II error while maintaining type I error at
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an acceptable level, especially for the validation of computational models of safety-related and
mission-critical systems.

Future works are suggested in two folds. First, the adequacy of the proposed method will
be evaluated after implementing to a real system. This paper employed a numerical example to
demonstrate the effectiveness of the proposed method. Second, further improvement of RAED will be
made to account for the effect of a modeling errors on RAED. Experimental data can be collected at the
condition where the prediction capability of computational models is dependent on modeling errors.
The modeling errors are another source for failing model validation, which was ignored in this study.
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