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Abstract: Graphics processing unit (GPU)-based computing for climate system models is a
longstanding research area of interest. The rapid radiative transfer model for general circulation
models (RRTMG), a popular atmospheric radiative transfer model, can calculate atmospheric
radiative fluxes and heating rates. However, the RRTMG has a high calculation time, so it is
urgent to study its GPU-based efficient acceleration algorithm to enable large-scale and long-term
climatic simulations. To improve the calculative efficiency of radiation transfer, this paper proposes
a GPU-based acceleration algorithm for the RRTMG longwave radiation scheme (RRTMG_LW).
The algorithm concept is accelerating the RRTMG_LW in the g-point dimension. After implementing
the algorithm in CUDA Fortran, the G-RRTMG_LW was developed. The experimental results
indicated that the algorithm was effective. In the case without I/O transfer, the G-RRTMG_LW on
one K40 GPU obtained a speedup of 30.98× over the baseline performance on one single Intel Xeon
E5-2680 CPU core. When compared to its counterpart running on 10 CPU cores of an Intel Xeon
E5-2680 v2, the G-RRTMG_LW on one K20 GPU in the case without I/O transfer achieved a speedup
of 2.35×.

Keywords: high performance computing; graphics processing unit; compute unified device
architecture; radiation transfer

1. Introduction

The radiative process, one of the important atmospheric physics processes, is often used for
calculating atmospheric radiative fluxes and heating rates [1]. To simulate the radiative process,
several radiative transfer models were developed, such as the line-by-line radiative transfer model
(LBLRTM) [2], and the rapid radiative transfer model (RRTM) [3]. The RRTM that is a validated model
computing longwave and shortwave radiative fluxes and heating rates, uses the correlated-k method to
provide the required accuracy and computing efficiency [4], but it still demands enormous computing
resources for long-term climatic simulation. To address this issue, as an accelerated version of RRTM,
the rapid radiative transfer model for general circulation models (RRTMG) provides improved
efficiency with minimal loss of accuracy for atmospheric general circulation models (GCMs) [5].
As a coupled climate system model comprising eight separate component models and one central
coupler, the Chinese Academy of Sciences–Earth System Model (CAS-ESM) [6,7] was developed by
the Institute of Atmospheric Physics (IAP) of Chinese Academy of Sciences (CAS). As the atmospheric
component model of the CAS-ESM, the IAP Atmospheric General Circulation Model Version 4.0
(IAP AGCM4.0) [8,9] used the RRTMG as its radiative parameterization scheme.
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Radiative transfer is relatively time-consuming [10,11]. The RRTMG improves the computing
efficiency of radiative transfer, but it is still so computationally expensive that it cannot be performed
with shorter time steps or finer grid resolutions in operational models [12]. To greatly improve the
computational performance, it is beneficial to use high-performance computing (HPC) technology to
accelerate the RRTMG.

At present, HPC is widely employed in earth climate system models [13–15]. With the
rapid development of HPC technology, due to the features of multithreaded many-core processor,
high parallelism, high memory bandwidth, and low cost, the modern graphics processing unit (GPU)
has substantially outpaced its central processing unit (CPU) counterparts in dealing with data- and
computing-intensive problems [16–19]. Currently, increasing numbers of atmospheric applications
were accelerated by the GPUs [20,21]. For example, the WSM5 microphysics scheme from the Weather
Research and Forecasting (WRF) model obtained a 206× speedup on a GPU [22].

In view of the booming GPU capability, our previous study used a GPU for accelerating
the RRTMG longwave radiation scheme (RRTMG_LW). In this study, the GPU-based acceleration
algorithms with one-dimensional (1D) and two-dimensional (2D) domain decompositions for the
RRTMG_LW were proposed [23]. However, the RRTMG_LW did not achieve an excellent speedup on
a GPU. Therefore, the present paper focuses on the implementation of better GPU-based accelerating
methods for the RRTMG_LW. To further accelerate the RRTMG_LW in the CAS-ESM, a GPU-based
acceleration algorithm in the g-point dimension is proposed. The proposed algorithm enables
massively parallel calculation of the RRTMG_LW in the g-point dimension. Then, an optimized version
of the RRTMG_LW is built by successfully adopting GPU technology, resulting in G-RRTMG_LW.
The experimental results demonstrated that the G-RRTMG_LW on one K40 GPU obtained a
30.98× speedup.

The main contributions of this study are as follows:

(1) To further accelerate the RRTMG_LW with a massively parallel computing technology,
a GPU-based accelerating algorithm in the g-point dimension is proposed. The aim is to explore
the parallelization of the RRTMG_LW in the g-point dimension. The proposed algorithm adapts
well to the advances in multi-threading computing technology of GPUs and can be generalized
to accelerate the RRTMG shortwave radiation scheme (RRTMG_SW).

(2) The G-RRTMG_LW was implemented in CUDA (NVIDIA’s Compute Unified Device
Architecture) Fortran and shows excellent computational capability. To some extent, the more
efficient computation of the G-RRTMG_LW supports real-time computing of the CAS-ESM.
Moreover, the heterogeneous computing of the CAS-ESM is implemented.

The remainder of this paper is organized as follows. Section 2 presents representative approaches
that aim at improving the computational efficiency of physical parameterization schemes. Section 3
introduces the RRTMG_LW model and GPU environment. Section 4 details the CUDA-based parallel
algorithm in the g-point dimension for the RRTMG_LW. Section 5 describes the parallelization
implementation of the G-RRTMG_LW. Section 6 evaluates the performance of the G-RRTMG_LW in
terms of runtime efficiency and speedup, and discusses some of the problems arising in the experiment.
The last section concludes the paper with a summary and proposal for future work.

2. Related Work

There were many successful attempts at using GPUs to accelerate physical parameterization
schemes and climatic system models. This section describes the most salient work along this direction.

The WRF Goddard shortwave radiance was accelerated on GPUs using CUDA C [24]. Via double
precision arithmetic and with data I/O, the shortwave radiance obtained a 116× speedup on two
NVIDIA GTX 590 s [25]. The WRF five-layer thermal diffusion scheme was accelerated using CUDA
C, and a 311× speedup was obtained on one Tesla K40 GPU [26]. The WRF Single Moment 6-class
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microphysics scheme was also accelerated using CUDA C, and obtained a 216× speedup on one Tesla
K40 GPU [27].

The WRF long-wave RRTM code was ported to GPUs using CUDA Fortran [28]. The RRTM on
Tesla C1060 GPUs attained a 10× speedup [29]. The RRTM longwave radiation scheme (RRTM_LW)
on the GTX480 obtained a 27.6× speedup compared with the baseline wall-clock time [1]. The CUDA
Fortran version of the RRTM_LW in the GRAPES_Meso model was developed. It adopted some
optimization methods for enhancing the computational efficiency, and obtained a 14.3× speedup [10].

The Fortran code of the WRF RRTMG_LW was rewritten in the C programming language, and then
its GPU parallelization was implemented using CUDA C. With I/O transfer, the RRTMG_LW achieved
a 123× speedup on one Tesla K40 GPU [30]. The Fortran code of the RRTMG_SW was also rewritten in
the C programming language. Furthermore, the RRTMG_SW achieved a 202× speedup on one Tesla
K40 GPU compared with its single-threaded Fortran counterpart running on Intel Xeon E5-2603 [31].

In a significantly different approach from the previous work, this study first proposes a new and
detailed parallel algorithm in the g-point dimension for the CAS-ESM RRTMG_LW. Rewriting the
original Fortran code of the RRTMG_LW would take considerable time, so CUDA Fortran rather
than CUDA C was adopted in the parallelization implementation. The major concerns addressed by
the proposed algorithm include the following: (a) runtime efficiency, and (b) common processes and
technologies of GPU parallelization.

3. Model Description and GPU Overview

3.1. RRTMG_LW Model

As a critical process affecting our planet’s climate, radiative transfer is the transport of energy by
electromagnetic waves through a gas. Atmospheric and Environmental Research (AER) developed
the RRTM and RRTMG. Their calculations exhibit an effective accuracy equivalent to that provided
by the LBLRTM, but their computational cost is lower. In view of these advantages, the RRTM or
RRTMG was adopted as the radiative transfer schemes of many climate models, such as the WRF and
GRAPES [32].

The RRTM uses the correlated k-distribution method to calculate the broad-band radiative fluxes.
In this method, the radiative spectrum is first divided into bands. Because of the rapid variation of
absorption lines within the bands of gas molecules, the values of the absorption intensities within each
band are further binned into a cumulative distribution function of the intensities. This distribution
function is then discretized by using g intervals for integration within each band to obtain the band
radiative fluxes, which are further integrated across the bands to obtain the total radiative flux
to calculate atmospheric radiative heating or cooling. The g points are the discretized absorption
intensities within each band.

The RRTM_LW is the RRTM for infrared radiation (longwave, LW); RRTM_SW is the RRTM for
solar radiation (shortwave, SW). RRTM_LW has 16 bands and 256 g points. RRTM_SW has 16 bands
and 224 g points. To speed up the calculations for climate and weather models, the spectral resolutions
of RRTM_LW and RRTM_SW are further coarsened for applications in GCMs as RRTMG_LW and
RRTMG_SW. RRTMG_LW has 16 bands and 140 g points. RRTMG_SW has 16 bands and 112 g
points [33].

Below, we briefly describe the radiation flux and heating/cooling rate for calculating radiative
transfer through a planetary atmosphere. The spectrally averaged outgoing radiance from an
atmospheric layer is expressed using the following formula:

Iv(µ) =
1

v2 − v1

∫ v2

v1

dv
{

I0(v) +
∫ 1

Tv
[B(v, θ(T

′
v))− I0(v)]dT′

}
. (1)

In this expression, µ is the zenith direction cosine; v is the wavenumber; θ is temperature; v1 and
v2 are the beginning and ending wavenumbers of the spectral interval, respectively; B(v, θ) is the
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Planck function at v and θ; I0 is the radiance incoming to the layer; Tv is the transmittance for the layer
optical path; T

′
v is the transmittance at a point along the optical path in the layer.

Equation (1) can derive the following Equation (2) under the necessary assumptions.
In Equation (2), g is the fraction of the absorption coefficient; Be f f (g, Tg) is an effective Planck
function for the layer; ρ is the absorber density in the layer; P is layer pressure; ∆z is the vertical
thickness of the layer; ϕ is the angle of the optical path in the azimuthal direction; k(g, P, θ) is the
absorption coefficient at P and θ.

Ig(µ, ϕ) =
∫ 1

0
dg

{
Be f f (g, Tg) + [I0(g)− Be f f (g, Tg)]exp[−k(g, P, θ) ρ∆z

cosϕ ]
}

. (2)

The monochromatic net flux is
Fv = F+

v − F−v , (3)

where F+
v = 2π

∫ 1
0 Iv(µ)µdµ and F−v = 2π

∫ −1
0 Iv(µ)µdµ.

The total net flux is obtained by integrating over v

Fnet = F+
net − F−net. (4)

The radiative heating (or cooling) rate is expressed as

dθ

dt
= − 1

cpρ

dFnet

dz
=

g
cp

dFnet

dP
, (5)

where cp is the specific heat at a constant pressure; P is pressure; g is the gravitational acceleration; ρ is
the air density in a given layer [30].

3.2. RRTMG_LW Code Structure

Figure 1 indicates the profiling graph of the original Fortran RRTMG_LW. Here, the subroutine
rad_rrtmg_lw is the driver of longwave radiation code. The subroutine mcica_subcol_lw is used
to create Monte-Carlo Independent Column Approximation (McICA) stochastic arrays for cloud
physical or optical properties. The subroutine rrtmg_lw is the driver subroutine for the RRTMG_LW.
The subroutine rrtmg_lw (a) calls the subroutine inatm to read in the atmospheric profile from the GCM
for use in the RRTMG_LW, and to define other input parameters; (b) calls the subroutine cldprmc to set
cloud optical depth for the McICA based on the input cloud properties; (c) calls the subroutine setcoe f
to calculate information needed by the radiative transfer routine that is specific to this atmosphere,
especially some of the coefficients and indices needed to compute the optical depths by interpolating
data from stored reference atmospheres; (d) calls the subroutine taumol to calculate the gaseous optical
depths and Planck fractions for each of the 16 spectral bands; (e) calls the subroutine rtrnmc (for both
clear and cloudy profiles) to perform the radiative transfer calculation using the McICA to represent
sub-grid scale cloud variability; and (f) passes the necessary fluxes and heating rates back to the GCM.

Algorithm 1 shows the computing procedure of rrtmg_lw. As depicted in Figure 1, rrtmg_lw took
most computing time of rad_rrtmg_lw, so the study target was to use GPUs for accelerating the inatm,
cldprmc, setcoe f , taumol, and rtrnmc subroutines.

3.3. GPU and CUDA Fortran

There are an array of streaming multiprocessors (SMs) inside a GPU. Several streaming processors
inside each SM share the control logic and instruction cache. CUDA, a general purpose parallel
computing architecture, fosters a software environment to make full use of many cores of GPUs in
a massively parallel fashion. Functions or subroutines are defined as “kernels” by CUDA, and then
they are executed on the GPU. Before running on the GPU, these kernels need to be invoked by the
CPU. In the three-level hierarchy of CUDA, each kernel has a grid that is at the highest level. Each grid
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consists of thread blocks. Inside each thread block, data is efficiently shared by a group of threads
through a fast shared memory [34]. CUDA supports many high-level languages, such as C/C++ and
Fortran. NVIDIA and PGI jointly developed CUDA Fortran [28]. CUDA Fortran extends Fortran in
memory management statements, declaration statements, CUDA runtime APIs, and kernel execution
syntaxes [35].

rad_rrtmg_lw 

(100%)

rrtmg_lw (66.07%)

inatm (15.33%)

rtrnmc (25.76%)

setcoef (1.48%)

taumol (17.29%)

cldprmc (0.54%)

generate_stochastic_clouds (33.54%)

taugb1

taugb2

...
taugb15

taugb16

mcica_subcol_lw (33.93%)

Figure 1. Profiling graph of the original RRTMG_LW code in the CAS-ESM.

Algorithm 1: Computing procedure of original rrtmg_lw.
subroutine rrtmg_lw(parameters)

//ncol is the number of horizontal columns
1. do iplon=1, ncol
2. call inatm(parameters)
3. call cldprmc(parameters)
4. call setcoef (parameters)
5. call taumol(parameters)
6. if aerosol is active then

//combine gaseous and aerosol optical depths
7. taut(k, ig) = taug(k, ig) + taua(k, ngb(ig))
8. else
9. taut(k, ig) = taug(k, ig)
10. end if
11. call rtrnmc(parameters)
12. Transfer fluxes and heating rate to output arrays
13.end do
end subroutine

4. GPU-Enabled Acceleration Algorithm

In this section, the 2D acceleration algorithm of the RRTMG_LW is introduced. Then, the parallel
strategy of the RRTMG_LW in the g-point dimension is described. Finally, a CUDA-based acceleration
algorithm is proposed.

4.1. 2D Acceleration Algorithm

The RRTMG_LW uses a collection of three-dimensional (3D) cells to describe the atmosphere.
Its 1D acceleration algorithm with a domain decomposition in the horizontal direction assigns
the workload of one “column,” shown in Figure 2, to each CUDA thread. Here, the x-axis
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represents longitude, the y-axis represents latitude, and the z-axis represents the vertical direction.
The RRTMG_LW in spatial structure has three dimensions, but the x and y dimensions in its CUDA
code implementation are merged into one dimension to easily write the code. In the CAS-ESM,
the IAP AGCM4.0 has a 1.4◦ × 1.4◦ horizontal resolution and 51 levels in the vertical direction, so the
RRTMG_LW has nx×ny = 256× 128 horizontal grid points. Thus, the first dimension of 3D arrays in
its code has 256× 128 elements at most.

To make full use of the GPU performance, the 2D acceleration algorithm with a domain
decomposition in the horizontal and vertical directions for the RRTMG_LW was proposed in our
previous study [23]. Figure 3 illustrates the 2D domain decomposition for the RRTMG_LW accelerated
on the GPU. The 2D acceleration algorithm is illustrated in Algorithm 2. Because of data dependency,
the acceleration of cldprmc and rtrnmc in the vertical direction is unsuitable, while inatm, setcoe f ,
and taumol are able to accelerate in the vertical direction. In the 1D acceleration, n is the number of
threads in each thread block, while m = d(real)ncol/ne is the number of blocks used in each kernel
grid. In the 2D acceleration, tBlock defines the number of threads used in each thread block of the x, y,
and z dimensions by the derived type dim3. Furthermore, grid defines the number of blocks in the x, y,
and z dimensions by dim3.

z

y

x

Figure 2. Spatial structure of RRTMG_LW.

horizontal columns

g-point

layers

Figure 3. Schematic diagram of 2D decomposition for the RRTMG_LW in the GPU acceleration.
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Algorithm 2: 2D acceleration algorithm.
subroutine rrtmg_lw_d2(parameters)
1. Copy input data to GPU device

//Call inatm_d1 with 2D decomposition
2. call inatm_d1≪ grid, tBlock ≫(parameters)

//Call inatm_d2 with 2D decomposition
3. call inatm_d2≪ grid, tBlock ≫(parameters)

//Call inatm_d3 with 1D decomposition
4. call inatm_d3≪ m, n ≫(parameters)

//Call inatm_d4 with 2D decomposition
5. call inatm_d4≪ grid, tBlock ≫(parameters)

//Call cldprmc_d with 1D decomposition
6. call cldprmc_d≪ m, n ≫(parameters)

//Call setcoef_d1 with 2D decomposition
7. call setcoef_d1≪ grid, tBlock ≫(parameters)

//Call setcoef_d2 with 1D decomposition
8. call setcoef_d2≪ m, n ≫(parameters)

//Call taumol_d with 2D decomposition
9. call taumol_d≪ grid, tBlock ≫(parameters)

//Call rtrnmc_d with 1D decomposition
10.call rtrnmc_d≪ m, n ≫(parameters)
11.Copy result to host

//Judge whether atmospheric horizontal profile data is completed
12.if it is not completed goto 1
end subroutine

4.2. Parallel Strategy

In the RRTMG_LW, the total number of g points, ng, is 140. Therefore, there are iterative
computations for each g point in inatm, taumol, and rtrnmc. For example, the computation of
140 g points is executed by a do-loop in the GPU-based acceleration implementation of 1D rtrnmc_d,
as illustrated in Algorithm 3. To achieve more fine-grained parallelism, 140 CUDA threads can be
assigned to run the kernels inatm_d, taumol_d, and rtrnmc_d. Thus, the parallel strategy is further
accelerating inatm_d, taumol_d, and rtrnmc_d in the g-point dimension. Moreover, the parallelization
between the kernels should also be considered in addition to that within the kernels.

It is noteworthy that the first dimension of 3D arrays in the CUDA code represents the number
of horizontal columns, the second dimension represents the number of model layers, and the third
dimension represents the number of g points. If one GPU is applied, in theory, nx×ny×nz×ng =
256× 128× 51× 140 CUDA threads will be required for each kernel in the new parallel method.

4.3. Acceleration Algorithm

Figure 4 illustrates the domain decomposition in the g-point dimension for the RRTMG_LW
accelerated on the GPU. The acceleration algorithm in the g-point dimension for the RRTMG_LW,
is illustrated in Algorithm 4. The algorithm is described as follows:

(1) In the acceleration algorithm, inatm consists of five kernels (inatm_d1, inatm_d2, inatm_d3,
inatm_d4, and inatm_d5). Due to data dependency, a piece of code in inatm can be parallel
only in the horizontal or vertical direction, so the kernel inatm_d4 uses a 1D decomposition.
The kernels inatm_d1, inatm_d2, and inatm_d5 use a 2D decomposition in the horizontal and
vertical directions. The kernel inatm_d3 uses a composite decomposition in the horizontal and
vertical directions and g-point dimension. Due to the requirement of data synchronization,
inatm_d1 and inatm_d2 cannot be merged into one kernel.
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(2) The kernel cldprmc_d still uses a 1D decomposition.
(3) Similarly, the kernel setcoe f _d1 uses a 2D decomposition, and the kernel setcoe f _d2 uses a

1D decomposition.
(4) The kernel taumol_d uses a composite decomposition in the horizontal and vertical directions

and g-point dimension. In taumol_d, 16 subroutines with the device attribute are invoked.
(5) Similarly, rtrnmc consists of 11 kernels (rtrnmc_d1–rtrnmc_d11). Here, rtrnmc_d1, rtrnmc_d4,

rtrnmc_d8, rtrnmc_d10, and rtrnmc_d11 use a 1D decomposition. Furthermore, rtrnmc_d2
and rtrnmc_d9 use a 2D decomposition in the horizontal and vertical directions. In addition,
rtrnmc_d5 and rtrnmc_d6 use a 2D decomposition in the horizontal direction and g-point
dimension. Finally, rtrnmc_d3 and rtrnmc_d7 use a composite decomposition in the horizontal
and vertical directions and g-point dimension.

Algorithm 3: Implementation of 1D rtrnmc_d.
attributes(global) subroutine rtrnmc_d(parameters)
1. iplon=(blockIdx%x-1)×blockDim%x+threadIdx%x
2. if (iplon≥1 .and. iplon≤ncol) then
3. Initialize variable arrays
4. do lay = 1, nlayers
5. do ig = 1, ngptlw
6. do some corresponding work
7. end do
8. end do

//Loop over frequency bands
//istart is beginning band of calculation
//iend is ending band of calculation

9. do iband = istart, iend
//Downward radiative transfer loop

10. do lay = nlayers, 1, -1
11. do some corresponding work
12. end do
13. end do
14.end if
end subroutine

horizontal columns

g-point

layers

Figure 4. Schematic diagram of the decomposition in the g-point dimension for the RRTMG_LW in the
GPU acceleration.
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Algorithm 4: Acceleration in g-point dimension.
subroutine rrtmg_lw_d3(parameters)
1. Copy input data to GPU device

//Call inatm_d1 with 2D decomposition
2. call inatm_d1≪ grid1, tBblock1 ≫(parameters)

//Call inatm_d2 with 2D decomposition
3. call inatm_d2≪ grid1, tBblock1 ≫(parameters)

//Call inatm_d3 with g-point acceleration
4. call inatm_d3≪ grid2, tBblock2 ≫(parameters)

//Call inatm_d4 with 1D decomposition
5. call inatm_d4≪ m, n ≫(parameters)

//Call inatm_d5 with 2D decomposition
6. call inatm_d5≪ grid1, tBblock1 ≫(parameters)

//Call cldprmc_d with 1D decomposition
7. call cldprmc_d≪ m, n ≫(parameters)

//Call setcoef_d1 with 2D decomposition
8. call setcoef_d1≪ grid, tBblock ≫(parameters)

//Call setcoef_d2 with 1D decomposition
9. call setcoef_d2≪ m, n ≫(parameters)

//Call taumol_d with g-point acceleration
10.call taumol_d≪ grid2, tBblock2 ≫(parameters)

//Call rtrnmc_d1 with 1D decomposition
11.call rtrnmc_d1≪ m, n ≫(parameters)

//Call rtrnmc_d2 with 2D decomposition
12.call rtrnmc_d2≪ grid1, tBblock1 ≫(parameters)

//Call rtrnmc_d3 with g-point acceleration
13.call rtrnmc_d3≪ grid2, tBblock2 ≫(parameters)

//Call rtrnmc_d4 with 1D decomposition
14.call rtrnmc_d4≪ m, n ≫(parameters)

//Call rtrnmc_d5 with 2D decomposition in horizonal and g-point dimensions
15.call rtrnmc_d5≪ grid3, tBblock3 ≫(parameters)

//Call rtrnmc_d6 with 2D decomposition in horizonal and g-point dimensions
16.call rtrnmc_d6≪ grid3, tBblock3 ≫(parameters)

//Call rtrnmc_d7 with g-point acceleration
17.call rtrnmc_d7≪ grid2, tBblock2 ≫(parameters)

//Call rtrnmc_d8 with 1D decomposition
18.call rtrnmc_d8≪ m, n ≫(parameters)

//Call rtrnmc_d9 with 2D decomposition
19.call rtrnmc_d9≪ grid1, tBblock1 ≫(parameters)

//Call rtrnmc_d10 with 1D decomposition
20.call rtrnmc_d10≪ m, n ≫(parameters)

//Call rtrnmc_d11 with 1D decomposition
21.call rtrnmc_d11≪ m, n ≫(parameters)
22.Copy result to host

//Judge whether atmospheric horizontal profile data is completed
23.if it is not completed goto 1
end subroutine

5. Algorithm Implementation

In this section, the acceleration algorithm implementation is described. The implementations of
1D cldprmc_d and 2D setcoe f _d were described in our previous paper, so this section only considers the
implementations of inatm_d, taumol_d, and rtrnmc_d with an acceleration in the g-point dimension.
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5.1. Inatm_d

The implementations of CUDA-based 2D inatm_d1, inatm_d2, and inatm_d5 are similar to
the procedure in Algorithm 5. Here, threadIdx%x identifies a unique thread inside a thread
block in the x dimension, blockIdx%x identifies a unique thread block inside a kernel grid in
the x dimension, and blockDim%x identifies the number of threads in a thread block in the x
dimension. In the same way, threadIdx%y, blockIdx%y, and blockDim%y identify the corresponding
configuration in the y dimension. Please note that the “%” symbol in Fortran is the access
to fields of a structure and not the modulus operator. In addition, iplon, the coordinate of
the horizontal grid points, represents the ID of a global thread in the x dimension, which can
be expressed as iplon=(blockIdx%x-1)×blockDim%x+threadIdx%x. The coordinate of the vertical
direction, lay, also represents the ID of a global thread in the y dimension, which can be expressed
as lay=(blockIdx%y-1)×blockDim%y+threadIdx%y. Thus, a grid point in the horizontal and vertical
directions can be identified by the iplon and lay variables as 2D linear data.

The implementation of inatm_d3 is illustrated in Algorithm 6. Here, threadIdx%z identifies
a unique thread inside a thread block in the z dimension, blockIdx%z identifies a unique thread
block inside a kernel grid in the z dimension, and blockDim%z identifies the number of threads in a
thread block in the z dimension. The coordinate of the g points, ig, also represents the ID of a global
thread in the x dimension, which can be expressed as ig=(blockIdx%x-1)×blockDim%x+threadIdx%x.
Furthermore, inatm_d3 is used to assign a value to the four 3D arrays.

The implementation of 1D inatm_d4 is illustrated in Algorithm 7.

Algorithm 5: Implementation of 2D inatm_d.
attributes(global) subroutine inatm_d(parameters)
1. iplon=(blockIdx%x-1)×blockDim%x+threadIdx%x
2. lay=(blockIdx%y-1)×blockDim%y+threadIdx%y

//nlayers=nlay + 1, nlay is number of model layers
3. if ((iplon≥1 .and. iplon≤ncol) .and. (lay≥1 .and. lay≤nlayers-1 or nlayers or nlayers+1)) then
4. Initialize variable arrays or do some computational work for them
5. end if
end subroutine

Algorithm 6: Implementation of inatm_d3.
attributes(global) subroutine inatm_d3(parameters)
1. ig=(blockIdx%x-1)×blockDim%x+threadIdx%x
2. iplon=(blockIdx%y-1)×blockDim%y+threadIdx%y
3. lay=(blockIdx%z-1)×blockDim%z+threadIdx%z

//ngptlw is total number of reduced g-intervals
4. if ((iplon≥1 .and. iplon≤ncol) .and. (lay≥1 .and. lay≤nlayers-1) .and. (ig≥1 .and. ig≤ngptlw)) then
5. cldfmc(ig, iplon, lay) = cldfmcl_d(ig, iplon, nlayers-lay)
6. taucmc(ig, iplon, lay) = taucmcl_d(ig, iplon, nlayers-lay)
7. ciwpmc(ig, iplon, lay) = ciwpmcl_d(ig, iplon, nlayers-lay)
8. clwpmc(ig, iplon, lay) = clwpmcl_d(ig, iplon, nlayers-lay)
9. end if
end subroutine

5.2. taumol_d

The implementation of taumol_d is illustrated in Algorithm 8. Here, the implementations of
taugb1_d and taugb2_d with the device attribute are also described. The implementations of the other
14 subroutines (taugb3_d–taugb16_d) are similar to those of taugb1_d and taugb2_d.
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Algorithm 7: Implementation of 1D inatm_d4.
attributes(global) subroutine inatm_d4(parameters)
1. iplon=(blockIdx%x-1)×blockDim%x+threadIdx%x
2. if (iplon≥1 .and. iplon≤ncol) then
3. Initialize variable arrays
4. do lay = 1, nlayers-1 or nlayers
5. do some corresponding computational work
6. end do
7. end if
end subroutine

Algorithm 8: Implementation of taumol_d.
attributes(global) subroutine taumol_d(parameters)
1. iplon=(blockIdx%x-1)×blockDim%x+threadIdx%x
2. lay=(blockIdx%y-1)×blockDim%y+threadIdx%y
3. ig=(blockIdx%z-1)×blockDim%z+threadIdx%z
4. if ((iplon≥1 .and. iplon≤ncol) .and. (lay≥1 .and. lay≤nlayers) .and. (ig≥1 .and. ig≤ngptlw)) then
5. call taugb1_d(parameters)
6. call taugb2_d(parameters)
7. call taugb3_d(parameters)
8. call taugb4_d(parameters)
9. call taugb5_d(parameters)
10. call taugb6_d(parameters)
11. call taugb7_d(parameters)
12. call taugb8_d(parameters)
13. call taugb9_d(parameters)
14. call taugb10_d(parameters)
15. call taugb11_d(parameters)
16. call taugb12_d(parameters)
17. call taugb13_d(parameters)
18. call taugb14_d(parameters)
19. call taugb15_d(parameters)
20. call taugb16_d(parameters)
21.end if
end subroutine
attributes(device) subroutine taugb1_d(parameters)

//Lower atmosphere loop
//laytrop is tropopause layer index, ngs1 is an integer parameter used for 140 g-point model

1. if ((iplon≥1 .and. iplon≤ncol) .and. (lay≥1 .and. lay≤laytrop(iplon)) .and. (ig≥1 .and. ig≤ngs1))
then

2. do some computational work
3. end if

//Upper atmosphere loop
4. if ((iplon≥1 .and. iplon≤ncol) .and. (lay≥laytrop(iplon)+1 .and. lay≤nlayers) .and. (ig≥1 .and.

ig≤ngs1)) then
5. do some computational work
6. end if
end subroutine
attributes(device) subroutine taugb2_d(parameters)

//ngs2 is an integer parameter used for 140 g-point model
1. if ((iplon≥1 .and. iplon≤ncol) .and. (lay≥1 .and. lay≤laytrop(iplon)) .and. (ig≥ngs1+1 .and.

ig≤ngs2)) then
2. do some computational work
3. end if
4. if ((iplon≥1 .and. iplon≤ncol) .and. (lay≥laytrop(iplon)+1 .and. lay≤nlayers) .and. (ig≥ngs1+1 .and.

ig≤ngs2)) then
5. do some computational work
6. end if
end subroutine
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5.3. rtrnmc_d

The implementations of 1D rtrnmc_d1, rtrnmc_d4, rtrnmc_d8, rtrnmc_d10, and rtrnmc_d11 are
similar to the procedure in Algorithm 3. The 2D rtrnmc_d2 and rtrnmc_d9 are used to assign a value to
some arrays; their implementations are not described further here. The implementations of rtrnmc_d3,
2D rtrnmc_d5, and 2D rtrnmc_d6 are illustrated in Algorithm 9. The implementation of rtrnmc_d7 is
similar to that of rtrnmc_d3.

Algorithm 9: Implementation of rtrnmc_d.
attributes(global) subroutine rtrnmc_d3(parameters)
1. iplon=(blockIdx%x-1)×blockDim%x+threadIdx%x
2. igc=(blockIdx%y-1)×blockDim%y+threadIdx%y
3. lay=(blockIdx%z-1)×blockDim%z+threadIdx%z
4. if ((iplon≥1 .and. iplon≤ncol) .and. (lay≥0 .and. lay≤nlayers) .and. (igc≥1 .and. igc≤ngptlw)) then
5. urad(iplon, igc, lay) = 0.0
6. drad(iplon, igc, lay) = 0.0
7. clrurad(iplon, igc, lay) = 0.0
8. clrdrad(iplon, igc, lay) = 0.0
9. end if
end subroutine
attributes(global) subroutine rtrnmc_d5(parameters)
1. iplon=(blockIdx%x-1)×blockDim%x+threadIdx%x
2. igc=(blockIdx%y-1)×blockDim%y+threadIdx%y
3. if ((iplon≥1 .and. iplon≤ncol) .and. (igc≥1 .and. igc≤10)) then

//Loop over frequency bands
4. iband=1

//Downward radiative transfer loop
5. do lay = nlayers, 1, -1
6. do some corresponding work
7. end do
8. end if
9. if ((iplon≥1 .and. iplon≤ncol) .and. (igc≥11 .and. igc≤22)) then
10. iband=2
11. do lay = nlayers, 1, -1
12. do some corresponding work
13. end do
14.end if
15.When iband=3 ∼ 9, the algorithms are similar to that in the case of iband=1 or 2.
end subroutine
attributes(global) subroutine rtrnmc_d6(parameters)
1. iplon=(blockIdx%x-1)×blockDim%x+threadIdx%x
2. igc=(blockIdx%y-1)×blockDim%y+threadIdx%y
3. if ((iplon≥1 .and. iplon≤ncol) .and. (igc≥109 .and. igc≤114)) then
4. iband=10
5. do lay = nlayers, 1, -1
6. do some corresponding work
7. end do
8. end if
9. When iband=11 ∼ 16, the algorithms are similar to that in the case of iband=10.
end subroutine

6. Result and Discussion

Experimental studies were conducted to evaluate and compare the performance of the proposed
algorithm with the solutions above. The results are described below.
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6.1. Experimental Setup

To fully investigate the proposed algorithm, this paper conducted an ideal global climate
simulation for one model day. The time step of the RRTMG_LW was 1 h.

The experiment platforms include two GPU clusters (K20 and K40 clusters). The K20 cluster at
the Computer Network Information Center of CAS has 30 GPU nodes. Each GPU node has two Intel
Xeon E5-2680 v2 processors and two NVIDIA Tesla K20 GPUs. Twenty CPU cores in each GPU node
share 64 GB DDR3 system memory through QuickPath Interconnect. The basic compiler is the PGI
Fortran compiler Version 14.10 that supports CUDA Fortran. The K40 cluster at China University of
Geosciences (Beijing) has four GPU nodes, each with two NVIDIA Tesla K40 GPUs. Table 1 lists their
detailed configurations. The serial RRTMG_LW was executed on an Intel Xeon E5-2680 v2 processor of
K20 cluster. The G-RRTMG_LW was executed on one K20 or K40 GPU.

Table 1. Configurations of GPU clusters.

Specification of CPU K20 Cluster K40 Cluster

CPU E5-2680 v2@2.8GHz E5-2695 v2@2.4GHz
Operating System CentOS 6.4 Red Hat Enterprise Linux Server 7.1

Specification of GPU K20 Cluster K40 Cluster

GPU Tesla K20 Tesla K40
CUDA Cores 2496 2880

Standard Memory 5 GB 12 GB
Memory Bandwidth 208 GB/s 288 GB/s

CUDA Version 6.5 9.0

6.2. Influence of Block Size

The serial runtime of the subroutine rrtmg_lw on one core of an Intel Xeon E5-2680 v2 processor,
which accounts for 66.07% of the total computing time of the subroutine rad_rrtmg_lw, is 647.12 s in
this simulation, as shown in Table 2. Here, the computing time of the RRTMG_LW on the CPU or GPU,
Trrtmg_lw, is calculated with the following formula:

Trrtmg_lw = Tinatm + Tcldprmc + Tsetcoe f + Ttaumol + Trtrnmc,

where Tinatm is the computing time of the subroutine inatm or kernel inatm_d; moreover,
Tcldprmc, Tsetcoe f , Ttaumol , and Trtrnmc are the corresponding computing times of the other kernels.
For exploring whether/how the number of threads in a thread block may affect the computation
performance, the execution time of the G-RRTMG_LW with a tuned number of threads was measured
over one GPU. Taking the case of no I/O transfer as an example, Figure 5 portrays the runtime of the
G-RRTMG_LW on one K20 GPU. Indeed, the number of threads per block, or block size, affected the
computation performance to some extent. The G-RRTMG_LW achieved optimal performance when
the block size was 128. The G-RRTMG_LW on one K40 GPU resulted in a similar rule, as shown in
Figure 6. Some conclusions and analysis are drawn as below.

(1) Generally, increasing the block size can hide some memory access latency to some extent and
improve the computational performance of parallel algorithms. Therefore, kernels with simple
computation usually show optimal performance when the block size is 128 or 256. Thus, with a
large amount of calculation, the kernel taumol with an acceleration in the g-point dimension
achieved optimal performance on one K20 GPU when the block size was 128.

(2) The runtime and speedup of the RRTMG_LW 2D acceleration algorithm on the K20 and K40
GPUs are shown in Table 2. From Table 2, Figures 5 and 6, the kernel taumol with an acceleration
in the g-point dimension costs more computational time than its 2D version did. This is because
there is much redundant computing in the current taumol. For example, each thread in 2D taumol
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ran the code shown in Table 3, but each thread in the current taumol still had to run the code
although there were more threads. Therefore, the current taumol, with more threads than its 2D
counterpart, did not take full advantage of having plenty of threads.

(3) The rtrnmc with an acceleration in the g-point dimension on one K20 GPU and one K40 GPU
both achieved optimal performance when the block size was 512. During its current acceleration,
more threads were assigned, so that each thread had fewer calculations and required fewer
hardware resources. When the block size was 512, the assigned hardware resources of each thread
were in a state of equilibrium, so in this case, the current rtrnmc showed better performance.
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Figure 5. Runtime of the G-RRTMG_LW on one K20 GPU.
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Figure 6. Runtime of the G-RRTMG_LW on one K40 GPU.
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Table 2. Runtime and speedup of the RRTMG_LW 2D acceleration algorithm on one GPU. Here,
the block size = 128 and ncol = 2048; inatm, cldprmc, and rtrnmc are with a 1D decomposition; setcoef and
taumol are with a 2D decomposition.

Subroutines CPU Time (S) K20 Time (S) Speedup

inatm 150.48 18.2060 8.27
cldprmc 5.27 0.0020 2635.00
setcoef 14.52 0.3360 43.21
taumol 169.68 4.1852 40.54
rtrnmc 252.80 21.5148 11.75

rrtmg_lw 647.12 44.2440 14.63

Subroutines CPU Time (S) K40 Time (S) Speedup

inatm 150.48 14.9068 10.09
cldprmc 5.27 0.0020 2635
setcoef 14.52 0.2480 58.55
taumol 169.68 3.1524 53.83
rtrnmc 252.80 16.6292 15.20

rrtmg_lw 647.12 34.9384 18.52

Table 3. A piece of code in taumol.

if((iplon≥1 .and. iplon≤ncol) .and. (lay≥laytrop(iplon)+1 .and. lay≤nlayers) .and. (ig≥1 .and. ig≤ngl)) then
ind0_1 = ((jp(iplon, lay) - 13) ∗ 5 + (jt(iplon, lay) - 1)) ∗ nspb(1) + 1
ind1_1 = ((jp(iplon, lay) - 12) ∗ 5 + (jt1(iplon, lay) - 1)) ∗ nspb(1) + 1
indf_1 = indfor(iplon, lay)
indm_1 = indminor(iplon, lay)
pp_1 = pavel(iplon, lay)
corradj_1 = 1._r8 - 0.15_r8 ∗ (pp_1 / 95.6_r8)
scalen2_1 = colbrd(iplon, lay) ∗ scaleminorn2(iplon, lay)

end if

6.3. Evaluations on Different GPUs

The runtime and speedup of the G-RRTMG_LW on the K20 and K40 GPUs are shown in Table 4.
Due to the poor performance of the taumol with an acceleration in the g-point dimension, its 2D
version was still used here. The speedups of the inatm and rtrnmc with an acceleration in the g-point
dimension on one K20 GPU were 87.37× and 13.20×, respectively. Using one K20 GPU in the case
without I/O transfer, the G-RRTMG_LW achieved a speedup of 25.47× as compared to its counterpart
running on one CPU core of an Intel Xeon E5-2680 v2. Whereas, using one K40 GPU in the case without
I/O transfer, the G-RRTMG_LW achieved a speedup of 30.98×. Some conclusions and analysis are
drawn below.

(1) The K40 GPU had a higher core clock and memory clock, more cores, and stronger floating-point
computation power than the K20 GPU did. Thus, the G-RRTMG_LW on the K40 GPU showed
better performance.

(2) According to the testing, it was found that the transposition of four 3D arrays in the 1D or
2D inatm required most of the computational time. Because of discontinuous access for these
arrays using a do-loop form, the transposition cost too much time. However, the inatm with an
acceleration in the g-point dimension has no do-loops, as shown in Algorithm 6, so it can show
an excellent performance improvement.

(3) There are 11 kernels in the current rtrnmc, but only two of them have a composite decomposition
in the horizontal, vertical and g-point dimensions. The two kernels only cost about 17%
computational time, so the current rtrnmc did not achieve a noticeable performance improvement
compared with its 1D version.
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Table 4. Runtime and speedup of the G-RRTMG_LW on one GPU. Here, the block size = 512 and
ncol = 2048; inatm and rtrnmc are with an acceleration in the g-point dimension; cldprmc is with a 1D
decomposition; setcoef and taumol are with a 2D decomposition.

Subroutines CPU Time (S) K20 Time (S) Speedup

inatm 150.48 1.7224 87.37
cldprmc 5.27 0.0020 2635.00
setcoef 14.52 0.3360 43.21
taumol 169.68 4.1852 40.54
rtrnmc 252.80 19.1580 13.20

rrtmg_lw 647.12 25.4036 25.47

Subroutines CPU Time (S) K40 Time (S) Speedup

inatm 150.48 1.5140 99.39
cldprmc 5.27 0.0020 2635
setcoef 14.52 0.2480 58.55
taumol 169.68 3.1524 53.83
rtrnmc 252.80 15.9712 15.83

rrtmg_lw 647.12 20.8876 30.98

When compared to its counterpart running on 10 CPU cores of an Intel Xeon E5-2680 v2,
the speedup of the G-RRTMG_LW on the K20 GPU is shown in Table 5. In this case, using one K20
GPU in the case without I/O transfer, the G-RRTMG_LW achieved a speedup of 2.35×. This shows
that running the RRTMG_LW on one K20 GPU still has a better computing performance than on
10 cores of a CPU.

Table 5. Runtime and speedup of the G-RRTMG_LW on one GPU when compared to its counterpart
running on 10 CPU cores of an Intel Xeon E5-2680 v2. Here, the block size = 512 and ncol = 2048;
inatm and rtrnmc are with an acceleration in the g-point dimension; cldprmc is with a 1D decomposition;
setcoef and taumol are with a 2D decomposition.

Subroutines CPU Time (S) K20 Time (S) Speedup

rrtmg_lw 59.79 25.4036 2.35

6.4. I/O Transfer

I/O transfer between the CPU and GPU is inevitable. The runtime and speedup of the
G-RRTMG_LW with I/O transfer on the K20 and K40 GPUs are shown in Table 6. The I/O transfer
time on the K20 cluster was 61.39 s, while it was 59.3 s on the K40 cluster. Using one K40 GPU in
the case with I/O transfer, the G-RRTMG_LW achieved a speedup of 8.07×. Some conclusions and
analysis are drawn below.

(1) In the simulation with one model day, the RRTMG_LW required integral calculations 24 times.
During each integration for all 128×256 grid points, the subroutine rrtmg_lw had to be invoked 16
(128×256/ncol) times when ncol is 2048. Due to the memory limitation of the GPU, the maximum
value of ncol on the K40 GPU was 2048. This means that the G-RRTMG_LW was invoked
repeatedly 16×24 = 384 times in the experiment. For each invocation, the input and output of
the 3D arrays must be updated between the CPU and GPU, so the I/O transfer incurs a high
communication cost.

(2) The computational time of the G-RRTMG_LW in the case without I/O transfer was fairly short,
so the I/O transfer cost exhibited a huge bottleneck for the maximum level of performance
improvement of the G-RRTMG_LW. In the future, compressing data and improving the network
bandwidth will be beneficial for reducing this I/O transfer cost.
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Table 6. Runtime and speedup of the G-RRTMG_LW with I/O transfer on one GPU, where the block
size = 512 and ncol = 2048.

Subroutines CPU Time (S) K20 Time (S) Speedup

rrtmg_lw 647.12 86.79 7.46

Subroutines CPU Time (S) K40 Time (S) Speedup

rrtmg_lw 647.12 80.19 8.07

6.5. Error Analysis

During accelerating the computational performance of a climate system model, it is of vital
importance to ensure that the model on one GPU can generate the same results within a small
tolerance threshold. In this simulating experiment, Figure 7 illustrates the impact on the longwave
flux at the top of the atmosphere in a clear sky. The outgoing longwave flux by running entirely the
CAS-ESM RRTMG_LW on the CPU is shown in Figure 7a. The longwave flux differences between
the simulations running the CAS-ESM RRTMG_LW only on the CPU and running the CAS-ESM
RRTMG_LW (G-RRTMG_LW) on the K20 GPU is shown in Figure 7b. The results show that there
are minor and negligible differences. Besides the impact of running the G-RRTMG_LW on the GPU,
the impact of the slight physics change by running the G-RRTMG_LW code on the GPU also results in
these differences.

(a)

(b)

Figure 7. Impact on the longwave flux at the top of the atmosphere in a clear sky. (a) Longwave
flux simulated by the CAS-ESM RRTMG_LW on the CPU; (b) Longwave flux differences between
the simulations running the CAS-ESM RRTMG_LW only on the CPU and running the CAS-ESM
RRTMG_LW on the GPU.
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7. Conclusions and Future Work

It is exceedingly challenging to use GPUs to accelerate radiation physics. In this work,
a GPU-based acceleration algorithm of the RRTMG_LW in the g-point dimension was proposed. Then,
the acceleration algorithm was implemented using CUDA Fortran. Finally, G-RRTMG_LW, the GPU
version of the RRTMG_LW, was developed. The results indicated that the algorithm was effective.
During the climate simulation for one model day, the G-RRTMG_LW on one K40 GPU achieved a
speedup of 30.98× as compared with a single Intel Xeon E5-2680 CPU-core counterpart. Its runtime
decreased from 647.12 s to 20.8876 s. Running the G-RRTMG_LW on one GPU presented a better
computing performance than on a CPU with multiple cores. Furthermore, the current acceleration
algorithm of the RRTMG_LW displayed better calculation performance than its 2D algorithm did.

The future work will include three aspects. First, the proposed algorithm will be further optimized.
For example, read-only arrays in CUDA code will be considered for inclusion in the CUDA texture
memory, rather than in the global memory. Second, the I/O transfer in the current G-RRTMG_LW
still costs a great deal of time, so the methods of reducing the I/O transfer between the CPU and
GPU will be studied. Third, the G-RRTMG_LW currently only runs on one GPU. The CAS-ESM often
runs on several CPUs and nodes, so the acceleration algorithm on multiple GPUs will be studied.
An MPI+CUDA hybrid paradigm will be adopted to run the G-RRTMG_LW on multiple GPUs.
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