Plasma Electrolysis Spraying Al2O3 Coating onto Quartz Fiber Fabric for Enhanced Thermal Conductivity and Stability
Abstract
:1. Introduction
2. Experimental
2.1. Plasma Electrolysis Spraying
2.2. Characterization of Coatings
2.3. Measurement for Properties
3. Results and Discussion
3.1. Surface Morphologies
3.2. XPS and AFM Characterization
3.3. Thermal Conductivity and Stability
3.4. Formation Mechanism
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lu, H.R.; Wang, C.A. Fabrication and characterization of ceramic coatings with alumina–silica sol-incorporated α-alumina powder coated on woven quartz fiber fabrics. Ceram. Int. 2013, 39, 6041–6050. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, S. The effect of SiO2-doped boron nitride multiple coatings on mechanical properties of quartz fibers. Appl. Surf. Sci. 2012, 258, 2901–2905. [Google Scholar] [CrossRef]
- Kwon, Y.W.; Kim, D.H.; Chu, T. Multi-scale modeling of refractory woven fabric composites. J. Mater. Sci. 2006, 41, 6647–6654. [Google Scholar] [CrossRef]
- Wang, L.; Huang, Y.D.; Liu, L.; Zhang, J.B. The influence of PBO coating on room temperature mechanic properties of heat-treated quartz fiber-reinforced methyl silicon resin composites I. Flexural properties. Mater. Sci. Eng. A 2007, 465, 22–28. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, S.B. Synthesis of boron nitride coatings on quartz fibers: Thickness control and mechanism research. Appl. Surf. Sci. 2011, 257, 10752–10757. [Google Scholar] [CrossRef]
- Checchetto, R.; Miotello, A.; Guzman, L.; Adami, M.; Chayahara, A. BN coating adhesion on ion-implanted polymer surfaces. Thin Solid Films 2001, 398, 222–227. [Google Scholar] [CrossRef]
- Arya, S.P.S.; D’Amico, A. Preparation, properties and applications of boron nitride thin films. Thin Solid Films 1988, 157, 267–278. [Google Scholar] [CrossRef]
- Bai, Z.C.; Chang, M.Y. Controlling fluorescence of a nano-Al2O3 film enabled by CdSe quantum dots on CdSe/Al2O3 heterojunctions. J. Lumin. 2019, 215, 116614. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, L.X.; Tian, X.Y. Interfacial microstructure and mechanical properties of joining electroless nickel plated quartz fibers reinforced silica composite to Invar. Mater. Des. 2011, 32, 382–387. [Google Scholar] [CrossRef]
- Jiang, Y.G.; Zhang, C.R.; Cao, F. Effects of thermal load on mechanical properties and microstructures of 3D SiO2f/Si3N4–BN composites using polyborosilazane. Mater. Sci. Eng. A 2008, 487, 597–600. [Google Scholar] [CrossRef]
- Qi, G.; Zhang, C.; Hu, H. Crystallization behavior of three-dimensional silica fiber reinforced silicon nitride composite. J. Cryst. Growth 2005, 284, 293–296. [Google Scholar] [CrossRef]
- Qi, G.J. TEM investigation on three-dimensional silica fiber reinforced silicon nitride composite. Adv. Mater. Res. 2012, 562, 431–434. [Google Scholar] [CrossRef]
- Martin, E.; Peters, P.W.M.; Leguillon, J.M.; Quenisset, J.M. Conditions for matrix crack deflection at an interface in ceramic matrix composites. Mater. Sci. Eng. A 1998, 250, 291–302. [Google Scholar] [CrossRef]
- Carrère, N.; Martin, E.; Lamon, J. The influence of the interphase and associated interfaces on the deflection of matrix cracks in ceramic matrix composites. Compos. Part A 2000, 31, 1179–1190. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, J.L.; Yang, Q.; Ni, C.Y.; Xie, X.T.; Shi, Y.R. Fabrications of novel solid phase microextraction fiber coatings based on new materials for high enrichment capability. Trend. Anal. Chem. 2018, 108, 135–153. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, S.B. Effect of different thickness h-BN coatings on interface shear strengthof quartz fiber reinforced Si O C N composite. Appl. Surf. Sci. 2014, 292, 876–879. [Google Scholar] [CrossRef]
- Qu, M.N.; Yuan, M.J.; He, J. Substrate-versatile approach to multifunctional superamphiphobic coatings with mechanical durable property from quartz sand. Surf. Coat. Technol. 2018, 352, 191–200. [Google Scholar] [CrossRef]
- Liu, K.; Yao, X.; Jiang, L. Recent developments in bio-inspired special wettability. Chem. Soc. Rev. 2010, 39, 3240–3255. [Google Scholar] [CrossRef]
- Arukalam, I.O.; Oguziec, E.E.; Li, Y. Nanostructured superhydrophobic polysiloxane coating for high barrier and anticorrosion applications in marine environment. J. Colloid Interface Sci. 2018, 512, 674–685. [Google Scholar] [CrossRef]
- Zhu, H.; Guo, Z.; Liu, W. Adhesion behaviors on superhydrophobic surfaces. Chem. Commun. 2014, 50, 3900–3913. [Google Scholar] [CrossRef]
- Baklanova, N.I.; Zima, T.M.; Boronin, A.I.; Kosheev, S.V.; Titov, A.T.; Isaeva, N.V.; Graschenkov, D.V.; Solntsev, S.S. Protective ceramic multilayer coatings for carbon fibers. Ceram. Int. 2006, 201, 2313–2319. [Google Scholar] [CrossRef]
- Wang, Y.H.; Liu, J.; Wu, X.; Yang, B. Adhesion enhancement of indium tin oxide (ITO) coated quartzoptical fibers. Appl. Surf. Sci. 2014, 308, 341–346. [Google Scholar] [CrossRef]
- Tao, X.; Zhang, L.; Ma, X.H.; Xu, X.J. Preparation of a flexible high emissivity coating on quartz fiber fabric for thermal protection. Ceram. Int. 2017, 43, 14292–14300. [Google Scholar] [CrossRef]
- Girolamo, G.D.; Blasi, C.L.; Schioppa, M. Microstructural and thermal properties of plasma sprayed mullite coatings. Ceram. Int. 2010, 36, 1389–1395. [Google Scholar] [CrossRef]
- Xiang, C.S.; Pan, Y.B.; Guo, J.K. Electromagnetic interference shielding effectiveness of multiwalled carbon nanotube reinforced fused silica composites. Ceram. Int. 2007, 33, 1293–1297. [Google Scholar] [CrossRef]
- Heydt, P.; Luo, C.Y.; Clarke, R. Crystallographic texture and thermal conductivity of zirconia thermal barrier coatings deposited on different substrates. J. Am. Ceram. Soc. 2001, 84, 1539–1544. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhang, Y.F.; Bu, A.M.; Deng, J.Y.; Meng, Y.; Chen, W.W.; Cheng, H.W.; Wang, L. Preparation, characterization and annealing behavior of nanostructured Al2O3 coating on quartz fiber by non-electrode plasma synthesis. Ceram. Int. 2019, 45, 15520–15525. [Google Scholar] [CrossRef]
- Xiang, Y.; Chen, W.W.; Cheng, H.W.; Bu, A.M.; Zhang, Y.F. Surface Plasma Modification and Coating Properties of Quartz Fiber. Springer Proc. Phys. 2019, 216, 77–84. [Google Scholar] [CrossRef]
- Zhang, S.G.; Zhang, J.; Jia, R.N.; Lian, Y.; He, Y.D. The effect of electric conductivity on the structure of ceramic coatings prepared by cathode plasma electrolytic deposition. Mater. Chem. Phys. 2019, 224, 36–39. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Meng, Y.; Shen, Y.H.; Chen, W.W.; Cheng, H.W.; Wang, L. Room-temperature aqueous plasma electrolyzing Al2O3 nano-coating on carbon fiber. Appl. Surf. Sci. 2017, 419, 357–364. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bu, A.; Zhang, Y.; Xiang, Y.; Yang, Y.; Chen, W.; Cheng, H.; Wang, L. Plasma Electrolysis Spraying Al2O3 Coating onto Quartz Fiber Fabric for Enhanced Thermal Conductivity and Stability. Appl. Sci. 2020, 10, 702. https://doi.org/10.3390/app10020702
Bu A, Zhang Y, Xiang Y, Yang Y, Chen W, Cheng H, Wang L. Plasma Electrolysis Spraying Al2O3 Coating onto Quartz Fiber Fabric for Enhanced Thermal Conductivity and Stability. Applied Sciences. 2020; 10(2):702. https://doi.org/10.3390/app10020702
Chicago/Turabian StyleBu, Aiming, Yongfu Zhang, Yan Xiang, Yunjie Yang, Weiwei Chen, Huanwu Cheng, and Lu Wang. 2020. "Plasma Electrolysis Spraying Al2O3 Coating onto Quartz Fiber Fabric for Enhanced Thermal Conductivity and Stability" Applied Sciences 10, no. 2: 702. https://doi.org/10.3390/app10020702
APA StyleBu, A., Zhang, Y., Xiang, Y., Yang, Y., Chen, W., Cheng, H., & Wang, L. (2020). Plasma Electrolysis Spraying Al2O3 Coating onto Quartz Fiber Fabric for Enhanced Thermal Conductivity and Stability. Applied Sciences, 10(2), 702. https://doi.org/10.3390/app10020702