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Abstract: This paper proposed and verified a new integrated approach based on the iterative
super-resolution algorithm and expectation-maximization for face hallucination, which is a process of
converting a low-resolution face image to a high-resolution image. The current sparse representation
for super resolving generic image patches is not suitable for global face images due to its lower
accuracy and time-consumption. To solve this, in the new method, training global face sparse
representation was used to reconstruct images with misalignment variations after the local geometric
co-occurrence matrix. In the testing phase, we proposed a hybrid method, which is a combination of
the sparse global representation and the local linear regression using the Expectation Maximization
(EM) algorithm. Therefore, this work recovered the high-resolution image of a corresponding
low-resolution image. Experimental validation suggested improvement of the overall accuracy of the
proposed method with fast identification of high-resolution face images without misalignment.

Keywords: hallucination; global sparse representation; Expectation Maximization

Appl. Sci. 2020, 10, 718; doi:10.3390/app10020718 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-4881-7103
https://orcid.org/0000-0002-6574-5762
https://orcid.org/0000-0001-5161-6479
http://www.mdpi.com/2076-3417/10/2/718?type=check_update&version=1
http://dx.doi.org/10.3390/app10020718
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 718 2 of 22

1. Introduction

Super-resolution (SR) is the process of improving a low resolution (LR) image to a high resolution
(HR) image without altering the originality of the image. This super-resolution is also called
hallucination [1]. The process of converting a low-resolution image to a high-resolution image is
necessary during image processing [2], and it has a wide range of applications. In satellite image
processing, image restoration and image enhancement require super-resolution to remove distortions
and for enhancement of satellite images [3]. Super-resolution has wide applications in medical image
processing for improving the quality of medical images, such as MRI CT scan, which requires more
contrast and fine enhancements [4]. Its multimedia applications are also increasing, wherein all
multimedia, e.g., images, videos, and animation require high definition when the SR functionality is
involved [5]. Face hallucination must have the following constraints:

1. Data constraints: The output image of face hallucination must be similar to the input after
completion of smoothening and downsampling.

2. Global constraint: It must have the same features of the human face, e.g., mouth, nose, and eyes.
The face features must be steady.

3. Local constraint: The final image must have the exact characteristics of a face image with the
local feature.

Video surveillance cameras are used widely in many places, such as banks, stores, and parking
lots, where intensive security is critical [6]. Details of facial features obtained from the surveillance
video are essential in identifying personal identity [7]. However, in many cases, the images obtained
from the surveillance cameras cannot be well identified due to the low resolution of facial images that
cause the loss of facial features [8]. Thus, to obtain detailed facial features for personal recognition,
it is necessary to infer a low-resolution (LR) facial image to a high-resolution (HR) using by face
hallucination or face super-resolution [9].

Such techniques are applied in a variety of essential sectors, e.g., medical imaging, satellite imaging,
surveillance system, image enlarging in web pages, and restoration of old historic photographs [10].
Due to limited information on image identification, reconstruction and expression analysis is a
challenge to both humans and computers. Under some circumstances, it is impossible to obtain image
sequences [11]. Several super-resolution reconstruction (SRR) researches have been proposed, relying
on two approaches: reconstruction-based and learning-based approach [12]. The reconstruction-based
approach employs multiple LR images of the same object as an input for reconstructing an HR image.

In contrast, the learning-based approach uses several training samples from the same domain
with different objects to reconstruct the HR image [13]. An advantage of the learning-based approach
is its ability to reconstruct the HR image from the single LR image. Learning-based super-resolution is
applied to human facial images [14]. Several related facial hallucination methods have been proposed
in recent years. Learning-based methods have acquired more considerable attention as they can
achieve high magnification factors and produce positive super-resolved results compared to other
methods [15].

The related facial hallucination methods may be used on position-patches to improve image
quality [16]. Such methods perform a one-step facial hallucination based on the position-patch instead
of neighbor-patch. A patch position is one of the learning-based approaches that utilize the facial
image, as well as image features, to synthesize high-resolution facial images from low-resolution
ones [17]. In comparison, neighbor patches are used widely in face hallucination. The reconstruction
of a high-resolution facial image could be based on a set of high and low-resolution training image
pairs [18]. The high-resolution image is generated using the same position image patches of each
training image [19]. This method can be extended using bilateral patches [20]. The local pixel structure
is learned from the nearest neighbors (KNN) faces. However, there are some uncontrollable problems
regarding this method, i.e., the facial images captured by the camera (i.e. LR and facial hallucination)
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are limited to frontal faces [21]. Therefore, it is practically significant to study how to create HR
multi-viewed faces from LR non-frontal images.

As a sequence, a method called the multi-viewed facial hallucination method based on the
position-patch was developed in [22]. It is a simple face transformation method that converts an LR
face image to a global image, predicting the LR multiple views of that given LR image. Based on
the synthesized LR faces, facial details are incorporated using the local position-patch. Meanwhile,
the traditional locally linear embedding (LLE) [23] technique, when applied in such a hallucination
method still faces a problem related to the determination of the optimal weights. Such weights are
defined using a fixed number of neighbors for every point [24]. This is not practical for real-world
data because the number of neighbors in each point is not equal to the other point. In that study,
multi-view face hallucination using an adaptive locally linear embedding technique was proposed for
efficiently reconstructing high-resolution face images from a single low-resolution image [25]. The
optimal weights determination was applied to manipulate the non-frontal facial details. By feeding
a single LR face in one of up, down, left, or right views to the proposed method, the HR images are
generated in all views [26].

The critical value of the mapping coefficient in LR to HR is computed in the TRNR [27]. Accuracy
is maintained in the training vector using subspace matching, and data with dissimilar scales are
computed for representation. The weighted coding methodology is used to evaluate the noisy image
as input. Generalized adversarial related networks are used to evaluate the quality of the image using
the super-resolution strategy [28]. Dissimilar types of global priority related methodologies prevent
the data from segregating into tiny decomposed elements from the input image [29]. The neighbor
embedding [30] methodology was used to resolve the natural images, according to the geometry LR
patch space construction. The LR training set may be applied to the HR space to demonstrate the
image patch. The least-square regression methodology was used to implement location-based patches
to regularize coefficient representation to get the most accuracy [31].

The drawbacks of the related methods include not being suitable for global face images
while performing super resolving generic image patches. They have minimized accuracy and
are time-consuming. While processing the minimized resolution image, the guaranteed output is not
achieved. Therefore, the main objectives of that proposed method are:

(a) Using a hybrid methodology, where low-resolution images can be converted into high-resolution
based images.

(b) Reducing misalignment variations using the local geometric co-occurrence matrix model.
(c) Every image with random transformation for each pixel will minimize the computational

complexity and minimize the loss to avoid degenerate solutions.
(d) Maintaining a high amount of accuracy.

Therefore, this paper proposed a new integrated approach based on the iterative super-resolution
algorithm and expectation-maximization for face hallucination. Training global face sparse
representation was used to reconstruct images with misalignment variations after a local geometric
co-occurrence matrix. In the testing phase, we propose a hybrid method, which is a combination of
the global sparse representation and local linear regression using the Expectation Maximization (EM)
algorithm. Therefore, this work recovers the high-resolution image of a corresponding low-resolution
image. Simulation results proved that the proposed work performed well in various performance
metrics compared to related works.

The paper is organized as follows: The proposed system with modules such as global face model
learning, local geometric co-occurrence model learning, and the expectation-maximization algorithm
is introduced in Section 2. The results and discussions are in Section 3, and finally, the conclusion and
the future enhancements are given in Section 4.
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2. Proposed Method

2.1. Main Ideas

Sparse representation is the existing method for super-resolution, which is not appropriate for
global face images, as we need to explore non-linear information hidden in the data. Moreover, the
available Eigenface model and Markov network model have very low accuracy. The processing
step starts when the low-resolution image is interpolated to the size of the target high-resolution
image [11]. The low-resolution interpolated image is a blurred image that is deficient in high-frequency
information, and it is used as a preliminary estimation of the target HR image. Then, the image will be
divided further into non-overlapping image patches that are not separate. The framework uses the
generated patches to identify the image, which is most matched by searching a training data set of
low-resolution and high-resolution image patches. The selected high-resolution image is generated to
study high-resolution information. Finally, the trained high-resolution image and the interpolated
images are combined to estimate the high-resolution target image. The embedded space is learned for
producing solutions with representation, distinct solutions for the same functionality, and picking the
group of embedding vectors. Therefore, mapping within the embedding spaces is restricted. Figure 1
demonstrates the block diagram of SR based face hallucination.
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Figure 1. Block diagram of super-resolution (SR) based face hallucination.

The proposed algorithm was employed to discover the non-linear structure in the data. The
algorithm was developed under the assumption that any object is “nearly” flat on small scales. The
initial object was to map data from one space globally to another space by embedding the locations
of the neighbors for each point. For face hallucination, it was about LR and HR face image spaces.
The main idea of the proposed methodology was minimizing the reconstruction error of the set of
all local neighborhoods in the data set. The reconstruction weights were computed by reducing the
reconstruction error using the cost function in Equation (1).

δw =
∑n

i=1

(
xi −

∑k

j=1
wi, jxN( j)

)2
(1)

For face hallucination, such reconstruction weights are computed in the LR face image space and
then applied to the HR space to reconstruct the HR face image that corresponds to the LR input. The
proposed method normally contains the weight matrix W computed from the neighborhood in the
same space as the training samples. Similar to LLE, the ALLE (Adaptive locally linear embedding)
computes the weights from the space of training samples, which is built adaptively from only the
neighborhood of each input, not all training samples. Since some information contained in all training



Appl. Sci. 2020, 10, 718 5 of 22

samples can make the optimizer misleading to another optimal value, the threshold of similarity θ is
defined for building each subspace in Equation (2).∑k

i=1 di∑n
i=1 di

≤ θ (2)

Face image is represented as a column vector of all pixel values. Based on structural similarity,
the face image can be synthesized using the linear combination of training objects. In other words, a
face image at an unfixed view can also be reconstructed using a linear combination of other objects in
the same view aligned as computed using Equation (3).

Ip = WpLp (3)

There is no information to determine the construction coefficients at other views. After obtaining
the LR in all views, these LR images are hallucinated to the HR face images of all views using the
position-patch methodology. The proposed framework for multi-view face hallucination is to replace
the linear combinations in all processes to improve the performance of hallucinating face images in
multiple views. The framework means the number of the neighbors can be adapted for each input
patches, and this would relieve the deviation from optimal values. The symbols used to construct the
proposed framework are demonstrated in Table 1.

Table 1. Symbol description.

Symbol Description

δw cost function
wi, j reconstruction weights
xi linearly reconstructed

xN( j) linearly reconstructed for the neighbors
W weight matrix
θ threshold of similarity
di distance within the input sample and first training sample
Ip the given LR face at view p

Wp the construction coefficients at view p
Lp the training faces at view p

2.2. AIHEM Algorithm

Step 1: Consider a set of starting parameters in incomplete data.
Step 2: (E-step): Using the observed data from the data set approximates the values of the lost data.
Step 3: (M-Step): the complete data generated after the E-step is used for updating the parameters.
Step 4: Iterate Steps 2 and 3 until convergence.
The proposed model consists of 3 phases:

• Global face model learning.
• Local geometric co-occurrence model learning
• Iterative sparse representation optimization.

The training phase consists of two parts: The first part is the global face model learning and
local geometric co-occurrence model learning. We use a Gaussian mixture model-based estimator
for expectation-maximization, as the Gaussian mixture model uses a combination of probability
distribution and estimates the mean and standard deviation parameters, as demonstrated in Figure 2.

Step 1: Consider a set of starting parameters in the incomplete data, with a hypothesis that the
observed data is generated from a precise model.

Step 2: E-step—Using the observed data from the data set, approximate the values of the lost data,
which are used to update the variables.
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Step 3: M-Step—the complete data generated after the E-step is used to update the parameters,
i.e., for updating the hypothesis.

Step 4: Checks whether the values are converged, where the concept of convergence is an intuition
based on probabilities. When the probability of the variables has a tiny difference, then we say it has
converged, i.e., the values are matched. If it is matched, the process stops, otherwise Steps 3 and 4 are
iterated until convergence.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 23 
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2.3. Global Face Model Learning

First, we provide the input HR face images with misalignment and apply the online dictionary
to create the dictionary H for the HR face images. Figure 3 demonstrates the global face model
learning. To construct a dictionary to obtain face image “sparsity prior,” face images are preferentially
represented by the basis vectors of the same misalignment variation so that the super-resolved HR face
images are constrained in a subspace of certain misalignment variation.

HR face images are always highly dimensional (the dimension is 127 × 158 for an HR image and
50 × 62 for an LR image in this paper), and the training set needs to be large enough for training
the redundant dictionary. However, in practical applications, the computational complexity of the
sparse problem is very high with an extensive dictionary. Generally speaking, the computational cost
is proportional to the size of the dictionary H, i.e., a size of 1

4 nm, where n is the dimension of the HR
face image, and m is the number of basis vectors in the dictionary. Since the solutions are usually an
iterative method dealing with a large dictionary matrix, the storage requirements and computational
cost are significant. In our case, if all images with different misalignment variations were selected to
compose a dictionary, it would be difficult to solve the super-resolution problem. Thus, we considered
dictionary learning to compress a dictionary to reduce the operational burden. Batch-based methods
have problems dealing with an extensive training matrix effectively. This paper employed an online
dictionary learning method to process the images, one at a time, with low memory consumption and
lower computational costs. The number of basis vectors in the dictionary was 1024. The following
steps were required to perform online dictionary learning.

1. Assume the training set, such as the first dictionary and number of iterations.
2. Reset the past information.
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3. Find the sparse coding using LARS (least angle regression coefficient).

δt = min
δ∈Rk

1
2
||χt −Dit−1δ ||

2
2 + ϑ ||δ||1 (4)

Here δ is dictionary coefficient

ϑ is Lagrange’s multiplier.

χ is an Original data.

Di is the created dictionary.

Suffix 2 is a normalization factor.
4. Compute the learned dictionary,

Dit = min
Di∈C

1
t

t∑
i=1

(
1
2
||χi −Di δi ||

2
2 + ϑ ||δi||1) (5)

Here i is loop iteration.
5. Get the updated dictionary.
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2.4. Local Geometric Co-Occurrence Model Learning

The following steps are required to perform the local geometric co-occurrence model learning:

1. Consider the training set LR and HR face residue.
2. Get the local geometric feature representation for each patch.
3. Connect the HR and the corresponding LR geometric feature vectors for jointly learning the HR

and LR visual vocabularies.
4. Apply the affinity propagation clustering algorithm.
5. All data points are considered simultaneously as candidate cluster centers.
6. Messages are transmitted between the data points until an appropriate set of cluster centers and

corresponding clusters emerge.
7. The number of clusters also depends on a prior specification of how preferable each data point is

as a cluster center.
8. Consider all data points that have equal potential to be the cluster centers, so the preferences

of all data points are set to the same value that can be controlled to produce different numbers
of clusters.

In the testing phase, there were three steps to be followed. In the first step, we chose the LR
image. Then, the initialization and the optimization process were performed. The LR image was
given as input and it was initialized by interpolation. That image was compared to the global face
image and processed to the M-step. Hence, the initialized image was compared to the local geometric
co-occurrence model image, where that image was a process in the E-Step. Finally, the M-step and the
E-step image was optimized. The geometrical feature that was defined in this section represented the
high-frequency structures that are due to various intensity changes.

2.5. Demonstration of Execution Steps of the Proposed Method

Figure 4 demonstrates the execution steps for the proposed method.
Step 1: The modules are selected from the graphic user interface. In the training phase, there is

global face model learning and local geometric co-occurrence model learning. Here, two modules
can be selected. The first module is the training phase, and the second module is the testing phase.
Figure 5 illustrates the GUI (Graphical User Interface) of Module Selection.

Step 2: Selection of training phase, the second page opens, which is the GUI of the Training Phase,
which contains global face model learning and local geometric co-occurrence model learning. Figure 6
demonstrates the GUI of the training phase.

Step 3: Selection of the global face model learning. Two directories can be chosen as the
high-resolution directory, and they create the dictionary. Figure 7 illustrates the GUI of the global face
model learning phase.

Step 4: Choosing a directory for training the GUI for every image. Three poses are created so
that it will be easy to compare the images with the testing phase. Figure 8 illustrates the GUI for
directory selection.

Step 5: All images with different misalignment variations are selected to compose a dictionary.
This output shows that the dictionaries are created for each directory using online dictionary learning.
Figure 9 demonstrates the GUI of the HR face sparse representation dictionary.

Step 6: Steps in local geometric co-occurrence model learning. The first step chooses the LR
images and extracts features from the LR patches, and the second step chooses the HR images and
extracts the features of the HR patches. Figure 10 illustrates the GUI of global face model learning.

Step 7: The given global face input image is divided into LR (Low resolution) and HR (High
Resolution) patches that include individual parts such as the eye and nose region. Figure 11
demonstrates the selection of the LR image. Figure 12 illustrates feature extraction from the LR image.
Figure 13 demonstrates the selection of the HR image. Figure 14 illustrates feature extraction from the
HR Image.
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Step 8: On extraction of the HR and LR features from the input image, visual words are created
for both the LR and HR, separately. Figure 15 demonstrates the creation of visual words.

Step 9: Applying linear regression to the HR and LR visual words, the regression coefficients
are determined. The regression coefficients are calculated by finding the mean value of the RGB
(Red-Green-Blue) of the HR and LR image gradient features. Figure 16 demonstrates the application of
linear regression on visual words.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 23 
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Testing Phase:

Step 1: Choosing an LR Image. Figure 17 demonstrates choosing the LR image from the directory.
Step 2: The LR image should be applied for initialization by interpolation for resizing the LR

image, which is easy to compute using the global face model. Figure 18 demonstrates initialization for
interpolation. Figure 19 illustrates applying interpolation. After applying the initialization, the same
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LR image is split into patches. Figure 20 demonstrates initial image extraction. The LR image should
extract the features and give the gradient of the features. Then, the feature is compared to the local
geometric co-occurrence model of the training phase.

Step 3: Optimization.Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 23 
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The input LR image is initialized, and then the E-step is applied. In this step, the LR image is
given as the input and it is initialized by interpolation. The image is compared to the global face image,
and then it is processed to the M-step. Hence, the initialized image is compared to the local geometric
co-occurrence model image, and that image is processed to the E-Step. Finally, the M-step and the
E-step image is optimized. Figure 21 demonstrates the optimized image of the input LR image. The
technique works perfectly with an RGB image like the black and white image shown in Figure 22.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 23 

 
Figure 20. Initial image extraction. 

The input LR image is initialized, and then the E-step is applied. In this step, the LR image is 
given as the input and it is initialized by interpolation. The image is compared to the global face 
image, and then it is processed to the M-step. Hence, the initialized image is compared to the local 
geometric co-occurrence model image, and that image is processed to the E-Step. Finally, the M-step 
and the E-step image is optimized. Figure 21 demonstrates the optimized image of the input LR 
image. The technique works perfectly with an RGB image like the black and white image shown in 
Figure 22. 

 
Figure 21. Optimized image of the input LR image. 

 
Figure 22. Iterative sparse representation. 

Figure 21. Optimized image of the input LR image.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 23 

 
Figure 20. Initial image extraction. 

The input LR image is initialized, and then the E-step is applied. In this step, the LR image is 
given as the input and it is initialized by interpolation. The image is compared to the global face 
image, and then it is processed to the M-step. Hence, the initialized image is compared to the local 
geometric co-occurrence model image, and that image is processed to the E-Step. Finally, the M-step 
and the E-step image is optimized. Figure 21 demonstrates the optimized image of the input LR 
image. The technique works perfectly with an RGB image like the black and white image shown in 
Figure 22. 

 
Figure 21. Optimized image of the input LR image. 

 
Figure 22. Iterative sparse representation. Figure 22. Iterative sparse representation.



Appl. Sci. 2020, 10, 718 16 of 22

This method consists of training testing phases. The training phase consists of two parts. The first
part is global face sparse representation learning in which an online dictionary is used to learn the face
prototype dictionary. The second part is a local geometric co-occurrence before learning, where we
jointly clustered the HR and LR image residue patches and learned the regression coefficients from the
LR to HR visual vocabulary.

In the testing phase, when the LR face image is presented, an initial image was generated by
simple interpolation. An iterative sparse representation model using the learned dictionary was
proposed to generate an HR image. The representation coefficients were iteratively optimized using
the EM algorithm, in which local residue compensated to the global face using linear interpolation.

The training phase consisted of two parts. The first part was the global face model learning, and
the second was the local geometric co-occurrence model learning. In global face model learning, two
directories choose the high-resolution directory and create the dictionary. The images are selected from
the directory for training. In the database for every image, three poses were created so that it would be
easy to compare the images with the testing phase. All images with different misalignment variations
were selected to compose a dictionary. This output showed that dictionaries were created for each
directory using online dictionary learning. In the local geometric co-occurrence model learning, the
first step was to choose the LR images and extract the features from the LR patches. The second step
involved choosing the HR images and extracting the features of the HR patches.

The given global face input image was split into LR (low-resolution) patches that included unique
parts such as the eye and nose region. It showed the features of the LR image and that the images should
extract the gradient features. The given global face input image was split into HR (high-resolution)
patches that included unique parts such as the eye and nose region. It showed the features of the
HR image and that images should be extracted from the gradient features. The visual word was the
collection of all local geometric features. The visual words were created for both HR and LR images
separately. HR and corresponding LR geometric features were joined together for learning the HR and
LR visual words. Regression coefficients were determined by applying linear regression to the HR and
LR visual words. The regression coefficients were calculated by finding the mean value of the HR and
LR image gradient features. In the testing phase, the global and local geometric features are involved.
During the testing phase, three steps should be followed. The first step is choosing the LR image. Then
the initialization and the optimization processes are performed.

The LR image should be applied for the initialization by interpolation, for resizing the LR image.
It is used to compute the global face model. After applying the initialization, that same LR image is
split into patches. The LR image should be extracted from the features, and it gives the gradient of
the features. Then the feature is compared to the local geometric co-occurrence model of the training
phase. The input LR image is initialized, and then the E-step is applied. In this step, the LR image is
given as input, and that is initialized by interpolation. Then the image is compared to the global face
image, after that the image is processed to the M-step. Hence, the initialized image is compared to the
local geometric co-occurrence model image, where that image is processed to the E-Step. Finally, the
M-step and the E-step image are optimized. The Kalman filter is used during the image optimization
process. It is very effective in performing computational operations with linear filter modeling. It
can produce an estimation of the current states of the system to remove the noise in the image. The
main goal of utilizing the Kalman filter is to predict the position of a particular area of an image to
be evaluated during the image optimization process. The expected position measures the prediction
for the identifying area and it is identified using the variance and the confidence level. Building
robust dictionaries is required to recover the high-resolution images and remove the dark regions of
the images.

3. Performance Evaluation

The implementation requires an i3 processor with a 4GB RAM on MATLAB R2018b using
the Windows 7 operating system. The proposed method was compared to related methods, e.g.,
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SRGAN [28], TRNR [27], and LSR [26]. Here, the time taken analysis is denoted by the training phase
image value. Each individual has five different views (left, right, up, down, and frontal views) under
the same light conditions. These face images were aligned manually using the locations of three points:
centers of the left and right eyeballs and the center of the mouth. Some aligned face images were
cropped to 32 × 24 pixels for low-resolution face images, and to 128 × 96 pixels for high resolution
face images. Based on the same training sets, the proposed method was compared to related methods.
Each input face image was generated into five different outputs of LR, synthesized LR face images,
and HR face images according to the framework. Table 2 demonstrates the list of PSNR values of the
hallucinated image with an input face image on the frontal view. The value of K is 100 and θ = 0.1.

Table 2. List of PSNR values of the hallucinated image—frontal view, K = 100, and θ = 0.1.

Views SRGAN TRNR LSR AIHEM

Frontal 31.94 32.49 32.67 32.89
Up 25.32 26.98 26.96 29.94

Down 25.11 26.59 26.71 26.80
Left 30.45 31.13 31.65 32.47

Right 26.67 28.40 29.11 30.19

Table 3 demonstrates the list of PSNR values of the hallucinated image with an input face image
on the up view. The value of K was 200 and θ = 0.2. Table 4 demonstrates the list of PSNR values
of the hallucinated image with an input face image on the down view. The value of K was 200 and
θ = 0.2. Table 5 demonstrates the list of PSNR values of the hallucinated image with an input face
image on the left view. The value of K was 200 and θ = 0.2. Table 6 demonstrates the list of PSNR
values of the hallucinated image with an input face image on the right view. The value of K was 200
and θ = 0.2. The threshold of similarity was used to find the similarity within a collection of objects.
It contained several factors to determine scalability and minimize computational cost. In the testing
phase, it generated the low-resolution input images to high-resolution images. The semantic class of
the image was essential for solving within the inherent class to achieve the improved result. In-depth
features can be implemented to increase the accuracy.

Table 3. List of PSNR values of the hallucinated image—up view, K = 200, and θ = 0.2.

Views SRGAN TRNR LSR AIHEM

Frontal 29.55 30.04 30.84 31.30
Up 31.62 33.64 33.98 34.18

Down 27.44 28.74 28.78 28.88
Left 31.53 32.92 33.56 34.68

Right 30.82 31.36 31.42 31.75

Table 4. List of PSNR values of the hallucinated image—down view, K = 200, and θ = 0.2.

Views SRGAN TRNR LSR AIHEM

Frontal 28.78 29.61 31.52 32.93
Up 27.98 28.34 29.14 30.75

Down 32.15 33.20 33.89 34.17
Left 33.91 34.61 34.65 34.68

Right 31.87 32.70 33.25 34.47
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Table 5. List of PSNR values of the hallucinated image—left view, K = 200, and θ = 0.2.

Views SRGAN TRNR LSR AIHEM

Frontal 30.93 31.67 31.98 32.39
Up 29.35 30.55 31.12 31.84

Down 27.24 28.19 29.46 30.82
Left 32.78 33.44 33.78 34.29

Right 31.56 32.28 32.29 32.30

Table 6. List of PSNR values of the hallucinated image—right view, K = 200, and θ = 0.2.

Views SRGAN TRNR LSR AIHEM

Frontal 26.54 26.98 27.43 28.76
Up 30.25 30.54 30.55 30.56

Down 26.12 26.23 26.23 26.24
Left 28.11 28.56 30.16 31.46

Right 32.45 33.12 33.34 33.75

In Figure 23, the accuracy is high because all images are performed by the training phase so
that there is no error rate. The precision rate and recall rates are also equally high. Running time for
evaluating the efficiency of the proposed methodology was compared to the related methodologies.
The proposed method ran faster than the related methods because of its fast optimization techniques.
Figure 24 demonstrates the running time. The experimental results showed the higher quality of
reconstructed images of the proposed framework over the enhanced methods with interpolation.
High-resolution face images of five different views were generated from a single low-resolution face
image. According to the experimental results, the reconstructed image was more accurate if the view of
the input image was the same as that of the output. Particularly, frontal, up, and down views achieved
better estimations than others. The results of the proposed method showed superior reconstruction
quality of the HR face image over other related methods in both visualization and PSNR values.
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The proposed AIHEM methodology was based on the EM algorithm, which is non-deterministic;
thus, the performance evaluation was performed multiple times using standard deviation values.
The standard deviation value was measured to obtain the PSNR value for the proposed method, as
compared to the related methods. The performance results may vary in several iterations of continued
evaluation, and the results are shown in Figures 25 and 26. The results showed a standard deviation of
10 and a standard deviation of 100, respectively.

The proposed method was a very effective technique and required fewer computational resources,
so the processing was easy to produce the solutions for the optimization problems. It is useful to
recognize and tune the data with predictable output. The performance improved compared to the
related methods, and it was straightforward to train the dataset. The measurement of accuracy is an
integral part of image classification when validating the proposed work. The vectors were used to
extract the features to achieve the highest amount of accuracy. The iteration model was used to classify
the image based on the similarity parameter from a pixel by pixel.
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The computational complexity of the proposed system was analyzed using the big oh notation
O
(
n2K M

)
, for the face hallucination methodology. The pre-processing and alignment methods were

crucial to reducing computational complexity. The performance was analyzed using a threshold-based
similarity that was 35 times faster than the other methods. The running time for the image in
the testing phase was 13.5 s while using the proposed mechanism. The proposed method had
a considerable development that attained a steady performance at a size of 20 × 20 pixel frame.
Whenever the size increases, the running time will also increase. To minimize the computational
complexity of the proposed algorithm, we maintained the size of the pixel frame as 20 × 20 pixels for
performance evaluation.

4. Conclusions

This paper proposed a new iterative face hallucination using the expectation-maximization based
iterative super-resolution algorithm. The M-step is a global face sparse representation model for
adaptively selecting proper basis vectors of misalignment variation to input an LR image. The E-step
uses an alignment-robust local geometric co-occurrence before compensating for the error generated
by the sparse global representation in the first step. The global and local methods are combined
iteratively. This iterative method not only takes advantage of both global and local approaches, but it
also combines two different strategies to handle the same misalignment problem. Experimental results
showed that the proposed method outperformed face super-resolution methods in terms of visual
quality. Using the existing system (i.e., sparse representation), the accuracy of the HR image was 80%,
but using the proposed method (global face sparse representation), the accuracy of the HR image was
85–90%. In the future, we will study various methods [32–43] and enhance the algorithm on posed
face images.
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