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Abstract: Humanity in the modern world is confronted with diverse problems at several levels.
The environmental concern is probably the most important as it threatens different ecosystems,
food, and farming as well as humans, animals, and plants. More specifically, salinization of
agricultural soils is a global concern because of on one side, the permanent increase of the areas
affected, and on the other side, the disastrous damage caused to various plants affecting hugely
crop productivity and yields. Currently, great attention is directed towards the use of Plant Growth
Promoting Bacteria (PGPB). This alternative method, which is healthy, safe, and ecological, seems to
be very promising in terms of simultaneous salinity alleviation and improving crop productivity.
This review attempts to deal with different aspects of the current advances concerning the use of
PGPBs for saline stress alleviation. The objective is to explain, discuss, and present the current
progress in this area of research. We firstly discuss the implication of PGPB on soil desalinization.
We present the impacts of salinity on crops. We look for the different salinity origin and its impacts
on plants. We discuss the impacts of salinity on soil. Then, we review various recent progress
of hemophilic PGPB for sustainable agriculture. We categorize the mechanisms of PGPB toward
salinity tolerance. We discuss the use of PGPB inoculants under salinity that can reduce chemical
fertilization. Finally, we present some possible directions for future investigation. It seems that PGPBs
use for saline stress alleviation gain more importance, investigations, and applications. Regarding
the complexity of the mechanisms implicated in this domain, various aspects remain to be elucidated.
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1. Introduction

The worldwide enhancement of both human population and the associated environmental
deterioration has the unfortunate influence that global food manufacture might soon become
unsatisfactory to nourish all of the world’s people. It is therefore crucial to increase farming productivity
within the next few decades [1]. On the other hand, in the natural environment, plants are constantly
exposed to various abiotic and biotic factors, which may affect their increase and yield [2]. Stress is
described as any external abiotic (salinity, water, heat) or biotic (herbivore) constraint that restricts the
level of photosynthesis and decreases a plant’s capacity to transform energy to biomass [3]. Especially,
abiotic factors are main constraints for global food security, food quality, and crop productivity [4].
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Salinity is recognized to affect almost one fourth of world cultivable land, a main cause
of desertification [5]. It is responsible for the degradation of 10 million ha of world farming
per year [6], influencing about 1 million ha in the European Union, mainly in the Mediterranean
countries. Various salt ions in the soil, that are dissoluble in water like chloride (Cl−), sodium (Na+),
magnesium (Mg2+), potassium (K+), bicarbonate (HCO3−), sulfate (SO42−), carbonate (CO3

2−),
and calcium (Ca2+) may cause salinization [7]. Salinization is a natural process in semiarid and
arid zones and may additionally be stimulated by anthropogenic practices. It significantly influences
land fertility [8], and therefore comprises a huge effect on food security and economy at local,
regional, and global levels [7]. Although plant tolerance to salinity varies with species and even
varieties as well as with biotic and abiotic factors, the growth of most of the plant cultures is negatively
influenced by salinity [9,10]. Excess accumulation of salts in the root zone often deteriorates the soil
properties, viz. physical, chemical, and biological to such an extent that crop production is adversely
affected [11]. In addition, excessive salinity in soil suppresses growth, decreases species diversity,
and alters the community composition of plants; however, the effect of salinity on soil microbial
communities is poorly understood [12].

Some of the microorganisms that live in close combination with the plant roots ensure a
significant function in improving plant growth [13], and/or in stress mitigation of crops cultivated
under salinity conditions [14]. Plant growth-promoting bacteria (PGPB) may be active through a
diversity of processes [15] including the regulation of the transcription of various genes and cellular
communication through quorum sensing [16], and mainly by production of various secondary
metabolites [17]. For instance, through the production of exopolysaccharides (EPS), indole acetic acid
(IAA), nitrogen fixation, and P-solubilization [18]. PGPB may form symbiotic relations with plants and
improve their performance in the face of salinity stress [19,20]. Moreover, PGPB are an environmentally
sustainable tool to mitigate the impacts of salinity on crop yields [2].

2. Implication of PGPB on Soil Desalinization

Soil hosts an enormous number of bacteria (often between 108 and 109 cells per gram of soil)
but only about 1% of those bacteria are culturable [21]. Soil microorganisms belong to various
groups of fungi, archaea, bacteria, and protozoa. Some of these microorganisms are recognized for
their capacity to tolerate and improve plant salinity tolerance [22]. To date, several bacterial genera,
like Streptomyces, Azospirillum, Clostridium, Alcaligenes, Bacillus, Rhizobium, Pseudomonas, Thiobacillus,
Serratia, and Klebsiella are recognized as PGPB working under saline conditions [23]. They are being
tested under field trials applied as a one species inoculant or as part of microbial consortia with very
encouraging results [24].

They may alleviate salinity stress by resynchronization stress-stimulated physiological
modifications in plants through different mechanisms [25,26]. Additionally, PGPB promoting
impact during stress conditions has also been proposed to be advantageous for crop effectiveness,
dry weight of root and shoot and root length, and the plant height [27]. The various ways in
which microbes stimulate plant growth and alleviate stress responses include efficient nutrient
mobilization in the soil, protection from phytopathogens, and improvement of soil structure and
quality by sequestration of toxic heavy metals. Microbes can also aid degradation of various
xenobiotic compounds [28]. The primary action of PGPM (plant growth promoting microorganisms)
is investigated as their role in maintaining osmotic balance, ion homeostasis, and turgor pressure to
combat the toxicity of salinity in plants [19]. The salinity-resistant microbial community improves
the health of salinity-impacted soil, maintains ecological functions, and sustains and promotes the
growth of plants [29]. Hence, the application of beneficial stress-tolerant microbes not only helps
in improving the microbial community structure but also in enhancing plant and soil health under
salinity. Further research will be required to reveal the hidden mechanisms of stress-tolerant microbial
diversity [30]. Moreover, various researchers have demonstrated that the associations between
rhizospheric microbes and stressed plants help the plants to adapt to their microenvironment [11].
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3. Impacts of Salinity on Crops

All crops may be killed by salt solutions if the amount is excessive. The salinity of a field is
such that individuals of a specific crop die, although most farming interests (and most research) are
focused on the impacts of sublethal salinities. A wide spectrum of physiological and biochemical
alterations of plants are induced by salinity, which causes lowered water potential in the soil solution,
ionic disequilibrium, specific ion effects, and a higher accumulation of reactive oxygen species
(ROS) [31]. Generally, the consequence of salinity was initially involved with NaCl, as these ions are the
most frequent reason for salinity in plants that have been established not in requirements of survival,
nevertheless, in its impact on plant increase [32]. Notably, salinity may reduce crop productivity [32].
Biomass yield is adversely associated and rapidly reactive to osmotic stress whereas the potency
of the subsequent membrane injury is determined by the level of salt fixation and the capacity to
compartmentalize the salts in diverse tissues [33]. In addition, salt influences density and germination
of plant cultures, and also crop development, decreasing yield, and, in the particularly difficult
cases, causing widespread plant death, decreasing the attribute of the usable water and restricting
absorption of nutrients [34]. It decreases grain productivity and seed set by affecting pollination.
Seed germination in glycophytes is severely inhibited under salinity due to both osmotic stress and
ionic toxicity stress [35]. In addition, in [36], several crops such as barley, cotton, bean, rice, and wheat
reduce their productivity considerably during saline stress. Similarly, earlier investigation, in [37],
mentioned a significant impact of salinity rates, varieties, and the correlations among yield and yield
constituents in rapeseed. For instance, in [38], in tomato the exhibition of salinity stress results in Na+

aggregation in style, ovaries, and anther intermediate layers that generated an improved survival of
the plant, level of flower abortion, and diminution of pollen number. In addition, several main field
crops like rice (Oryza sative L.), wheat (Triticum aestivum L.), sorghum (Sorghum bicolor L. Moench),
maize (Zea mays L.), sugarcane (Saccharum officinarum), and cotton (Gossypium hirsutum) show adverse
reaction against salinity [39].

4. Salinity Origin and Its Impacts on Plants

Salinity is a cumulative process over time and may have a natural origin (Figure 1) or may be
due to anthropogenic practices [39,40]. Different types of mineral salts (Na+, K+, Cl−, Mg, Ca, etc.) at
the origin of salinity in the soil and can prevent impacts from several sources such as climatic factors
(erosion and evaporation), and manufacturing. Hemophilic PGP (Plant growth promoting) bacteria
present in soil can alleviate salt stress, stimulate vegetal nutrition and growth through enhancement of
various vital plant mechanisms.
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Figure 1. Origin of salinity in the soil and the main impacts of salicylic acid produced by PGPB (plant
growth promoting bacteria) on plant primary metabolism.

Salinity is a consequence of inorganic salt solubilization, dust deposition, unbalance between
precipitation and evapotranspiration rates, or an increased capillary infiltration of saline underground
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water [41]. Salinization affects plant development when salt concentrations build up in the root
zone [40]. To maintain productivity under saline conditions, crops need higher water and fertilizer
inputs, which probably enhances soil salinity in the end [5], extending the zone affected by secondary
salinization [42].

Salinity is a two-phase stress to plants comprising a rapid osmotic phase followed by a slower
one related with ion accumulation [43]. During the first phase, salinity elicits disorder of water and
ionic homeostasis increasing the energetic costs of cellular metabolism [44,45] affecting, among others,
nutrient uptake [46,47], photosynthesis and respiration [48], lipid metabolism and protein synthesis [49,50],
phytohormone production, oxidative stress, gene expression, and long distance transport [51], which affects
plant seed germination and seedling survival, as well as plant phenotype. The plant osmotic response of
salinity stimulates physiological modifications in the plant that are similar to those generated by water
stress [52]. Apart from its influence in plant biomass accumulation, salinity may interfere in the process of
biomass partitioning between shoots and roots [44].

Plant resistance or tolerance to salinity involves the root capacity to restrain Cl− and Na+ uptake or
to induce their efflux, while maintaining the adequate uptake rates of essential ions such NO3 and K+ [51],
which may be associated with the accumulation of compatible solutes such as proline and soluble
sugar able to participate in the osmotic balance [45–53]. With varying salt concentrations, transcription
of genes responsible for osmoprotectant synthesis may express differentially in some HT-PGPR
(Halo-tolerant plant growth promoting rhizobacteria). For example, in Bacillus. amyloliquefaciens FZB42
trehalose and proline synthesis were found to be differentially expressed at 0 and 100 mM NaCl
concentrations facilitating stress adaption in A. thaliana [54].

4.1. Seed Germination

Plants exhibit great variability toward salinity resistance [55,56]. Many seeds, including those of
L. cossonianum, present their highest germination rate in distillated water and are extremely sensitive
to salinity [57,58]. Salinity delays the germination process in a process that is dependent on abiotic
and biotic factors such as light, temperature [59,60], and plant microbiome [61]. Overall, salt stress
adversely influenced seed germination; both osmotically via decreased water absorption or ionically
via the accumulation of Cl− and Na+ causing toxicity impact and an imbalance in nutrient
uptake [61]. It affects the sowing increase of plants by less or slow mobilization of preserve foods,
suspending the division of cells, injuring and enlarging hypocotyls [62]. For instance, germination
percentage in Lettuce (Lactuca sativa) showed substantial reduction with cumulative salinity up to
14.1 dS m−1 NaCl. The essential time for germination likewise increased with increasing salinity
levels. The seedling growth was meaningfully repressed [63]. Furthermore, the study conducted by
Bagwasi et al. [64], showed that salinity influenced seed germination of different wheat and barley
cultivars. Although, all cultivars showed a reduction in total germination percentage, with increasing
salinity levels from EC 0 to EC 20 dS m−1. Wheat cultivars outperformed barley cultivars at EC levels
0, 4, 8, 12, and 16 dS m−1.

4.2. Primary Metabolism

While a plant endures abiotic stress, a variety of genes are switched on or off, leading to changes
in many metabolites and proteins, responsible for triggering salinity stress defense [65].

4.2.1. Photosynthesis

Photosynthesis is a major essential physiological process and is potentially influenced by
salinity at all stages [66,67]. However, disentangling the cause–effect nexus between photosynthesis
inhibition and decline in sink demand due to salinity is controversial. Many roads lead to
photosynthesis inhibition by salinity including increased oxidative stress-related impacts [68],
changes in chlorophyll concentration [69,70], and osmotic stress. The water deficit associated with
salinity induces a reduction in leaf cells turgor and the concomitant stomata closure, decreasing stomatal



Appl. Sci. 2020, 10, 7025 5 of 27

conductivity (gs) and the intrinsic CO2 concentration, which leads to reduced carboxylation rates
by RuBisCo (ribulose-1,5-bisphosphate carboxylase) [69]. Moreover, the response of the sesame
(Sesamum indicum L.) plants to salinity stress was analyzed by estimating the levels of photosynthetic
enzymes activity. Photosynthetic rate, activities of RuBisCo, and sucrose phosphate synthase (SPS)
decreased with increasing salinity. In addition, the activities of Dichlorophenol Indophenol (DCPIP)
reduction were decreased [71].

4.2.2. Respiration

Respiration and mitochondrial metabolism ensure a central function in establishing plant salinity
resistance like ion removal, osmotic resistance, and ROS (reactive oxygen species) responses [72].
Salinity has been shown to contribute to increased respiration levels in a large variety of plant
species [73,74]. In some cases, the increase in the respiration rate is related with changes in the
plasmalemma composition and permeability, higher protein turnover [75], and higher energetic
costs associated with ion homeostasis. Nevertheless, respiration itself can be inhibited by salinity
through distinct sensitivity of the enzymes involved in the respiration pathway towards salinity [76,77].
For example, salt treated wheat leaves exhibit higher respiration rate and extensive metabolite changes.
The activity of the tricarboxylic acid (TCA) cycle enzymes pyruvate dehydrogenase complex and the
2-oxoglutarate dehydrogenase complex were shown to be directly salt sensitive. Multiple lines of
evidence showed that the γ-aminobutyric acid (GABA) shunt was activated under salt treatment [78].

4.2.3. Senescence

Under long-period exposition to salinity, plants undergo ionic stress, which may contribute to
premature senescence of mature foliage and hence a decrease of the required photosynthetic zone to
maintain biomass accumulation and growth [79,80]. Salt-stimulated senescence is claimed to be due to
ionic pressure of high Na+ quantities and nutritional deficiencies like a decreased cytoplasmic K+: Na+

proportion [81,82] causing chlorosis and necrosis in mature leaves by destruction of protein production
and disruption of enzyme function [83]. In rice leaves, salinity affects several senescence-related
variables including membrane permeability, fluorescence of chlorophyll a, and leaf concentration of
chlorophyll and protein. The anticipation of increased activity of senescence characteristic enzymes
such as isocitrate lyase (ICL) can be observed under saline conditions [84,85]. The involvement of ICL,
a central enzyme of the glyoxylate cycle [86], in the crossroads between salinity and senescence was
demonstrated in an experiment showing that the AtICL knockout tomato (Aticl mutant without ICL
activity) was much less tolerant to salinity than the isogenic wild type [85].

4.2.4. Flowering

Flowers produced higher P and Zn comparably to the control crops, while the targeted vegetation
was exposed to either salinity levels. Salinity reduced the composition of Mg in flowers at 100 mM
NaCl concentration. Interestingly, 50 mM NaCl salinity generated Ca in flowers approximately three
times relative to the control of crops not treated with salt [87]. In addition, phonological findings
of bud flowering and forming were found in plants handled with high amounts of NaCl occurred
in contrast to control plants [88]. For instance, in [89], with rising salinity rates, days to flowing
were expanded, however, in rapeseed rice varieties days to maturation were reduced. Additionally,
early flowering in plants species decreased dry matter, enhanced root, shoot ratio as a response to
salinity stress [90]. On the other side, plant tolerance to salinity stress requires biochemical modifications
in the metabolism of nitrogen and carbon including improvements in proline and polyamines [91].
Production of polyamines in bacteria and plants starts with the production of putrescine, diamine,
from decarboxylase ornithine (ODC) or arginine decarboxylase (ADC). During vegetative growth ADC
activation was correlated with smaller internodes, necrotizing and (in one line) rapid flowering [92].
Additionally, differences in flavonoid, polyphenol, and pro-anthocyanidin compositions have been
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observed in C. tinctorius flowers during salt stress at two improvement phases including full and post
flowers formation [93].

4.2.5. Protein Synthesis

Many plants respond to salinity through modifications in their protein status. Salinity may interfere
with the regulation of protein activity, protein synthesis, and even with the availability of the substrates
needed for protein synthesis (namely N). Cellular suspensions of Nicotiana tabacum and Citrus sp.
plants sensitive to salinity have distinct proteomic profiles under saline and non-saline conditions [94].
The disturbance of protein synthesis tends to be a major cause of Na+ damage [82]. Similarly, high Na+

concentration or Na+:K+ ratio may disturb several enzymatic mechanisms. K+ stimulates and/or
regulates the activity of more than 50 enzymes and is a critical component of the protein synthesis as it
attaches tRNA to ribosomes [95].

Salinity inhibits root nitrate uptake [96] and thus the availability of N needed for protein
synthesis [97,98], as it was evidenced by the decrease of free amino acid concentration in Glycine max
roots under salinity [99]. However when grown under saline conditions tolerant plants may
increase the concentration and/or the activity of key proteins that contribute to salt resistance
reactions, such as heat shock proteins (HSPs), ribulose-1,5-bisphosphate carboxylase (RuBisCo),
antioxidative enzymes, late embryogenesis abundant (LEA) proteins, glycerate dehydrogenase,
glucose-6-phosphate 1-dehydrogenase, glutamate synthase, NADPH-producing dehydrogenase,
and glutamine synthetase [100].

4.2.6. Lipid Metabolism

The fine tuning of plant lipid profile is a key tool in crop adaption to environmental changes,
but the process by which lipid contouring modulates a respond to salt stress is not clear [101,102].
Salinity causes structural changes in the lipid composition of the plasma membrane, like increasing the
degree of free fatty acid saturation and enhancing concentration of free sterols, leading to a reduction
in cellular membrane fluidity [103]. For example, the lipid composition of the root plasma membrane
of Phaseolus vulgaris grown under salinity differed in phospholipid groups, saturated and unsaturated
fatty acids, and sterol groups from that of plants grown under non-saline conditions [104]. Furthermore,
the intensity of salinity induced a considerable decrease in overall lipids derived from the black cumin
seed [105].

Salinity induced oxidative stress in C. roseus cells, as seen by the rise in lipid peroxidation, increased
lipoxygenase (LOX) function, following antioxidant enzyme activation [104]. Plant response to salinity
may decrease the concentration of sterol ester, oleic acid, and free fatty acids, and reduces that of linoleic
acid (C18H32O2) and triacylglycerol [106]. Under salinity, the expression of the genes involved in the
lipid metabolism may suffer changes [107]. Novel discoveries have greatly expanded the importance
of autophagy during lipid metabolism. An emerging model suggests that autophagy can operate in
various aspects of lipid and membrane recycling. Current evidence also highlights the complexity
of this system, given that autophagy is required for energy-producing organelle maintenance under
stress conditions. This is of paramount importance because the removal of damaged and potentially
ROS over producing energy organelles can circumvent cell death and promote lipid catabolism [108].

5. Impacts of Salinity on Soil

The remediation of salt-affected soils is difficult and costly [109], if not impossible. Globally, salinity has
a negative effect on crucial soil mechanisms like respiration, degradation of residues, denitrification,
nitrification, root function, and soil biodiversity [110], by affecting crucial soil enzyme activities during stress
that were implicated in soil degradability, nutrients cycling, organic matter composition, and intercellular
metabolic responses of living organisms [34]. The activity of soil enzymes tends to decrease with
salinity, despite the rate of inhibition being variable according to the enzyme and the salinity level [111].
Salinity and, in particular, sodium contributes to soil degradation, particularly of clay agglomerates,
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which generally leads to structure loss, reduced hydraulic conductiveness, disrupted air and water flow,
erosion, and run off [112].

Salinity may lead to higher soil moisture content; however, it significantly decreases the osmotic
potential of the soil solution, resulting in lower water absorption by the plants and other living
organisms [113]. A soil may be identified as salt-impacted when white salt-cross and/or salt-spots
are present on/in the bare soil; there is persistent or sustained waterlogging following rainfall;
crumbling and road erosion are visible; surface water is unpalatable to animals and humans; and the
appearance of salt crystals under extremely saline lands [114].

Salinity affects the distinct functional characteristics (biological, chemical, and physical) making
soil recovery very difficult. In contrast with other current alternatives, organic fertilization seems
to be extremely efficient as a mitigation solution to the problems outlined above [115]. For instance,
saline-sodic soil has many negative characteristics including high values of electrical conductivity
(EC), sodium adsorption ratio (SAR), and exchangeable sodium percentage (ESP) [116]. Additionally,
high levels of soil salinity and sodicity can limit the activities of enzymes and microbes [117].

5.1. Soil Biological Activity

Salts are an important component of soil, and certain salts (e.g., nitrates, sulfates, phosphates) are
critical for soil fertility [118]. Salt-impacted soils contain high concentrations of soluble salts in both
the micro and macro-pores [119]. Therefore, soil salinity inhibits soil respiration and C mineralization,
as demonstrated by lower the CO2-C evolution rates of saline soils in comparison to non-saline
soils [120]. Similarly, the osmotic potential of the soil solution increases and thus minimizes the
potential plant and microbial water availability [121]. Saline soils have higher permeability to soluble
salts and lower potential assimilation rates of nutrients like N [122]. Additionally, the absorption of
nutrients is inhibited by ion competitiveness and higher pH, whereas the weak soil structure generated
by high sodium levels adversely affects soil water quality and plant growth [123].

5.2. Soil Microbial Function and Diversity

In good conditions, 1 g of soil may incorporate 600 million bacteria appertaining to 15,000 or
20,000 distinct species. These amounts reduce to 1 million bacteria in desert soils comprising between
5000 and 8000 species [124]. This soil microbiota plays a vital role in preserving and/or improving the
consistency of the soil by controlling the degradation of organic matter and the supply of nutrients,
facilitating the production of macro-aggregates [125]. However, soil microbiota responsible for the
formation and maintenance of soil aggregates are vulnerable to environmental changes because of
their wide area to volume ratio, highly permeable cell membrane, and high turnover rates resulting in
a quick reaction to nutritional supply variations [126].

It is evident that salinity decreases microbial activity, microbial modifications, biomass, and the
structure of the microbial community [127,128]. Furthermore, knowing the microbial group structure
and its role in saline soil is a key ecological goal, as it will help to explain the biological regulatory
processes for the nutritional cycles in saline soil [129]. Many other studies concentrate on the
examination of the effects of salinity on microbial communities [130,131]. Salinity has an adverse
effect on quantity, distribution, structure, and functionalities of the microbiota [132]. Additionally,
salinity was observed to lower soil microorganism’s biomass and microbial growth rate [133,134].
The disruption of the symbiotic relationship between plant and microorganisms is another damaging
consequence of salinity. For instance, disruption in plant interaction with bacteria is induced by
deterioration in proteins implicated in the anchoring and adsorption phases of the symbiotic interactions
between bacteria and plant roots [135]. Salinity often has an adverse impact on biotransformation of
the biogeochemical cycles like mineralization of N and C [129]. Microbes are engaged in nitrification,
oxidation, ammonization, nutrient absorption, and other processes that contribute to soil organic
matter nutrient cycling and degradation [136].
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Fungi are usually considered to be less salinity tolerant than prokaryotes. However, this claim
is only because only prokaryotes are tolerant to extreme levels of salinity [137]. However, in fact,
the total number of soil fungi is significantly reduced with increased levels of salinity. The total
number of Actinobacteria and bacteria also decreases under salinity, but only at salinity levels above
5% [138]. The low osmotic potential characteristic of soil salinity declines hyphae production and
spore germination, and induces modifications in the mycelium morphology [139]. Archaea is one
of the microbial groups reported to increase its relative abundance in extremely saline ecosystems.
However, the functional relevance of the association between plants and archaea is still unknown,
since only a few reports of the association between archaea and plants (rice, maize cress, Abutilon,
Suaeda nudiflora, and Sporobolus) have been established [140,141].

6. Halophile PGPB for Sustainable Agriculture

In the rhizosphere, plant–microorganism relationships are indicators of plant health, production,
and soil fertility. Particularly, plant growth-promoting bacteria (PGPB) are microorganisms that could
also promote plant increase and prevent plants from infection and abiotic factors via a wide range
of processes. Those PGPBs that develop more intimate interactions with plants, like the endophytes,
may be more effective in plant growth improvement [16]. Usage of PGPB as an important part of
farming activity is an innovation whose time has arrived [1]. More particularly, some halophilic
bacteria were proved able to alleviate plant salt stress, improving the development and productivity of
crop production under salinity [142].

PGPB represent a possible solution to mitigate salinity-induced plant stress [143]. The impact of
five plant growth stimulating halotolerant bacteria on wheat growth [142] revealed that bio-formulation
of these halotolerant bacterial strains can improve salinity stress (80, 160, and 320 mM) in wheat
seedlings, resulting in a 70% improvement of root length comparatively to negative controls. In addition,
variations in the bacterial community formulation with the soil salinity were observed, and attention is
growing in experiments regarding functional interactions between plants and microbes that lead to salt
stress tolerance [25]. The use of microorganisms for saline soil restoration may be an environmentally
sustainable, safer, and more efficient method, as the halophilic microorganisms have the potential to
eliminate salt from saline soils [144]. Such microbes also provide exceptional prototypes for studying
the stress resistance, adaptation, and response processes which might consequently be integrated into
agricultural crops to cope with the pressures caused by climate modification [145].

6.1. Biofertilization

PGPB can successfully be manipulated in the agro-farming system as alternative strategies to
control most of the stated abiotic stresses faced by crops and to increase their yields and would lead
to the minimal use of synthetic fertilizers [146]. Arbuscular mycorhizae fungi and plant growth
promoting bacteria are beneficial microbes in the soil which provide assistance to plants in many ways.
Directly they are concerned with hormones and organic compounds synthesis while indirectly they
reduce salinity stress. They can be employed in agriculture as biofertilizers [147]. Improved plant
growth under saline soils has been attained with the use of PGPB [148]. Significant increase in growth
attributes of rice plants with Bacillus amyloliquefaciens as compared to non-inoculated control plants
under salinity stress [149]. Bacillus licheniformis SA03 inoculated with Chrysanthemum plants grown
under saline-alkaline conditions significantly decreased saline-alkaline stress in plants along with
augmented biomass and survival rates via mediating cellular ABA (abscisic acid) levels [150].

6.2. Biopesticides

Many strains of PGPB have been found to be positively linked with suppressing diverse plant
pathogens (both in the rhizosphere and above ground) by producing antagonistic metabolites and
enhancing the immunity potential of crops to pathogenic stress [151]. Moreover, Nadeem et al. [152]
have comprehensively provided evidence about the growth promotion and biocontrol potentials of
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AMF and PGPR in agriculture. Egamberdieva et al. [153] found that Pseudomonas chlororaphis TSAU13
and P. extremorientalis TSAU20 reduced the Fusarium infection by 23% and 14% under non-saline
conditions and by 42% and 25% under saline conditions, respectively. Tewari and Arora [154] reported
EPS (exopolysaccharides) and salicylic acid producing P. aeruginosa PF23EPS+ showed biocontrol
against M. phaseolina up to 500 mM NaCl.

6.3. Bioremediation

The concept of using PGPB to facilitate bioremediation of contaminated soil has only
recently emerged. For example, Pacwa-Płociniczak et al. [155] proposed that two petroleum
hydrocarbon-degrading Rhodococcus spp., with plant growth promoting traits, are likely to be good
candidates for the phytoremediation of petroleum hydrocarbon contaminated sites. In recent years, the
ecological functions of halophyte symbiotic microorganisms, including the growth promotion of host
and crops, enhanced salt tolerance, and joint phytoremediation of contaminated soil, have been clarified
by increasing studies [156,157]. As bioremediation agents, Streptomyces (in particular halophiles),
participate in alleviating the toxic effect of xenobiotics on plants, using the strategies previously
mentioned. Streptomyces are widely used in the remediation of soils contaminated with different
pollutants. Moreover, they are studied as PGP in salt-affected soils, where they provide plants with
salt resistance to face this major problem for agriculture [158,159].

Table 1 illustrates various roles of PGPB in enhancing yield and growth of different plants/crops
under salt stress.

Table 1. Various roles of PGPB (Plant growth promoting bacteria) in enhancing yield and growth of
different plants/crops under salt stress.

Crops PGPB NaCl (mM) Beneficial Effects Reference

Lettuce Azotobacter chroococcum 50 and 100 Enhanced the radicle lengths and plumule of
germinated seeds [160]

Sunflowers Pseudomonas fluorescens
CECT 378T 100 Fresh weight significantly improved by more than 10%;

K+/Na+ proportion [161]

Strawberry Bacilus sp. 35 Ameliorated fruit productivity, leaf water amount, ionic
constitution, and membrane permeability [162]

Wheat Serratia sp. SL-12 150–200
Improvement in plant increase, as determined by factors

like root/shoot length, dry/fresh weight, and augmentation
of photosynthetic pigment

[163]

Maize Trichoderma
harzianum Th-6 50–150

Improves water composition and stomatal conductance,
elevated pigment amounts, and increases photosynthetic

performance
[164]

Barley Azospirillum
brasilense NO40 250 and 350

Mitigate photosynthetic pigments in the roots and shoots,
photosynthetic effectiveness, transpiration level, stomatal

conductance, agglomeration of Mg, P, K, Fe, and Ca
[165]

7. Mechanisms of PGPB (Plant Growth Promoting Bacteria) towards Salinity Tolerance

The key mechanisms involved in PGPR (plant growth promotion rhizobacteria) salinity
tolerance include specific membrane or cell wall structures, draining ions out of the cell through
salt efflux, or modification of their intracellular environment through accumulation of nontoxic
organic osmolytes, and adapting enzymes and proteins to function under high solute ion
concentrations [25]. The ability of PGPB to improve crop yields during salt stress includes many
direct and indirect pathways such as ferrous iron minerals and inorganic phosphate solubilization,
exopolysaccharides and biofilms synthesis [166], production of phytohormones [167], increased ACC
(1-aminocyclopropane-1-carboxylate) deaminase activity [168], and nitrogen fixation [169]. The Figure 2
shows PGPB (Plant growth promoting bacteria) salinity resistance strategies and mechanisms of plant
growth improvement under salt stress. PGP bacteria may survive high salinity via three main
mechanisms (pumping out the cell, intracellular adaptation processes, and cell wall construction).
These bacteria stimulate plant growth during salt stress by means of several mechanisms including
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phytohormones production, amelioration of nutrients uptake, ACC deaminase, P solubilization,
EPS synthesis, biofilms formation, and N2 fixation.
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7.1. Direct Mechanisms

7.1.1. Nitrogen Fixation

Nitrogen is an essential plant nutrient [170]. In particular, legumes are influenced by salt stress
frequently related to a lower growth of the host plant, weak symbiotic formation of root-nodule
microorganisms [171] with a decrease of the nitrogen-fixing capacity [172]. Symbiotic associations
of plants with soil microbes such as nitrogen-fixing bacteria (Frankia and Rhizobia) and mycorrhizal
fungi may have a positive impact on plant salt stress tolerance [173]. Additionally, stress-tolerant
rhizobial strains may help legume plants to preserve the level of N fixation and plant productivity [174].
Salinity tolerant Rhizobium bacteria are more efficient in promoting plant growth under saline
conditions [175]. Consequently, it is advisable to select indigenous rhizobial strains that are efficient
even under salinity [176]. For example, A. nilotica inoculated with a salinity resistant Rhizobia strain
was capable of maintaining an N-fixing rate of almost 70% at 12 dS/m compared to its highest fixing rate
(2 dS/m) [177]. The simultaneous treatment of cowpea seedlings with arbuscular mycorrhizal fungi
(AMF) and N-fixing bacteria like Azospirillum brasilense enhanced plant N concentration by 230% in
comparison to 151% and 94% in seedlings treated individually with N-fixing strains or AMF at 7.2 dS/m
salinity [178]. It has been shown that the association of stress-tolerant varieties and stress-tolerant
rhizobia can lead to synergistic benefits in legume plant development under saline conditions [179].
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7.1.2. Phosphate Solubilization

Phosphorus (P) is another essential nutrient needed by living organisms for transduction,
biosynthesis of macromolecules, energy transfer, respiration, and photosynthesis [180]. Most of
the soil phosphorus is found in the form of insoluble phosphates and phytate, which cannot be
used by plants [181]. Environmental factors are likely to affect the organization and efficiency of
phosphate-solubilizing microorganisms, particularly under conditions [182], namely the efficiency
of soil bio weathering of phosphates [183]. Recently it was highlighted that many microorganisms
(Pseudomonas, Erwinia, Achromobacter, Enterobacter, Flavobacterium, Serratia, Mycobacterium, Bacillus,
Escherichia, and Agrobacterium) improve their inorganic phosphate solubilization rates when NaCl is
present in moderate concentrations [184]. However, this beneficial effect of moderate saline conditions
is counterbalanced by the fact that salinity diminished the phosphorus adsorbed to soil particles and
inhibits phosphate absorption by plant roots [185].

Some PGPB are able to solubilize phosphate salts at high salinity levels (10% NaCl) [186]. It is
possible that this efficiency of PGPB under high salinity is related to the fact that the production of
organic acids responsible for phosphate solubilization (2-ketogluconic, gluconic, oxalic, acetic, citric,
succinic, and malic acids), are also responsible for a local decrease of the alkaline pH usually associated
with saline soils [187,188]. For instance, the isolate Pseudomonas stutzeri SGM-1 could grow at increasing
salt concentrations up to 12% w/v NaCl with wide temperature and pH ranges. Pseudomonas stutzeri
SGM-1 exhibited diazotrophy by growing on nitrogen free media along with expression of other PGP
traits such as phosphate solubilization. The amelioration of the salt stress to the Cicer arietinum plant
by isolate’s bio-fertigation was observed up to 300 mM of NaCl [189]. A novel halo-tolerant strain
Kocuria rhizophila Y1 was isolated from maize rhizosphere soil. This strain tolerated up to 10% NaCl
and showed growth promoting traits like phosphate solubilization [190].

7.1.3. Production of Phytohormones

Phytohormones play a crucial role in plant development and responsiveness to stress [191].
External phytohormones may help to improve crop productivity by improving biotic and abiotic
stress tolerance [192]. Phytohormones like salicylic (SA), abscisic acid (ABA), and jasmonic acids (JA)
also play key functions in plant response to salinity [193,194]. Particular enzymes that facilitate seed
germination and plant development are also responsible for enhancing the concentration of certain
phytohormones such as gibberellins (GAs) and indle-3-acetic acid (IAA) [195]. IAA is the major natural
auxin with a well-documented capacity to control certain aspects of plant performance [196].

IAA is involved in cell division and extension; and root initiation. The regulation of these processes
by IAA is negatively affected by saline conditions. Declining concentrations of IAA in the seedling
roots of constrained plants result in reduced and slower germination rates [197]. Additionally, IAA can
promote plant defense, for instances application of exogenous IAA decreased tomato infection by
Fusarium oxysporum f. sp. radicis-lycopersici [198]. For example, the IAA producing ability under salt
stress was assessed was observed to be 250 ± 0.1, 220 ± 0.1, and 200 ± 0.1 µg/mL for Rheinheimera sp.,
Rhizobium sp., and Bacillus subtilis, respectively [199].

Phytohormones, e.g., Gas and IAA, are considered as growth hormones, which enhance the
number of root tips, as well as root and shoot length resulting in improved nutrient absorption
and thus improved plant health during stress and non-stress conditions [200]. It is recognized
that phytohormones synthetized by bacteria may contribute to determining plant phenotype [201].
In addition, PGPB modulates ABA biosynthesis and ABA regulated signaling pathways, which can
lead to increased salt-stressed crop production. Halotolerant Dietzia natronolimnaea STR1 stimulated
salinity (150 mM NaCl) tolerance in rice seedlings through regulation of the ABA signaling cascade [24].
Novosphingobium sp. and Pseudomonas putida are reported to decrease salinity stress in citrus seedlings by
enhancing leaf IAA concentration and decreasing accumulation of root chloride under salt stress [202].
Phytohormone signaling cascades influence osmotic equilibrium and other processes of salt resistance
and control adaptation of plants to salinity [197,203,204]. Auxin-producing root-colonizing bacteria
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can provide additional auxin to the rhizosphere, and can help root development during stress,
while maintaining leaf growth [205].

7.1.4. Exopolysaccharides and Biofilm Formation

In many salt tolerant bacteria, the formation of exopolysaccharides (EPSs) is a strategy for
growth, adherence to solid areas, and survival of adverse conditions. In particular, the synthesis of
exopolysaccharides by these bacteria can also lead to stress reduction, in addition to improving their
salinity-condition survival and competence [206]. Certainly, they have a defensive character: EPSs,
which generate a layer around a cell, provide powerful defense towards elevated salinity [207]. EPSs are
the most crucial component of extracellular matrix, representing 40–95% of bacterial weight [208].
They are located on microbial cellular surfaces where the cells are preserved by stabilizing membrane
organization toward unfavorable environmental stresses. They are mainly formed by large organic
macromolecules; polysaccharides, along with smaller uronic acid and protein percentages [209].
Microorganisms to protect themselves against ionic toxicity and desiccation form polysaccharides,
most of them are in the ionic form contributing to chelate and sodium ions. This decreases the toxicity
and concentration of such ions in the rhizosphere, rendering the soil ideal for root proliferation [54–210].

Increased exopolysaccharides generation in response to salt stress favors biofilm formation [211,212],
contributing towards plant adaptation to salinity [213]. In addition, biofilms are formed on specific
surfaces, such as roots and soil particles, contributing to reinforce soil structure and physicochemical
characteristics [214,215]. The fact that Pseudomonas anguilliseptica SAW 24 exhibited the maximum PGPB
effectiveness at its maximum biofilm formation capacity confirms the relation between biofilm formation
and PGPB effectiveness under saline and non-saline conditions [215]. Halophilic microorganisms can
form biofilm and accumulate EPS at increasing salt stress. EPSs promote bacterial colonization of
plant roots and soil particles, and they can eventually be added to soil to improve its structure and,
consequently, to improve plant growth. In a long-term vision, alleviation of derelict soil, improved
crop yield, and restoration of mangrove diversity are possible by mechanistic use of EPS-producing
halotolerant microorganisms [216]. For instance, Fathalla [216] showed that biofilm formation and
EPS-production by Az. chroococcum significantly contribute to soil fertility and improve plant growth.

7.1.5. Enhancement of Plant Nutrient Uptake

The excessive uptake and respective accumulation of ions may result in toxicity. Salinity is
particularly associated with high Na+, Cl− concentrations, the persistence of excessive concentrations
of these ions in the soil may disturb ion balance in soil solution, and uptake by the plant roots [217].
High sodium and chloride concentrations in the soil can create Na/K and Na/Ca2 unbalances
in crop plants responsible for increased susceptible to osmotic stress and lower yields [218].
Especially, high concentrations of Na+ in the soil solution inhibit K+, N, and Ca2+ uptake [219].
Plant growth-promoting bacteria also release/increase the availability of mineral elements like Cu,
Fe, Mn, Zn, etc., to plants by chelation and acidification of soil [220]. For example, potassium has a
significant role in the growth and development of the plant. To achieve maximum yield, K is needed
in adequate quantities (50–300 kg ha–1) by all crops. However, most of the K of soil is not directly
available for plant uptake. Moreover, K availability to plants decreases due to salinity stress. In this
situation, K-solubilizing bacteria (KSB) are an effective tool to fulfill the K requirement of crops [221].

PGPB enhance crop development and thereby increase the availability of mineral nutrients to
plant roots [222]. For example, PGPBs from Rhizobium and Serratia genus were shown to be able to
increase the nutrient absorption of lettuce growing under different soil salt concentrations [222,223],
and several isolates of Azospirillum sp. and Pseudomonas sp. were shown to improve the development
and biomass of canola plants by ameliorating essential nutrients uptake under saline conditions.
There is now increasing recognition that the use of PGPB could enhance plant resistance to adverse
nutrient deficiency [224]. Although, PGPB functions in nutrient availability and stress mitigation are



Appl. Sci. 2020, 10, 7025 13 of 27

emerging areas of farming that are not yet well established; it is accepted that they are a potential tool
to improve productivity and sustainability in many areas of the world [225].

7.1.6. Osmolytes Accumulation

Under salinity, a higher fraction of the cellular energy deviated towards the synthesis of osmolytes
is able to defend the cells from osmotic fluctuations [226]. In response to osmotic stress induced by
high concentrations of NaCl, bacteria may reprogram their gene expression and synthesize specific
stress proteins [227]. In some halophilic bacteria, the internal amount of organic osmolytes can reach
1 M under salt stress and has a significant function in lowering the Tm (Temperature of Melting)
of DNA and stabilizing the double helix [228]. Consequently, bacterial cells accumulate compatible
solutes, like amino acids, sugars, and quaternary amines, which prevent degenerative processes
and improve cell growth under harmful osmotic conditions [229]. They host various groups of
compounds comprising soluble sugars like trehalose, sucrose [230], celllobiose, maltose, turanose,
palatinose, and gentiobiose [231]. In addition, sucrose, glycine, betaine, and proline are among the
osmolytes greatest investigated and that are accumulated during salt stress in a number of plant species
regrouping halophytes [232]. Notably, compatible solutes exert their influence by modifying the
solvent structure and/or slight modifications in the dynamic characteristics of the protein, rather than
by altering the protein structure itself [233]. Such osmolyte accumulations preserve turgor pressure
and balance the different macromolecular structures towards the physiological drought stress caused
by salinity [234]. These organic solutes can be generated in the cytoplasm where they help to maintain
turgor and preserve enzymes and cell organelles from deterioration or dehydration [235].

7.2. Indirect Mechanisms

7.2.1. ACC Deaminase

Some microorganisms possess the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase
that transforms 1-aminocyclopropane-1-carboxylic acid (the immediate precursor to ethylene
biosynthesis in higher plants) into ammonia and α-ethylene chetobutyrate instead of ethylene [236].
Additionally, as the enzyme ACC deaminase breaks the ethylene substrate ACC, which is transformed
into alpha-ketobutyrate and ammonium, it supplies the microorganisms with N [237]. PGPB such
as Rhodococcus, Variovorax, Alcaligenes, Bacillus, and Ochrobactrum have been identified to synthesize
ACC deaminase [238], and have been shown to improve plant nodulation under salinity [239].
Recent findings on the synergetic functioning of ACC deaminase and other bacterial mechanisms of
salt stress tolerance, such as trehalose accumulation, are also established [240].

ACC deaminase based PGPB can also reduce the harmful impacts of environmental stress and
enhance crop resistance through multiple processes including improvement of mineral solubilization,
phytohormone synthesis, leaf area raising, nutrient absorption, enhanced antioxidant enzyme activity,
and soluble protein and chlorophyll concentration [241]. Direct demonstration for such processes
derives from the observation that Pseudomonas sp. acdS mutants UW4 (ACC deaminase minus) lost the
capacity to stimulate canola root extension during gnotobiotic growth [242], and that canola plants
inoculated with the mutant are not able to develop under salinity [243].

Salt tolerant PGPBs producing ACC deaminase have impacts on many biochemical characteristics
of plant cells, including production of biocompatible solutes, membrane stability, and the synthesis of
photosynthetic pigments during salinity stress [244]. For instance, Jaemsaeng et al. [159] demonstrated
that the strain Streptomyces sp. GMKU 336 developing ACC deaminase might improve rice development
and salt tolerance by reducing ethylene concentration, scavenging ROS, and preserving ion homeostasis.
Biomass and root length of maize plants grown under saline conditions increase in plants inoculated
with P. fluorescens possessing ACC deaminase [242]. During abiotic stress, rhizobacteria endowed with
ACC deaminase activity may ameliorate plant development by controlling ethylene production [245].
Enhanced ethylene synthesis due to exogenous use of 1-aminocyclopropane-1-carboxylic acid (ACC)
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or salinity may reduce the root development [246], and subsequently increase plant performance.
Similarly, supplementation of legume crops with ACC deaminase-synthesizing rhizobia isolated from
saline soils boosted nodule construction [247]. The halophilic bacteria Microbacterium sp., isolated from
rhizosphere of rice, is another strain that revealed ACC deaminase function [248].

7.2.2. Induced Systemic Resistance

Induced systemic resistance (ISR) is the increased protective ability produced by a plant towards
a large range of plant pathogens following root microbial colonization [249,250]. Besides jasmonate
and ethylene, other microbial substances like O-antigenic side chain of the microbial outer membrane
protein lipopolysaccharide, pyoverdine, flagellar proteins, β-glucans, chitin, salicylic acid, and cyclic
lipopeptide surfactants have all been identified to operate as signals for the stimulation of systemic
tolerance [1]. On the other hand, plants establish tolerance in reaction to pathogen invasion, insect
attack, colonization by microorganisms or after processes, but this mediated condition is reflected by
the activation of “dormant” immune responses reflected in reaction to external interactions of insects,
pathogens, and other invaders [251]. For example, bacteria belonging to taxa such as Bacillus and
Pseudomonas sp. have been recognized to stimulate tolerance to pathogenic fungi and bacteria [252].
Plant inoculation with Serratia marcescens strain CDP-13 diminished the intensity of the infection caused
Fusarium monaliformiae and Fusarium graminearum, which demonstrated its potential to generate induced
systemic resistance in target plants of wheat (Triticum aestivum L.) during salt stress (150–200 mM) [233].

7.2.3. Ethylene

Plants, against various stress factors [253], produce ethylene. Ethylene ensures a fundamental
function in plant development in a plethora of ways. Ethylene is associated with seed germination,
root development (beginning and extension repression), leaf abscission, inactivation of mycorrhiza
and plant relationship, and fruit ripening [254]. Ethylene additionally serves as a signal transducer
for the detection of salt stress [255]. Accumulation of ethylene in reaction to abiotic stress prevents
root development and, eventually, plant growth [256]. Salinity-induced ethylene accumulation caused
by high production of 1-aminocyclopropane-1-carboxylic acid (ACC) hinders rice plant growth and
development. Nevertheless, ACC deaminase may alleviate salt stress and high ethylene production
in rice cultivars under salinity stress [257]. Another crucial enzyme in ethylene biosynthesis is
ACC-oxidase (ACO). Maize plants under salt stress have demonstrated enhanced ACO activity as
compared to plants under normal condition. Application of PGPR resulted in a significant reduction in
ACO activity; Bacillus safensis NBRI 12 M-treated maize plants have exhibited maximum reduction
which is consistent with the low ethylene production under salt stress [258].

8. PGPB Inoculants under Salinity Can Reduce Chemical Fertilization

While the production of genetically engineered and salt-tolerant varieties, resource management
methods, synthetic fertilizers, etc., are cost-intensive and have damaging consequences on humans
and the environment, the use of PGPB seems to be a viable option [158–259]. Recently, the use
of advantageous halophilic microbes has generated interest in sustainable and environmentally
friendly farming [14], with the consequent increase in the exploitation and utilization of microbial
fertilizers worldwide [260]. In particular, these microorganisms have multiple characteristics of plant
development and these effective and potential microorganisms can be used as biofertilizers to improve
soil health and crop productivity for sustainable farming [260]. It is estimated that the market share of
biofertilizers will achieve USD 1.66 billion by 2022 and will rise to a CAGR (compound annual growth
rate) of 13.2% in 2015–2022 [261].

Several methods have been used to mitigate the impact of soil salinity on crops: the application
of plant growth regulators, the selection of salt resistant cultivars, and the treatment of seeds with
halophilic rhizobacteria [262]. The use of biofertilizers can also minimize the impact of salinity on crops.
A biofertilizer may be characterized as a formulated commodity incorporating one or more microbes
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that improve plant nutrient capacity (and increase and productivity) both by replacement soil nutrients,
rendering plant nutrients most available, and/or enhancing plant nutrient accessibility [5]. Many other
innovations have been involved in increasing salt resistance in plant cultures, along with PGPB to
alleviation of salinity stress. Such chemicals’ use could be decreased/substituted by P-solubilizing,
nitrogen-fixing, and K-solubilizing/mobilizing microorganisms (NPK) as biofertilizer environmentally
friendly advancements [8]. The use of microbes in wheat and maize may minimize salt stress effects by
about 50% [263]. The most effective solution to improve productivity and yield in salinity-impacted
regions is predominantly the use of PGPB as inoculums in cultivation to mitigate salt stress. The great
opportunity for investigations concerning crop salinity resistance is actually their capacity to be
associated with PGPR [264].

9. Conclusions

Salinity is a great threat for agriculture by affecting soil, microorganisms, and plants throughout
their development cycle, from germination to maturation. Moreover, salinity may influence different vital
processes in plant such as photosynthesis, respiration, senescence, and flowering. Particularly, PGPBs
show a great capacity for saline stress alleviation mainly because of their resistance, adaptability, and a
huge variability of the mechanisms involved in this process. Several investigations and experiments
have demonstrated that the PGPB is a potential alternative to chemical fertilizers, biopesticides,
and bioremediators under salt stress. Additionally, the most important PGPBs progress to date was the
elucidation of various molecular mechanisms involved in plant microorganism interactions, in different
plants and their utilization efficiently as bioinoculants in soil salinity mitigation. Recently, a genotypic
approach was adopted through the characterization of different salinity tolerance implicated genes.

In the future, we recommend using soil autochthonous microorganisms that were mentioned in
a number of investigations to be more efficient in soil salinity bioremediation. That may remediate
the problem of survival and durability of PGPB in soil. Additionally, synergetic effects through the
combination of hemophilic plants (phytoremediation) to PGPB seem to be very promising in soil
salinity mitigation. The challenge of host specificity can be determined by adopting a multidisciplinary
approach like proteomic, meta-transcriptomic, meta-genomic, etc. For reducing commercial formulation
cost, traditional fermentation techniques can be used in small farming systems. Low price fermentation
substrates like compost may be developed.
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