New Perspectives for BIM Usage in Transportation Infrastructure Projects
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Bridges
3.1.1. Case Study 1
- Abutments with their respective foundations.
- Piers and pile caps with their respective foundation.
- Spans.
- Support lines and leveling.
- Parapets.
- (1)
- Classify the potential pathologies by categories, assign an ID, and prepare a digital format sheet (Microsoft Excel) for inspection adjoining a base of unit prices to assess the repairing cost of each pathology (BIS). Additionally, the 3D structure must be modeled (Autodesk Revit and Autodesk Civil 3D) with the pertinent parameters for the damage statement as a BIS function.
- (2)
- Link up the BIS incorporating the field information with the structure. For that purpose, a programming code in Dynamo must be created that is to be repeated for each possible damage in each structural element, as can be seen in Figure 7.
- a.
- Information import in Autodesk Revit. Each element family must be placed in a different Excel sheet to facilitate the Dynamo programming language.
- b.
- Export the information to Microsoft Excel.
- (3)
- Graphic visualization of the 3D structure status along with an estimation of the repairing costs according to the reported damage (Figure 8). This computerized data can be saved and analyzed from different points of view:
- a.
- Technically: some pathologies occurring with excessive frequency can be detected and an alternative solution may be proposed.
- b.
- Economically: costs of successive campaigns can be compared, and future costs can be estimated, so optimizing resources.
- (1)
- Data.ImportExcel: extracts cell from a certain worksheet. The information read from the worksheet will be gathered in lists through the command List.GetItemAtIndex.
- (2)
- Element.SetParameterByName: the lists of elements read in the adequate position (through use of the List.Transpose command) will be incorporated to the element parameter of a category by means of this function.
3.1.2. Case Study 2
3.2. Roads, Tunnels, and Highways
3.2.1. Case Study 3
3.2.2. Case Study 4
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pham, C.; Iyer, S. The business value of BIM for construction in major global markets: How contractors around the world are driving innovation with building information modeling. In Smart Market Report; McGraw Hill Construction: Bedford, UK, 2014; pp. 1–60. [Google Scholar]
- Jung, W.; Lee, G. The status of BIM adoption on six continents. Int. J. Civ. Environ. Struct. Constr. Archit. Eng. 2015, 9, 444–448. [Google Scholar]
- Lee, N.; Dossick, C.S. AC 2012–4816: Leveraging Building Information Modeling Technology in Construction Engineering and Management Education. In Proceedings of the Annual Conference of the American Society for Engineering Education, San Antonio, TX, USA, 10–13 June 2012. [Google Scholar]
- Ju, K.B.; Seo, M.B. A study on the issue analysis for the application of BIM technology to civil engineering in Korea. Creat. Educ. 2012, 3, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.; Laquidara-Carr, D.; Lorenz, A.; Buckley, B.; Barnett, S. The business value of BIM for infrastructure 2017. In SmartMarket Report; Dodge Data & Analytics: Bedford, UK, 2017. [Google Scholar]
- Costin, A.; Adibfar, A.; Hu, H.; Chen, S.S. Building Information Modeling (BIM) for transportation infrastructure–Literature review, applications, challenges, and recommendations. Autom. Constr. 2018, 94, 257–281. [Google Scholar] [CrossRef]
- Sadeghi, H.; Mohandes, S.R.; Hamid, A.R.A.; Preece, C.; Hedayati, A.; Singh, B. Reviewing the usefulness of BIM adoption in improving safety environment of construction projects. J. Teknol. 2016, 78, 10. [Google Scholar] [CrossRef] [Green Version]
- Muriel, A.P.P.; Rodríguez, A.M.R. BIM como paradigma de la modernización del flujo de trabajo en el sector de la construcción. Span. J. Build. Inf. Model. 2015, 15, 36–45. [Google Scholar]
- Hudson, R.W.; Carmichael, R.F., III; Hudson, S.W.; Diaz, M.A.; Moser, L.O. Microcomputer bridge management system. J. Transp. Eng. 1993, 119, 59–76. [Google Scholar] [CrossRef]
- Red de Carreteras del Estado. Guía para la realización del inventario de obras de paso. In Centro de Publicaciones; Secretaría General Técnica, Ministerio de Fomento, Gobierno de España: Madrid, Spain, 2009. [Google Scholar]
- Cañamares, J.M.; Suárez, M.Á.A. Sistemas de Gestión de Puentes Optimización de Estrategias de Mantenimiento Implementación en Redes Locales de Carreteras. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2016. [Google Scholar]
- Wan, C.; Zhou, Z.; Li, S.; Ding, Y.; Xu, Z.; Yang, Z.; Yin, F. Development of a Bridge Management System Based on the Building Information Modeling Technology. Sustainability 2019, 11, 4583. [Google Scholar] [CrossRef] [Green Version]
- MacLeamy, P. BIM, BAM, BOOM! How to Build Greener, High-Performance Buildings. Urban Land Green Magazine. 2008. Available online: https://www.archdaily.com/262008/the-future-of-the-building-industry-bim-bam-boom (accessed on 10 October 2020).
- Gao, J.; Martin, F. Framework and Case Studies Comparing Implementations and Impacts of 3D/4D Modeling Across Projects; Stanford University: Stanford, CA, USA, 2008. [Google Scholar]
- Zou, Y.; Zhou, S.X. A Model-Based BIM Framework for Bridge Engineering. In Applied Mechanics and Materials; 587; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2014; pp. 1339–1343. [Google Scholar]
- Cheng, J.C.P.; Lu, Q.; Deng, Y. Analytical review and evaluation of civil information modeling. Autom. Constr. 2016, 67, 31–47. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, S.I.; Park, J.; Seo, K.W. Open BIM-based information modeling of railway bridges and its application concept. Comput. Civ. Build. Eng. 2014, 504–511. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Kiviniemi, A.; Jones, S.W.; Walsh, J. Risk information management for bridges by integrating risk breakdown structure into 3D/4D BIM. KSCE J. Civ. Eng. 2019, 23, 467–480. [Google Scholar] [CrossRef]
- Sankaran, B.; France-Mensah, J.; O’Brien, W.J. Data Integration Challenges for CIM in Large Infrastructure: A Case Study of Dallas Horseshoe Project. In Proceedings of the 16th International Conference on Computing in Civil and Building Engineering, Osaka, Japan, 6–8 July 2016. [Google Scholar]
- Blanco Rávena, R.; Martínez García, J.; Mozas González, B.; García Alberti, M.; Arcos Álvarez, A.A. Use of BIM methodology in the re-modelling of an existing bridge. An. Edif. 2019, 5, 100–106. [Google Scholar]
- Haardt, P. Development of a bridge management system for the German highway network. In Proceedings of the First International Conference on Bridge Maintenance, Safety and Management, Barcelona, Spain, 14–17 July 2002. [Google Scholar]
- McGuire, B.; Atadero, R.; Clevenger, C.; Ozbek, M. Bridge information modeling for inspection and evaluation. J. Bridge Eng. 2016, 21, 04015076. [Google Scholar] [CrossRef]
- Shim, C.S.; Kang, H.R.; Dang, N.S.; Lee, D.K. Development of BIM-based bridge maintenance system for cable-stayed bridges. Smart Struct. Syst. 2017, 20, 697–708. [Google Scholar]
- Cuenca Martínez, A.J.; Díaz Margarit, A.; Hernando Fernández, E.; Alberti, M.G.; Arcos Álvarez, A.A. Implementation of BIM methodology into the conservation and maintenance of bridges. In Proceedings of the V International Conference on Technological Innovation in Building, Madrid, Spain, 25 March–8 April 2020. [Google Scholar]
- Arcos González, A.; Bueno Leal, P.; Bermeosolo Echeverría, L.; Alberti, M.G.; Arcos Álvarez, A.A. BIM methodology for the extension of an existing bridge. In Proceedings of the V International Conference on Technological Innovation in Building, Madrid, Spain, 25 March–8 April 2020. [Google Scholar]
- Moya Sala, Q.; García García, A.; Camacho-Torregrosa, F.J.; Campoy Ungria, J.M. BIM para infraestructuras de carreteras: Verificación de la normativa de diseño geométrico. Span. J. BIM 2017, 17, 10–18. [Google Scholar]
- Kim, H.; Orr, K.; Shen, Z.; Moon, H.; Ju, K.; Choi, W. Highway alignment construction comparison using object-oriented 3D visualization modeling. J. Constr. Eng. Manag. 2014, 140, 05014008. [Google Scholar] [CrossRef]
- Li, X.; Tian, Y.; Tian, L.; Chen, S.; Wang, A. Multiscale BIM modeling and adaptive splicing method of mountain tunnel structure for engineering application. China J. Highw. Transp. 2019, 32, 126. [Google Scholar]
- Tang, F.; Ma, T.; Zhang, J.; Guan, Y.; Chen, L. Integrating three-dimensional road design and pavement structure analysis based on BIM. Autom. Constr. 2020, 113, 103152. [Google Scholar] [CrossRef]
- Pastor Moreno, D. BIM Methodology Application for the Operation and Maintenance of the M-30 Road. Master’s Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2019. [Google Scholar]
- Zhu, J.; Chen, Z.; Sun, L.J. A method of construction of index system for highway maintenance management. Procedia Soc. Behav. Sci. 2013, 96, 1593–1602. [Google Scholar] [CrossRef] [Green Version]
- Omoregie, A.; Turnbull, D.E. Highway infrastructure and building information modelling in UK. In Proceedings of the Institution of Civil Engineers—Municipal Engineer; Thomas Telford Ltd.: London, UK, 2016; pp. 220–232. [Google Scholar]
- Reeder, G.D.; Nelson, G.A. 3D Engineered Models for Highway Construction: The Iowa Experience; National Concrete Pavement Technology Center, Iowa State University: Ames, IA, USA, 2015. [Google Scholar]
- Rodríguez Gámiz, J.A. Sistematización para la Aplicación Práctica de Desvíos Provisionales en Obras de Carretera Aplicando Metodología BIM y Criterios Jerárquico-Analíticos Para la Cuantificación de la Seguridad Viaria. Master’s Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2019. [Google Scholar]
- León-Robles, C.A.; Reinoso-Gordo, J.F.; González-Quiñones, J.J. Heritage building information modeling (H-BIM) applied to a stone bridge. ISPRS Int. J. Geo-Inf. 2019, 8, 121. [Google Scholar] [CrossRef] [Green Version]
- Spanish Ministry of Public Works. EHE-08 Instrucción del Hormigón Estructural; Secretaría General Técnica, Ministerio de Fomento, Gobierno de España: Madrid, Spain, 2008. [Google Scholar]
- Navarro, I.J.; Martí, J.V.; Yepes, V. Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environ. Impact Assess. Rev. 2019, 74, 23–34. [Google Scholar] [CrossRef]
- Shayganmehr, M.; Saghatforoush, E. An assessment on the parallel impacts of building information modeling and big data on project operation and maintenance. MATEC Web Conf. 2019, 276, 02002. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.; Hou, R.; Lynch, J.P.; Sohn, H.; Law, K.H. An information modeling framework for bridge monitoring. Adv. Eng. Softw. 2017, 114, 11–31. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Sresakoolchai, J.; Zhou, Z. Sustainability-Based Lifecycle Management for Bridge Infrastructure Using 6D BIM. Sustainability 2020, 12, 2436. [Google Scholar] [CrossRef] [Green Version]
- Abbondati, F. Rural Road Reverse Engineering Using BIM: An Italian Case Study. Environmental Engineering. In Proceedings of the 11th International Conference “Environmental Engineering”, Muttenz, Switzerland, 8–10 September 2020. [Google Scholar]
- Biancardo, S.A.; Viscione, N.; Cerbone, A.; Dessì, E. BIM-Based Design for Road Infrastructure: A Critical Focus on Modeling Guardrails and Retaining Walls. Infrastructures 2020, 5, 59. [Google Scholar] [CrossRef]
- Djuedja, J.F.T.; Karray, M.H.; Foguem, B.K.; Magniont, C.; Abanda, F.H. Interoperability challenges in building information modelling (BIM). In Enterprise Interoperability VIII; Springer: Cham, Switzerland, 2019; pp. 275–282. [Google Scholar]
- Silva, M.J.F.; Couto, P.; Pinho, F.; Lopes, J. Building Functional Rehabilitation Based on BIM Methodology. In Sustainability and Automation in Smart Constructions; Springer: Cham, Switzerland, 2019; pp. 45–49. [Google Scholar]
- Kim, K.; Cho, Y.; Zhang, S. Integrating work sequences and temporary structures into safety planning: Automated scaffolding-related safety hazard identification and prevention in BIM. Autom. Constr. 2016, 70, 128–142. [Google Scholar] [CrossRef]
- Rizo-Maestre, C.; González-Avilés, Á.; Galiano-Garrigós, A.; Andújar-Montoya, M.D.; Puchol-García, J.A. UAV BIM: Incorporation of Photogrammetric Techniques in Architectural Projects with Building Information Modeling versus Classical Work Processes+. Remote. Sens. 2020, 12, 2329. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno Bazán, Á.; Alberti, M.G.; Arcos Álvarez, A.; Trigueros, J.A. New Perspectives for BIM Usage in Transportation Infrastructure Projects. Appl. Sci. 2020, 10, 7072. https://doi.org/10.3390/app10207072
Moreno Bazán Á, Alberti MG, Arcos Álvarez A, Trigueros JA. New Perspectives for BIM Usage in Transportation Infrastructure Projects. Applied Sciences. 2020; 10(20):7072. https://doi.org/10.3390/app10207072
Chicago/Turabian StyleMoreno Bazán, Ángela, Marcos G. Alberti, Antonio Arcos Álvarez, and Jesús Alonso Trigueros. 2020. "New Perspectives for BIM Usage in Transportation Infrastructure Projects" Applied Sciences 10, no. 20: 7072. https://doi.org/10.3390/app10207072
APA StyleMoreno Bazán, Á., Alberti, M. G., Arcos Álvarez, A., & Trigueros, J. A. (2020). New Perspectives for BIM Usage in Transportation Infrastructure Projects. Applied Sciences, 10(20), 7072. https://doi.org/10.3390/app10207072