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Abstract: Dynamic positioning (DP) control system is an essential module used in offshore
ships for accurate maneuvering and maintaining of ship’s position and heading (fixed location
or pre-determined track) by means of thruster forces being generated by controllers. In this
paper, an interconnection and damping assignment-passivity based control (IDA-PBC) controller
is developed for DP of surface ships. The design of the IDA-PBC controller involves a dynamic
extension utilizing the coordinate transformation which adds damping to some coordinates to
ensure asymptotic stability and adds integral action to enhance the robustness of the system against
disturbances. The particle swarm optimization (PSO) technique is one of the the population-based
optimization methods that has gained the attention of the control research communities and used
to solve various engineering problems. The PSO algorithm is proposed for the optimization of the
IDA-PBC controller. Numerical simulations results with comparisons illustrate the effectiveness of
the new PSO-tuned dynamic IDA-PBC controller.

Keywords: dynamic positioning; hamiltonian systems; particle swarm optimization;
passivity-based control

1. Introduction

Marine vessels and ships have been widely used for offshore exploration, deep-sea mining,
military operations, rigs-drilling and offshore wind farm constructions [1]. For such activities to
be operated under safe and stable conditions, the vessels need to be equipped with advanced
motion-control systems [2]. This has led to increasing demands for dynamic positioning (DP) systems
to regulate the vessels’ plane motions in order to maintain its position and heading. The dynamic
positioning systems automatically control and maintain the ship’s position and heading by means of
computers, thrusters, propellers, filters, sensors and other components [3]. The capability of the ship
for maneuvering and maintaining its position precisely depends on the efficiency and capacity of the
components of the DP system. Precise operations require expensive hardware components (sensors,
filters, etc) whose functionality and performance are degraded over time as the vessel maneuvers
in the water [4]. Furthermore, the complexity and nonlinearity of the vessel dynamics and the fact
that environment conditions of the sea/ocean (due to wind, waves and currents) are changeable and
unpredictable have brought about new challenges on the design of DP systems [4]. The obvious
alternative solution is the design of advanced and intelligent control system.

Various advanced control techniques have been thoroughly discussed in literature and successfully
applied to DP systems. A comprehensive literature survey for the control methods of DP systems
until 2011 have been discussed in [3]. Further review and comparison of different control techniques
have been presented in the recent review in [1]. The single-input–single-output PID control is a
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first reported method used for DP system regulation [1,5]. A low-pass filter was combined to the
PID controller to control the motion of the DP system in the 3-degrees-of-freedom (DOF) horizontal
plane. PID controllers have also been used in the nonlinear PID-control approach as proposed in [6],
and model free multivariable PID controller tuning method with a capability of online tuning of DP
control systems [7]. The emergence of Kalman filter and optimal theories was utilized to establish
more advanced control design in [8] which was adopted and further improved and extended in the
works of [9–12] and the references therein.

To deal with the exact dynamics of the vessel/ship (i.e., ship’s nonlinear hydrodynamics),
a number of nonlinear control methods have been proposed. State and input/output feedback
linearization control methods have been discussed in [6,13,14]. Lyapunov-based design techniques
including: nonlinear (passive) observer based on Lyapunov theory with wave filtering and full-scale
experimental results [15], Asymmetric Barrier Lyapunov Function with Neural Networks have
been deployed to control a vessel with output constraints and uncertainties [16], a combination
of backstepping technique and Barrier Lyapunov Function with a passive observer to estimate some
states [17]. Considering the robustness of DP system to variations in environmental and loading
conditions, sliding mode control has been developed in [18,19].

Fuzzy-logic and neural network algorithm methods have the ability to reduce the complex
nonlinear characteristics of the DP system controller (by means of approximation of nonlinear function)
without heavy/tedious online computation requirements [20,21]. This enables online estimation with
time-saving in case of dynamics variations of the DP systems due to ex. disturbances which clarifies
the wide use of such methods in various control-related problems of the DP systems as in [2,5,22,23]
and the references therein. Model-predictive control (MPC) is another popular control method that has
recently been reported in the literature by a number of authors. Enhancement in control performance
of the DP systems can be achieved deploying this method due to its systematic way in handling various
(inputs, outputs and states) constraints [24], its model/performance optimization capabilities as well as
its robustness against external disturbances and unmodeled dynamics [1,4]. The tracking MPC control
problem of underactuated surface vessels has been proposed in [20]. In [24], both linear and nonlinear
MPC approaches have been investigated for the trajectory tracking problem of autonomous vessels.
Considering uncertain environmental disturbances, measurement errors and partially measured states,
two robust control methods based on MPC and using a simple Luenberger observer for DP systems
control problem of autonomous surface vessels have been discussed in [4].

Passivity-based control (PBC) is another class of nonlinear control methods that have received
a lot of interest due to its advantages in reducing the complexity in the control design [3] exploiting
intrinsic system properties. By invoking the physically motivated principles of energy dissipation
and transformation, the stabilization of the dynamical system is achieved fulfilling its passivity
property which is related to the stability properties of the systems [25]. The PBC problem aims at
making the closed loop system passive by shaping both the energy and internal interconnection
structure of the system. The most notable example of the PBC approach is the interconnection and
damping assignment-passivity based control (IDA-PBC) which has already been successfully applied
to various dynamical systems adopting port-Hamiltonian (PH) formalism [26]. In addition to energy
and structural shaping of the PH model, damping is injected by means of feedback control to ensure
asymptotic stability of the closed-loop system. Passivity theory has been used in [6] to establish a
passive nonlinear observer and in [27] a passivity-based controller based on IDA-PBC method has
been proposed to stabilize a DP system of ship.

Focusing on enhancement of the control performance, optimization techniques have been widely
used and applied. They provide systematic procedure for designing of controllers, tuning the
parameters and gains, and online estimation/calibration for unknown parameters caused by
environmental changes or disturbances [21,28]. In the literature, various optimization algorithms have
been developed to improve the quality of the closed-loop system such as Artificial Bee Colony (ABC)
algorithm [29], Ant Colony Optimization (ACO) algorithm [30], Bacterial Foraging Optimization (BFO)
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algorithm [31], Multi-Verse Optimization (MVO) algorithm [32] and Gravitational Search Algorithm
(GSA) [33]. Particle Swarm Optimization (PSO) is one of the effective optimization methods that
has been successfully used in tuning PID controllers as in [34], for quadrotor stabilization based
on integral backstepping control design [35], for tuning the parameters of fuzzy PD controller with
minimization of integral square error cost function in [36], to improve the performance of an ultrasonic
transducer [28]. For the control of DP systems, authors in [21] have deployed the PSO method to
optimize the fuzzy function/parameters to enhance the quality and performance of the DP system of
the ship.

In this paper, we propose a dynamic IDA-PBC controller that stabilizes the ship/vessel.
It introduces a modified version of the IDA-PBC controller which was proposed in [27] by adopting
the state-transformation to obtain a dynamical feedback controller with robustness capability due
to the incorporation of the integral action controller. In addition, damping is injected in both the
position and momenta states to ensure asymptotic stability. Furthermore, the design and selection of
parameters/gains of nonlinear controllers are generally obtained using trial and error which relies
mainly on experience, and usually requires tedious computations. Here, we make use of PSO algorithm
to obtain the gains of the IDA-PBC controller which provides an effective way to select/tune these
gains thus improving the control performance of DP system of the ship. Moreover, we provide full
proofs for stability and matching between the open-loop and closed-loop models necessary to prove
that the Hamiltonian structure and passivity properties are preserved despite the deployment of
state-transformation method in the course of controller design procedures. Finally, we show that the
proposed method guarantees robustness of DP system with respect to environmental disturbances
induced by wind, waves and currents in seas and oceans.

The rest of the paper is organized as follows: Section 2 describes the dynamical model of the
ship based on the PH formalism. In Section 3, the dynamic controller based on IDA-PBC method is
proposed. Section 4 introduces the PSO algorithm and the suggested cost function used to tune the
gains of the IDA-PBC controller. The proposed control scheme and tuning algorithm are simulated
and compared in Section 5 to verify the performance of the newly PSO-tuned IDA-PBC controller.
Finally, concluding remarks and future work are given in Section 6.

2. The Port-Hamiltonian Modeling of the Surface Ship

DP system of a vessel is a unit in a ship which automatically maintains its position (fixed location
or predetermined track) and heading by means of thruster force [3]. The primary role of this unit is
maintaining the vessel position within a given operational area with high accuracy essential to perform
offshore operations in such areas. First we will give a brief description to the DP system followed by
the model of the surface ship.

2.1. The DP System Overview

Conventional DP systems for vessels are usually designed to achieve reliable and accurate
position/station keeping capabilities. It compromises the following main components being a
set of dedicated modules which are a combination of propulsion and maneuvering devices and
controllers [1,3]:

1. Power System. It compromises all components and units responsible to supply the DP system
with its power requirements including: Prime movers, Generators, Switchboards, Electrical
distribution system (cabling and piping), transformers. It may also include more advanced
subsystems for energy storage and power management purposes.

2. Thruster system. The vessel’s horizontal motion is influenced and controlled by means of
thrusters and propellers which are also the sole source of position/heading keeping. They supply
the DP system with thrust force and direction and it includes thrusters with electronic drive units,
propellers and rudders, cabling and piping and other associated auxiliary subsystems.
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3. Control System. it compromises all hardware and software components including processors
and computers, joystick control unit, Sensors and instrumentation and signal processing units,
Position and heading reference systems (navigation, acoustic, microwaves and laser systems),
operator and display panels.

2.2. The Mathematical Model

The motion of the marine vessel whether in maneuvering or sea-keeping state is described in
6-DOF model as shown in Figure 1 [24]. The first 3-DOF is to define translations and the other
3-DOF to define the orientation accounting for the 6 typical motion components of the marine vessels;
longitudinal motion (surge), transverse (sideways) motion (sway), rotation around the vertical axis
(yaw), rotation about the longitudinal axis (roll), rotation about the transverse axis (pitch), and
vertical motion (heave). Typically, the position and orientation of a ship are expressed relative to
two coordinate frames: the earth coordinate frame (inertial fixed frame) with origin O and (X,Y,Z)
coordinates, and the body coordinate frame, which is fixed to the ship and moves along with it, with b
origin and (x, y, z) coordinates.

Figure 1. Ship motion in 6-DOF [24].

In most DP system control applications, which are featured by low-frequency and low-speed
motion, rolling and pitching actions induce negligible motions and thus roll, pitch and heave
motions are ignored and the control problem is reduced to a 3-DOF vessel model having a coupled
surge–sway–yaw components [24,37]. An illustration of the ship model with a motion described
in a horizontal plane is shown in Figure 2, with the 3-DOF (surge, sway, yaw) described in the
two-coordinate frames.

The nonlinear mathematical model for vessel dynamics in horizontal plane can be expressed
as [38,39]: [

η̇

v̇

]
=

[
03×3 T(ψ)
03×3 −M−1D

] [
η

v

]
+

[
03×3

M−1

]
τ +

[
03×3

M−1T>(ψ)

]
b, (1)

where η = [X, Y, ψ]> is the configuration variables vector gives the position and heading angle
(orientation) in the earth coordinate frame, the vector v = [u, v, r]> represents the velocity vector
expressed in the vessel’s body coordinate frame. τ ∈ R3 is the control vector of the forces and moments
produced by the ship’s propulsion system and b ∈ R3 is the disturbances vector. The transformation
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matrix T represents the rotation matrix that gives the relative orientation of the inertial and body
frames, the damping matrix D and the mass matrix M are all given by:

T =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 , D =

d11 0 0
0 d22 d23

0 d23 d33


M = M> =

m11 0 0
0 m22 m23

0 m23 m33

 ,

(2)

where 03×3 is the 3× 3 zero matrix. The PH formalism for general nonlinear systems is given by [25]:

ẋ = (J (x)−<(x))∇H + G(x)τ

y = G>(x)∇H,
(3)

where J (x) = −J >(x) is the interconnection matrix, <(x) = <>(x) ≥ 0 is the damping matrix, H is
the Hamiltonian (total energy ) of the system, G(x) is the input matrix and ∇H is the gradient vector
of the Hamiltonian. The ship model (1) can be described by pH form as [27]:

ẋ =

([
03×3 T(q3)

−T>(q3) 03×3

]
−
[

03×3 03×3

03×3 D

]) [
∇q H
∇pH

]

+

[
03×3

I3

]
τ +

[
03×3

T>(q3)

]
b

(4)

where x = [X, Y, ψ, p1, p2, p3]
T = [q1, q2, q3, p1, p2, p3]

> is the state vector of the system, with the
configuration states vector q = [q1, q2, q3]

> and the momenta vector p = [p1, p2, p3]
> = Mv. I3 is the

3× 3 identity matrix. The Hamiltonian of the system is given by by its kinetic energy function

H =
1
2

p>M−1 p. (5)

Figure 2. Ship motion in 3-DOF.
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3. The IDA-PBC Controller Design

In this section, we design a control law for DP system of the ship using the classical IDA-PBC
and by incorporating a state-transformation which enables adding an integral action and damping
controllers to achieve asymptotic stabilization. This method is resulted in a dynamic control law while
preserving the PH structure. In the IDA-PBC method, the control law can be found by matching the
open loop system (3) with the desired closed-loop model:

ẋ = [Jd(x)−<d(x)]∇Hd

y = G>(x)∇Hd,
(6)

where Jd(x) is the desired interconnection matrix, <d(x) is the desired damping matrix and Hd is the
desired Hamiltonian. The following proposition establishes procedures for the design of the controller:

Proposition 1. Consider the PCH system (4). Define the coordinates transformation

x = f (q, p)⇒ z = f (z1, z2, z3),

with

z1 = q,

z2 = p−MKIz3 + MT−1(q3)Kq∇z1 Ψ,

z3 = −
∫

T>(q3)∇z1 Hd.

(7)

Define the desired Hamiltonian function

Hd = Ψ(z1) +
1
2

z>2 M−1z2 +
1
2

z>3 KIz3, (8)

where Ψ(z1) is desired potential energy function which has a minimum at z1 = 0. Then the closed-loop PCH
system is obtained as ż1

ż2

ż3

 =

 −Kq T(q3) T(q3)

−T>(q3) −Kp 03×3

−T>(q3) 03×3 03×3


∇z1 Hd
∇z2 Hd
∇z3 Hd,

 (9)

and the dynamic control law

u =
[
− T>(q3)−MKIT>(q3)− KpT−1(q3)Kq + MT−1(q3)

d
dt
[T(q3)]T−1(q3)Kz1

]
∇z1 Ψ

− (Kp − D)M−1 p + KpKIz3 −MT−1(q3)Kq
d
dt
[∇z1 Ψ]− T>(q3)b,

(10)

with the update law
ż3 = −T>(q3)∇z1 Hd, (11)

(asymptotically) stabilized the ship at the desired equilibrium point (z1, z2, z3) = (0, 0, 0).

Remark 1. In the closed-loop model (9), Kq = diag{kq1 , kq2 , kq3} > 0 and Kp = diag{r1, r2, r3} > 0 are
the damping matrices injected in the configuration z1 and momenta z2 coordinates, respectively, which ensure
asymptotic stability. KI = diag{ki1 , ki2 , ki3} > 0 is a constant integral matrix which improves the robustness
of the closed-loop system against external disturbances and steady-state errors.
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Proof of Proposition 1. Considering the function (8) as a candidate Lyapunov function, the time
derivative of this function along the trajectories of (9) is given by:

Ḣd = ∇z1 H>d ż1 +∇z2 H>d ż2 +∇z3 H>d ż3

= ∇z1 H>d (−Kq∇z1 Hd + T(q3)∇z2 Hd + T(q3)∇z3 Hd)

+∇z2 H>d (−T>(q3)∇z1 Hd − Kp∇z2 Hd) +∇z3 H>d (−T>(q3)∇z1 Hd)

= −∇z1 H>d Kq∇z1 Hd −∇z2 H>d Kp∇z2 Hd.

(12)

Using a quadratic energy function

Ψ(z1) =
1
2

z>1 Cz1, (13)

where C > 0 is the gain matrix such that the quadratic function has its minimum at z1 = 0 and
substituting (13) into (12) we obtain

Ḣd = −z>1 CKqz1 − z>2 M−1KpM−1z2. (14)

Using the norm-notation defined as ‖y‖A := y>Ay [25], (14) can be expressed as the
following inequality

= −‖z1‖2
CKq
− ‖M−1z2‖2

Kp
≤ 0, (15)

which ensures stability of the system at its desired equilibrium. Asymptotic stability at the desired
equilibrium point can be satisfied using the following detectability condition (the detectability
condition has been used in [40] although not exactly in the same context):

Condition 1. The output

yd =

[
z1

M−1z2

]
is a detectable output of the dynamics (9).

The realization of the closed-loop dynamics (9) via the coordinate-transformation (7) can be
verified by matching the states of the open-loop system (4) with their corresponding states in the
closed-loop system (9). That is, for the position state

q̇ in (4) ≡ ż1 in (9)

T(q3)∇pH = −Kz1∇z1 Ψ + T(q3)∇z2 Hd + T(q3)∇z3 Hd.
(16)

Substituting ∇p H from (5) and ∇z2 Hd,∇z3 Hd from (8), we obtain

T(q3)M−1 p = −Kz1∇z1 Ψ + T(q3)M−1z2 + T(q3)KIz3

Finally, substituting z2 from (7), the left-hand and right-hand sides are equivalent. Similarly,
the equivalency between p and z2 states that established the control law (10) can be found by
differentiating the transformation (7) with respect to time and using d

dt (AB) = dA
dt B + A dB

dt and
d
dt (T

−1) = −T−1 d
dt (T)T

−1:

ż2 = ṗ−MKI ż3 + MT−1(q3)Kq
d
dt
[∇z1 Ψ] + MT−1(q3)

d
dt
[T(q3)]T−1(q3)Kq∇z1 Ψ. (17)
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Substituting (ż2, ż3, ṗ) from the dynamics (4), (9) yields:

−T>∇z1 Ψ− Kp M−1z2 ≡ −T>∇z1 H − D∇pH + τ + T>b + MKIT>∇z1 Ψ

−MT−1 d
dt
[T]T−1Kz1∇z1 Ψ + MJ−1Kz1

d
dt
[∇z1 Ψ]

(18)

Substituting z2 from (7) and rearranging, we obtain the dynamic controller (10).

Remark 2. Here, we have shown that the proposed method stabilized the ship at its desired equilibrium position
and orientation using the states (coordinates)-transformation without destroying the PH structure nor the
passivity properties.

4. The PSO Method for DP of Ship

Similar to most nonlinear control approaches, the gains and parameters of the IDA-PBC control
law (10) are generally obtained using trial and error which relies mainly on experience, and usually
results in tedious computations. Here, we utilize the PSO algorithm to obtain the optimal gains of this
controller which provides an effective way to tune these gains thus improving the control performance
of DP system of the ship.

4.1. An Overview of PSO Method

Since its introduction in [41], particle swarm optimization (PSO) algorithm has received wide
attention and has been widely used for various optimization applications. Inspired by the social
and intelligent collective behavior of animals (such as insects, herds, birds and fishes) and the
learning experiences they develop conforming cooperatively some ways in searching for food [42,43].
The PSO design is a population-based stochastic optimization algorithm which has the advantages of
simple implementation and simple integration with other optimization methods as well as its rapid
convergence capability [43]. In this algorithm, a group of particles called population moves in the
search-space looking for the optimal value of a performance index (fitness function). The position and
the velocity of each particle is updated according to mathematical equations which are:

xn+1
ij = xn

ij + vn+1
ij (19)

vn+1
ij = wvn

ij + r1c1(pn
ij − xn

ij) + r2c2(gn
j − xn

ij), (20)

where xn
ij is the position of the particle i at the current iteration in the j dimension, xn+1

ij is the position

of the particle at the next iteration, vn
ij is the velocity of the particle i at the current iteration, vn+1

ij is
the velocity of the next iteration, w is the inertia weight, c1 is the self-weight acceleration coefficient,
c2 is the social-weight acceleration coefficient, r1 and r2 are uniformly distributed numbers, pn

ij is
the best previous position (with minimum fitness value) of the particle i in the j dimension until the
current iteration n and gn

j is the position of the best particle in the dimension j at the current iteration.
The flow-chart of the PSO algorithm is illustrated in Figure 3.
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Figure 3. The flow-chart of the particle swarm optimization (PSO) algorithm.

4.2. Application of PSO Algorithm for DP of Ship

In this work, the PSO was used to tune the modified passivity-based controller for improving
the performance of a dynamic positioning system in a surface ship. The design space is the controller
gains which are the diagonal elements in ex. Kq matrix:

XDesign = (kq1 , kq2 , kq3). (21)
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The objective that used in this optimization is the performance index integral square error (ISE)
which can be defined for the three outputs (x-position, y-position and yaw angle (ψ)):

ISE =
∫ t f

t0

ex(t)2 + ey(t)2 + eψ(t)2, (22)

ex(t) is the error in the x-position, ey(t) is the error in the y-position and eψ(t) is the error in the yaw
angle. We used this method (the summation of the three errors) in preparing the performance index as
in [36].

4.3. Convergence to the Optimal Solution Using PSO Method

In terms of convergence of the function to the optimal solution, optimization methods can be
split into two groups; local and global optimization methods. The local optimization could ensure
the function/algorithm convergence to the local optimal solution while the global methods could
guarantee a convergence to a global solution among multiple local optima. Moreover and based on
the local or global convergence condition, optimization techniques can be decomposed into two main
methods: the metaheuristic and deterministic methods following their tendency to converge towards
a local or global optimum, respectively [44].

Most metaheuristic methods are naturally or biologically motivated mimicking the behavioral
characteristics and/or interactions of living agents such as worms, fish, birds, bees [45].
Metaheuristic methods are gaining popularity in several application domains including in control
system, neural network training and function optimization due to their ease of implementation,
rapid convergence capability without requiring high mathematical preparation and computational
complexity [42,46]. The most popular metaheuristic methods, which have been used to solve a wide
range of real-life optimization problems, are differential evolution, artificial bee colony, particle swarm
optimization, genetic algorithm, simulated annealing, gravitational search algorithm and firefly
algorithm [44,46]. On the other hand, deterministic methods follow a definite trajectory to the
closest minimum from random initial solution(s), which ensure more accurate results. However,
these methods require sophisticated mathematics and extensive computation. They also need a lot
of memory for sampling and lengthy simulations [46,47]. Charactarized by the fact that the selected
objective function must satisfy the Lipschitz condition, a number of approaches have been proposed in
the literature; the DIRECT method and its locally-biased version DIRECT-L, and the approach based
on adaptive diagonal curves [46], and the geometric global optimization methods [44].

To guarantee that our proposed PSO approach converges to the optimal value, we used the
PSO algorithm implemented in the Global Optimization Toolbox in Matlab. This toolbox examines
several basins of attraction to find the global optima [48]. This Global Optimization Toolbox “provides
functions that search for global solutions to problems that contain multiple maxima or minima.
This gives some confidence that particleswarm reports a local minimum and that the final obtained
value is the global solution[49]”. Furthermore, and based on the comprehensive discussion and
analysis in [44], PSO methods manifest a better performance as well as being less sensitive to the
accuracy increment with respect to the other tested metaheuristics. In addition, trial points generated
by PSO were distributed in a smarter manner with respect to the other metaheuristics and even better
than some global methods [44]. Motivated by these points and due to the fact that PSO method solves
the optimization problem in a computationally efficient manner, we have adopted this method among
other optimization methods. It’s effectiveness will be verified in the next section.

5. Numerical Simulations

Three sets of numerical simulations based on the 3-DOF planar model of the ship (vessel) were
carried out to demonstrate the effectiveness of the proposed control design. The first set of simulations
demonstrates the improved design, the second shows the role of PSO tuning method, and the third
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shows the robustness of the closed-loop against external disturbances. All the simulations have been
implemented in the Matlab/Simulink environment.

5.1. A Comparison between the Modified and the Original Controllers

To show the effectiveness of the proposed controller, we have compared it with the original
proposed in [27]. The values of the model parameters M and D are [27]:

M =

1.1274 0 0
0 1.8902 −0.0744
0 −0.0744 0.1278

 ,

D =

0.0358 0 0
0 0.1183 −0.0124
0 −0.0124 0.0308

 ,

(23)

and the controller gains have been selected as:

Kp =

1.5 0 0
0 1 0
0 0 0.3

 , KI =

0.05 0 0
0 0.03 0
0 0 0.06


Kz1 =

1.0 0 0
0 1.0 0
0 0 1.0

 , C =

0.01 0 0
0 0.01 0
0 0 0.08


(24)

The initial state (initial position and orientation of the ship) has been chosen as −10 m for
both positions (q1, q2) and 4 rad for yaw angle (q3). The aim is to stabilize the ship at its desired
equilibrium (0,0,0). Figures 4 and 5 show the time histories of the position states q1 (position in x
coordinate) and q2 (position in y coordinate,) and Figure 6 shows the time history of the orientation
(heading) q3 (yaw angle). The figures show simulations using both the original and proposed
controllers. The performance (time response characteristics) for both controllers are shown in Table 1.
The improvement on the performance of the closed-loop system using the proposed controller over the
classical one has been demonstrated evident by faster response, less overshoot in the x and y directions
as well as an improved undershoot in the yaw angle.

Table 1. Time performance characteristics for the two controllers.

Time Characteristics Modified Controller Original Controller

q1 Rise time(s) 40.7935 59.0104

q1 Settling time(s) 457.7632 1062.9

q1 Overshoot percentage 41.0047 49.7733

q2 Rise time(s) 47.6423 46.8955

q2 Settling time(s) 480.8057 765.8472

q2 Overshoot percentage 44.4818 59.0281

q3 Rise time(s) 5.4699 5.3337

q3 Settling time(s) 9.1445 41.6431

q3 Overshoot percentage 1.3724 (under) 11.4531 (under)
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Figure 4. The position of ship q1 in the x-coordinate.

Figure 5. The position of ship q2 in the y-coordinate.
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Figure 6. The orientation (heading) of ship q3 (yaw angle ψ).

5.2. The PSO Tuning of the Proposed Controller

Here, we show the procedures to tune the controller gains as discussed in Section 4. We use the
same model parameters as in the previous subsection. The algorithm parameters are shown in Table 2.
The iterations versus the fitness values for ISE are shown in Figure 7. The termination happened
before the maximum iteration because of the steady value of the fitness functions. The optimal values
resulted from the tuning iterations are obtained as

K =

 10
10

4.125

 .

Figures 8–10 show the time histories of the ship’s position and orientation using both our original
proposed controller and the tuned one with PSO algorithm. It is clear from the plots that the states
converge to the desired position and heading angle. The time response characteristics are shown in
Table 3. We can see that PSO method improved the response of the system achieving a faster settling
while reducing the overshoot (undershoot) as well as avoiding a long and time-consuming trial and
error procedure to find the optimal gains. The improvement can be also shown from the trajectories
for the two cases (with and without using the PSO method) in Figure 11 which clearly shows better
trajectory profile and more convenient path in the case of PSO-tuned controller.
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Figure 7. Integral square error (ISE) fitness values versus iterations.

Figure 8. The position of ship q1 in the x-coordinate with and without PSO.
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Figure 9. The position of ship q2 in the y-coordinate with and without PSO.

Figure 10. The orientation (heading) of ship q3 (yaw angle ψ) with and without PSO.
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Figure 11. The trajectories of the surface ship in the q1 − q2 plane.

Table 2. PSO algorithm parameters.

Parameter Name Value

Maximum iteration 500

Swarm Size 30

Self-Weight acceleration coefficient (c1) 1.494

Social-Weight acceleration coefficient (c2) 1.494

Inertia weight (w) 0.729

kq1 range 0.001–10

kq2 range 0.001–10

kq3 range 0.001–10

Table 3. Time performance characteristics for ISE and without PSO.

Time Characteristics Without PSO with PSO

q1 Rise time(s) 40.7935 17.0299

q1 Settling time(s) 457.7632 277.9465

q1 Overshoot percentage 41.0047 5.6116

q2Rise time(s) 47.6423 15.9123

q2 Settling time(s) 480.8057 398.5471

q2 Overshoot percentage 44.4818 7.9774

q3 Rise time(s) 5.4699 3.4137

q3 Settling time(s) 9.1445 6.2746

q3 Overshoot percentage 1.3724 (under) 0.6043 (under)
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5.3. The Robustness of the Proposed Controller

A vessel operating in the sea or ocean is subjected to different disturbances due to different sea and
ocean states. Such environmental disturbances due to wind, waves, and currents play an important
role in the stabilization and performance of the DP system of the vessel which may cause the vessel
to drift from the desired position and heading and/or oscillate [50,51]. Therefore, the disturbance
rejection becomes a crucial issue in the design of DP controller.

Environmental changes cause changes to the disturbance characteristics (such as the current and
wind speed, waves elevation and frequencies) of the controlled system. Such disturbances induced
by wind, waves, and currents can be separated into components at lower frequencies (LF) due to
the second-order waves also called slow wave drift forces [39], and components at wave–frequency
(WF) disturbances due to the first-order waves. LF and WF comprises the main disturbances affecting
the ship motion with LF responsible for drifting and WF for oscillation of the vessel [50]. The WF
disturbances are typically tackled by wave-filtering techniques in advance [52], and DP systems can
then deal with the LF disturbances which can be represented with a series of sinusoidal components
with different frequencies, amplitudes and phases [51]. Different disturbances due to different sea
states were described in the Code of sea state in Table 4 which are characterized by wave spectra [39].

Table 4. Codes of sea state [39].

Sea State Code Description of Sea Wave Height Observed (m) World Wide Probability (%)

0 Calm (glassy) 0 -

1 Calm (ripples) 0–0.1 11.2486

2 Smooth 0.1–0.5 -

3 Slight 0.5–1.25 31.6851

4 Moderate 1.25–2.5 40.1944

5 Rough 2.5–4.0 12.8005

6 Very rough 4.0–6.0 3.0253

7 High 6.0–9.0 0.9263

8 Very high 9.0–14.0 0.1190

9 Extreme Over 14.0 0.0009

Mathematically, the vector (b ∈ R3) in Equation (1) denotes the disturbance vector consisting
of equivalent LF disturbance forces b1(t) in surge, disturbance force b2(t) in sway and disturbance
moment b3(t) in yaw.

Here, we show the capability of the proposed dynamic control law, by incorporating the integral
action term, in rejecting externally induced disturbance , hence, achieving robust bounded control
performance. We demonstrated our proposed design with two sets of simulations for two different
scenarios; in the first scenario a vessel has been disturbed (at T = 0 s) by constant wind and current
speeds and constant wave height, then being suddenly disturbed by stronger wind and current,
and higher wave at (T = 1500 s). Figures 12–14 show the response of the closed-loop system in presence
of disturbances which have been induced to the system at time (T = 1500 s). As shown, the proposed
controller has rejected the environmental disturbances and forced the ship to return back to its desired
position (equilibrium) demonstrating its effectiveness and robustness in spite of disturbances.
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Figure 12. The position of ship q1 in the x-coordinate subject to disturbances.

Figure 13. The position of ship q2 in the y-coordinate subject to disturbances.
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Figure 14. The orientation (heading) of ship q3 (yaw angle ψ) subject to disturbances.

In the second scenario, the vessel started in the slight sea state (code no. 3 in Table 4) and then
environmental changes associated with moderate sea state (code no. 4) disturbed the vessel at time
(T = 1200 s). The values of wave height, peak frequency and direction, and wind/current speeds angles
and directions have been taken from [51] adopting the Jonswap spectrum which has been discussed
in [39]. As depicted in Figures 15–17, the ship position and heading in the x, y, ψ coordinates have been
affected by the environmental disturbances (sea state changes) as expected, however, the controller
quickly suppressed the disturbances and the ship returned back to its desired position and orientation.

Figure 15. The position of ship q1 in the x-coordinate subject to disturbances.
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Figure 16. The position of ship q2 in the y-coordinate subject to disturbances.

Figure 17. The orientation (heading) of ship q3 (yaw angle ψ) subject to disturbances.

6. Conclusions and Future Work

In this paper, a dynamic IDA-PBC controller has been proposed for the dynamic positioning of
surface ships. The tuning of the gains of the IDA-PBC controller based on the PSO method has also been
discussed. Moreover, we employed the dynamic extension on the PCH model to improve the IDA-PBC
controller for DP of ships. Asymptotic stabilization of the system is achieved by injecting damping
on the position and momenta states while robustness of the closed-loop system against disturbances
is ensured by the integral action control. Finally, the effectiveness of the proposed controller using
the PSO tuning method has been verified through simulations which revealed improved convergence
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speed and less overshoots. Future work includes using multi-objective optimization and further
investigation to the adaptive and robust control problems associated with the uncertainties and
time-varying disturbances.
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