Localisation of Ancient Migration Pathways inside a Fractured Metamorphic Hydrocarbon Reservoir in South-East Hungary
Abstract
:1. Introduction
2. Geological Setting
3. Methods
4. Results
4.1. Petrography and Mineralogy
4.2. Well-log Evaluation
4.3. Fracture Network Modelling
4.4. Fluid Composition
5. Discussion
5.1. Characterisation of the Fracture Network
5.2. Formation of Laumontite
5.3. Consequences for Migration Pathways
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nelson, R.A. Geologic Analysis of Naturally Fractured Reservoirs; Elsevier: Amsterdam, The Netherlands, 2001; p. 352. [Google Scholar]
- Long, J.C.S. (Ed.) Rock Fractures and Fluid Flow: Contemporary Understanding and Applications; National Academy Press: Washington, DC, USA, 1996; p. 551. [Google Scholar]
- Zhang, X.; Sanderson, D.J. Numerical Modelling and Analysis of Fluid Flow and Deformation of Fractured Rock Masses; Pergamon Press: Oxford, UK, 2002; p. 288. [Google Scholar]
- Morrow, C.; Lockner, D.; Hickman, S.; Rusanov, M.; Röckel, T. Effects of lithology and depth on the permeability of core samples from the Kola and KTB drill holes. J. Geophys. Res. Atmos. 1994, 99, 7263–7274. [Google Scholar] [CrossRef] [Green Version]
- Scesi, L. Gattinoni P. Water Circulation in Rocks; Springer: Berlin/Heidelberg, Germany, 2009; p. 165. [Google Scholar]
- Volatili, T.; Zambrano, M.; Cilona, A.; Tondi, E. From fracture analysis to flow simulations in fractured carbonates: The case study of the Roman Valley Quarry (Majella Mountain, Italy). Mar. Pet. Geol. 2018, 100, 95–110. [Google Scholar] [CrossRef]
- Becker, I.; Müller, B.; Koehrer, B.; Jelinek, W.; Hilgers, C. Present-day stress control on fluid migration pathways: Case study of the Zechstein fractured carbonates, NW-Germany. Mar. Pet. Geol. 2019, 103, 320–330. [Google Scholar] [CrossRef]
- La Pointe, P.R.; Eiben, T.; Dershowitz, W.; Wadleigh, E. Compartmentalization analysis using discrete fracture network models. In Proceedings of the Fourth International Reservoir Characterization Technical Conference, Houston, TX, USA, 2–4 March 1997; p. 18. [Google Scholar]
- Kókai, J. Exploration History and Future Possibilities in Hungary. In Hydrocarbons of Eastern Central Europe, Habitat, Exploration and Production History; Popescu, B.M., Ed.; Springer: Berlin, Germany, 1994; pp. 147–173. [Google Scholar]
- Teleki, P.C.; Mattick, R.E.; Kókai, J. Basin Analysis in Petroleum Exploration, Hungary; Kluwer: Dordrecht, The Netherlands, 1994; p. 330. [Google Scholar]
- Dolton, G.L. Pannonian Basin Province, Central Europe (Province 4808)–Petroleum geology, total petroleum systems, and petroleum resource assessment. In U.S. Geological Survey Bulletin; 2204–B; U.S. Geological Survey: Reston, VA, USA, 2006. [Google Scholar]
- Garaguly, I.; Varga, A.; Raucsik, B.; Schubert, F.; Czuppon, G.Y.; Frei, R. Pervasive early diagenetic dolomitization, subsequent hydrothermal alteration, and late stage hydrocarbon accumulation in a Middle Triassic carbonate sequence (Szeged Basin, SE Hungary). Mar. Pet. Geol. 2018, 98, 270–290. [Google Scholar] [CrossRef]
- Tóth, T.M.; Vargáné Tóth, I. Lithologically controlled behaviour of the Dorozsma metamorphic hydrocarbon reservoir (Pannonian Basin, SE Hungary). J. Pet. Sci. Eng. 2020, 195, 107748. [Google Scholar] [CrossRef]
- Pap, S.; Sőreg, V.; Papné Hasznos, I. Exploration of the Dévaványa-South basement structure for hydrocarbons–a case history. Geophys. Trans. 1992, 37, 211–228. [Google Scholar]
- Fiser-Nagy, Á.; Vargáné Tóth, I.; Tóth, T.M. Lithology identification using open-hole well-log data in the metamorphic Kiskunhalas-NE hydrocarbon reservoir, South Hungary. Acta Geod. Geophys. Hung. 2014, 49, 57–78. [Google Scholar] [CrossRef] [Green Version]
- Tóth, T.M.; Schubert, F.; Zachar, J. Neogene exhumation of the Variscan Szeghalom dome, Pannonian Basin, E. Hungary. Geol. J. 2000, 35, 265–284. [Google Scholar] [CrossRef]
- Tóth, T.M.; Hollós, C.S.; Szűcs, É.; Schubert, F. Conceptual fracture network model of the crystalline basement of the Szeghalom Dome (Pannonian Basin, SE Hungary). Acta Geol. Hung. 2004, 47, 19–34. [Google Scholar] [CrossRef]
- Schubert, F.; Diamond, L.W.; Tóth, T.M. Fluid inclusion evidence of petroleum migration through a buried metamorphic dome in the Pannonian Basin, Hungary. Chem. Geol. 2007, 244, 357–381. [Google Scholar] [CrossRef]
- Molnár, L.; Tóth, T.M.; Schubert, F. Structural controls on the petroleum migration and entrapment within faulted basement blocks of the Szeghalom Dome (Pannonian Basin, SE Hungary). Geol. Croat. 2015, 68, 247–259. [Google Scholar] [CrossRef]
- Tóth, T.M.; Redlerné Tátrai, M.; Kummer, I. A Szeghalom környéki metamorf aljzat kiemelkedés szerkezetfejlődése és felépítése kőzettani és szeizmikus adatok alapján. (Structural evoluton of the Szeghalom metamorphic dome on the basis of petrological and seismic data.). Magy. Geofiz. 2008, 49, 143–151. [Google Scholar]
- Tóth, T.M.; Schubert, F. Evolution of the arc-derived orthogneiss recorded in exotic xenoliths of the Körös Complex (Tisza Megaunit, SE Hungary). J. Geosci. 2018, 63, 21–46. [Google Scholar] [CrossRef] [Green Version]
- Juhász, A.; Tóth, T.M.; Ramseyer, K.; Matter, A. Connected fluid evolution in fractured crystalline basement and overlying sediments, Pannonian Basin, SE Hungary. Chem. Geol. 2002, 182, 91–120. [Google Scholar] [CrossRef]
- Tóth, T.M.; Kedves, M.; Schubert, F. Az Alföld metamorf aljzatának exhumációja a Szeghalom-dóm területén: Palinológiai bizonyítékok. (Exhumation of the metamorphic basement of the Pannonian Basin (Szeghalom Dome, SE Hungary) palynological constraints.). Földtani Közlöny 2003, 133, 547–562. [Google Scholar]
- Lu, Y.C.; Tien, Y.M.; Juang, C.H. Uncertainty of 1-D fracture intensity measurements. J. Geophys. Res. Solid Earth 2017, 122, 9344–9358. [Google Scholar] [CrossRef]
- Barton, C.C.; Larsen, E. Fractal geometry of two-dimensional fracture networks at Yucca Mountain, Southwestern Nevada. In Proceedings of the International Symposium on Fundamentals of Rock Joints, Bjorkliden, Lapland, Sweden, 15–20 September 1985; Stephanson, O., Ed.; pp. 77–84. [Google Scholar]
- La Pointe, P.R. A method to characterize fracture density and connectivity through fractal geometry. Int. J Rock Mech. Min. Sci. Geomech. Abstr. 1988, 25, 421–429. [Google Scholar] [CrossRef]
- Marstrand, J.M. Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. Lond. Math. Soc. 1954, 3, 257–302. [Google Scholar] [CrossRef]
- Renjun Wen, R.; Sinding-Larsen, R. Uncertainty in fractal dimension estimated from power spectra and variograms. Math. Geol. 1997, 29, 727–753. [Google Scholar]
- Tóth, T.M. Determination of geometric parameters of fracture networks using 1D data. J. Struct. Geol. 2010, 32, 878–885. [Google Scholar] [CrossRef]
- Yielding, G.; Walsh, J.J.; Watterson, J. The prediction of small scale faulting in reservoirs. First Break 1992, 10, 449–460. [Google Scholar] [CrossRef]
- Min, K.B.; Jing, L.; Stephansson, O. Determining the equivalent permeability tensor for fractured rock masses using a stochastic REV approach: Method and application to the field data from Sellafield, UK. Hydrogeol. J. 2004, 12, 497–510. [Google Scholar] [CrossRef]
- Tóth, T.M.; Vass, I. Relationship between the geometric parameters of rock fractures, the size of percolation clusters and REV. Math. Geosci. 2011, 43, 75–97. [Google Scholar] [CrossRef]
- Bauer, M.; Tóth, T.M. Modelling microfracture geometry to assess the function of a karst system (Vízfő spring catchment area, Western Mecsek Mountains, Hungary). Geol. Croat. 2015, 68, 11–23. [Google Scholar] [CrossRef]
- Bauer, M.; Tóth, T.M. Characterization and DFN modelling of the fracture network in a Mesozoic karst reservoir: Gomba oilfield, Paleogene Basin, Central Hungary. J. Pet. Geol. 2017, 40, 319–334. [Google Scholar] [CrossRef]
- Vass, I.; Tóth, T.M.; Szanyi, J.; Kovács, B. Hybrid numerical modelling of fluid and heat transport between the overpressured and gravitational flow systems of the Pannonian Basin. Geothermics 2018, 72, 268–276. [Google Scholar] [CrossRef]
- Diamond, L.W.; Schmatz, D.; Wursten, F. “Standard library”: A relational database for the management of electron microprobe standards. Comput. Geosci. 1994, 20, 585–595. [Google Scholar] [CrossRef]
- de Capitani, C.; Brown, T.H. The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochim. Et Cosmochim. Acta 1987, 51, 2639–2652. [Google Scholar] [CrossRef]
- de Capitani, C. Gleichgewichts-Phasendiagramme: Theorie und Software. Beih. Eur. J. Mineral. 1994, 72, 48. [Google Scholar]
- Berman, R.G. Internally-Consistent Thermodynamic Data for Minerals in the system Na2O-K2O-CaOMgO-FeO-Fe2O3-A12O3-SiO2-TiO2-H2O-CO2. J. Petrol. 1988, 29, 445–522. [Google Scholar] [CrossRef]
- Volk, H.; George, S.C. Using petroleum inclusions to trace petroleum systems–A review. Org. Geochem. 2019, 129, 99–123. [Google Scholar] [CrossRef]
- Urotadze, S.; Tsitsishvili, V.; Osipova, N.; Kvernadze, T. Laumontite–natural zeolite mineral of Georgia. Bull. Georgian Nat. Acad. Sci. 2016, 10, 32–37. [Google Scholar]
- Barclay, S.A.; Worden, R.H.; Parnell, J.; Hall, D.L.; Sterner, S.M. Assessment of Fluid Contacts and Compartmentalization in Sandstone Reservoirs Using Fluid Inclusions: An Example from the Magnus Oil Field, North Sea. Aapg Bull. 2000, 84, 489–504. [Google Scholar]
- Feiner, S.; Lishansky, R.; Phiukhao, W.; Chao, J.C.; Hall, D. Unconventional Reservoir Potential From Trapped Fluid Analysis Onshore Canning Basin, Australia. In Proceedings of the 5th Unconventional Resources Technology Conference, Austin, TX, USA, 24–26 July 2017. [Google Scholar] [CrossRef]
- Miranda, J.A.; Hall, D.L.; O’Brien, G.W.; Phiukhao, W.; Goldie Divko, L.M.; Chao, J.C.; Campi, M.J.; Eid, R.; Tingate, P.R. Fluid Inclusion Stratigraphy in the Gippsland Basin: Implications for Geological Carbon Storage; Department of Primary Industries: Victoria, Australia, 2013; p. 60. [Google Scholar]
- Parnell, J.; Middleton, D.; Honghan, C.; Hall, D. The use of integrated fluid inclusion studies in constraining oil charge history and reservoir compartmentation: Examples from the Jeanne d’Arc Basin, offshore Newfoundland. Mar. Pet. Geol. 2001, 18, 535–549. [Google Scholar] [CrossRef]
- Liou, J.G.; de Capitani, C.; Frey, M. Zeolite equilibria in the system CaAl2Si2O8–NaAlSi3O8–SiO2–H2O. N. Z. J. Geol. Geophys. 1991, 34, 293–301. [Google Scholar] [CrossRef]
- Hung, J.; Wu, Y.; Yeh, E.; Wu, J. Subsurface Structure, Physical Properties, and Fault Zone Characteristics in the Scientific Drill Holes of Taiwan Chelungpu-Fault Drilling Project. Terr. Atmos. Ocean. Sci. 2007, 18, 271–293. [Google Scholar] [CrossRef] [Green Version]
- Jeppson, T.N.; Bradbury, K.K.; Evans, J.P. Geophysical properties within the San Andreas Fault Zone at the San Andreas Fault Observatory at Depth and their relationships to rock properties and fault zone structure. J. Geophys. Res. 2010, 115, B12423. [Google Scholar] [CrossRef]
- Caine, J.S.; Evans, J.P.; Forster, C.B. Fault zone architecture and permeability structure. Geology 1996, 24, 1025–1028. [Google Scholar] [CrossRef]
- Evans, J.P.; Forster, C.B.; Goddard, J.V. Permeability of fault-related rocks and implications for fault-zone hydraulic structure. J. Struct. Geol. 1997, 19, 1393–1404. [Google Scholar] [CrossRef]
- Gueguen, Y.; Chelidze, T.; Le Ravalec, M. Microstructures, percolation thresholds, and rock physical properties. Tectonophysics 1997, 279, 23–35. [Google Scholar] [CrossRef]
- Peitgen, H.O.; Jürgens, H.; Saupe, D. Chaos and Fractals. New Frontiers of Science; Springer: Berlin, Germnay, 1992; p. 969. [Google Scholar]
- Kiseleva, I.; Navrotsky, A.; Belitsky, I.A.; Fursenko, B.A. Thermochemistry of natural potassium sodium calcium leonhardite and its cation-exchanged forms. Am. Mineral. 1996, 81, 668–675. [Google Scholar] [CrossRef]
- Fridriksson, T.; Neuhoff, P.S.; Viani, B.E.; Bird, D.K. Experimental determination of thermodynamic properties of ion-exchange in heulandite: Binary ion-exchange experiments at 55 and 85 °C involving Ca2+, Sr2+, Na+, and K+. Am. J. Sci. 2004, 304, 287–332. [Google Scholar] [CrossRef]
- Greenwood, H.J. Metamorphic System Involving Two Volatile Components; Year Book; Carnegie Institution of Washington: Washington, DC, USA, 1962; Volume 61, pp. 82–85. [Google Scholar]
- Greenwood, H.J. Mineral equilibria in the system MgO-SiO2-H2O-CO2. In Researches in Geochemistry; Ableson, P.H., Ed.; Wiley: New York, NY, USA, 1967; pp. 542–567. [Google Scholar]
- Kerrick, D.M. Review of metamorphic mixed-volatile (H2O-CO2) equilibria. Am. Mineral. 1974, 59, 729–762. [Google Scholar]
- Spear, F.S. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths; Mineralogical Society of America: Washington, DC, USA, 1993; p. 799. [Google Scholar]
- Ruble, T.E.; George, S.C.; Lisk, M.; Quezada, R.A. Organic compounds trapped in aqueous fluid inclusions. Org. Geochem. 1998, 29, 195–205. [Google Scholar] [CrossRef]
- Volk, H.; Mann, U.; Burde, O.; Horsfield, B.; Suchú, V. Petroleum inclusions and residual oils: Constraints for deciphering petroleum migration. J. Geochem. Explor. 2000, 71, 307–311. [Google Scholar] [CrossRef]
- Watson, J.T.; Sparkman, O.D. Introduction to Mass Spectrometry: Instrumentation, Applications And Strategies for Data Interpretation; John Willey and Sons: West Sussex, UK, 2007. [Google Scholar]
- Hunt, J.M. (Ed.) Petroleum Geochemistry and Geology; W.H. Freeman and Company: New York, NY, USA, 1995. [Google Scholar]
- Clayton, J.L.; Koncz, I.; King, J.D.; Tatár, E. Organic Geochemistry of Crude Oils and Source Rocks, Békés Basin. In Basin Analysis in Petroleum Exploration, A Case Study from the Békés Basin, Hungary; Teleki, P.G., Mattick, R.E., Kókai, J., Eds.; Springer Science+Business Media B.V.: Dordrecht, The Netherlands, 1994; pp. 161–185. [Google Scholar]
- Collins, A.G. Geochemistry of Oilfield Waters; Elsevier Scientific Publishing Company: New York, NY, USA, 1975. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
M. Tóth, T.; Molnár, L.; Körmös, S.; Czirbus, N.; Schubert, F. Localisation of Ancient Migration Pathways inside a Fractured Metamorphic Hydrocarbon Reservoir in South-East Hungary. Appl. Sci. 2020, 10, 7321. https://doi.org/10.3390/app10207321
M. Tóth T, Molnár L, Körmös S, Czirbus N, Schubert F. Localisation of Ancient Migration Pathways inside a Fractured Metamorphic Hydrocarbon Reservoir in South-East Hungary. Applied Sciences. 2020; 10(20):7321. https://doi.org/10.3390/app10207321
Chicago/Turabian StyleM. Tóth, Tivadar, László Molnár, Sándor Körmös, Nóra Czirbus, and Félix Schubert. 2020. "Localisation of Ancient Migration Pathways inside a Fractured Metamorphic Hydrocarbon Reservoir in South-East Hungary" Applied Sciences 10, no. 20: 7321. https://doi.org/10.3390/app10207321
APA StyleM. Tóth, T., Molnár, L., Körmös, S., Czirbus, N., & Schubert, F. (2020). Localisation of Ancient Migration Pathways inside a Fractured Metamorphic Hydrocarbon Reservoir in South-East Hungary. Applied Sciences, 10(20), 7321. https://doi.org/10.3390/app10207321