Fault Detection of Wind Turbine Induction Generators through Current Signals and Various Signal Processing Techniques
Abstract
:1. Introduction
- Analyze the models used to detect the frequency components associated with faults.
- Obtain the spectrum of the current signal of an operating turbine.
- Study the effectiveness of signal processing techniques in detecting WT failures.
- Check the effectiveness of the WT control system to determine the status of the generator.
- Compare the results obtained with those of previously published studies.
2. Modeling Electrical Generator Faults Using the Current Signal
3. Signal Processing Techniques Applied to Wind Turbine Failure Detection
4. Materials and Methods
5. Results and Discussion
6. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
torque amplitude | |
amplitude of magnetization and torque components | |
a | |
a2 | |
flux density | |
sampled noise | |
rotor frequency | |
rotor mechanical frequency | |
gear frequency | |
vibration frequency of bearing failure | |
air gap function ( in the case of a uniform air gap) | |
constant air gap length | |
mean air gap length as a function of time | |
line current | |
average or constant component of the current | |
magnetization and torque components of the stator current | |
constant value of magnetization and torque components | |
inertia | |
failure modulation index | |
winding factor for harmonic h | |
0, 1, 2, 3, 4, 5, … | |
N | number of turns per coil |
number of turns of the rotor winding | |
0 for static eccentricity, 1, 2, 3, 4, 5, … for dynamic eccentricity | |
MMF | magnetomotive force |
input power | |
p | pole pairs |
bearing diameter | |
iron losses | |
rotor slots | |
rotor resistance | |
stator resistance | |
arbitrary contour surface | |
number of complex sinusoids | |
slip per unit | |
constant torque component | |
electromechanical torque | |
total torque | |
damping torque due to failure | |
blade torque under normal conditions | |
angular displacement with reference to the stator | |
rotor angular displacement, rotor surface | |
angular displacement between rotor and stator reference position | |
phase angle, load or power factor | |
phase shift between the stator and rotor MMFs | |
phase angle of the fault | |
angular velocity of the feed current | |
constant component of the angular speed of the rotor | |
stator field angular velocity | |
rotor mechanical speed | |
rotor magnetic field speed | |
angular velocity of the fault | |
Laplace operator | |
temporal variable | |
variance | |
dynamic eccentricity index |
References
- Qiao, W.; Lu, D. A Survey on Wind Turbine Condition Monitoring and Fault Diagnosis—Part I: Components and Subsystems. IEEE Trans. Ind. Electron. 2015, 62, 6536–6545. [Google Scholar] [CrossRef]
- Qiao, W.; Lu, D. A Survey on Wind Turbine Condition Monitoring and Fault Diagnosis—Part II: Signals and Signal Processing Methods. IEEE Trans. Ind. Electron. 2015, 62, 6546–6557. [Google Scholar] [CrossRef]
- García Márquez, F.P.; Tobias, A.M.; Pinar Pérez, J.M.; Papaelias, M. Condition monitoring of wind turbines: Techniques and methods. Renew. Energy 2012, 46, 169–178. [Google Scholar] [CrossRef]
- Merizalde, Y.; Hernández-Callejo, L.; Duque-Pérez, O.; Alonso-Gómez, V. Diagnosis of wind turbine faults using generator current signature analysis: A review. J. Qual. Maint. Eng. 2019. [Google Scholar] [CrossRef]
- Jin, X.; Cheng, F.; Peng, Y.; Qiao, W.; Qu, L. A comparative study on Vibration- and current-based approaches for drivetrain gearbox fault diagnosis. In Proceedings of the IEEE Industry Applications Society Annual Meeting IAS 2016, Portland, OR, USA, 2–6 October 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Henao, H.; Capolino, G.A.; Cabanas, M.N.; Filippetti, F.; Bruzzese, C.; Strangas, E.; Pusca, R.; Estima, J.; Riera-Guasp, M.; Hedayati-Kia, S. Trends in Fault Diagnosis for Electrical Machines: A Review of Diagnostic Techniques. IEEE Ind. Electron. 2014, 8, 31–42. [Google Scholar] [CrossRef]
- Pires Leite, G.; Araújo, A.M.; Carvalho, P.A. Prognostic techniques applied to maintenance of wind turbines: A concise and specific review. Renew. Sustain. Energy Rev. 2018, 81, 1917–1925. [Google Scholar] [CrossRef]
- Seera, M.; Peng Lim, C.; Nahavandi, S.; Kiong Loo, C. Condition monitoring of induction motors: A review and an application of an ensemble of hybrid intelligent models. Expert Syst. Appl. 2014, 41, 4891–4903. [Google Scholar] [CrossRef]
- El Bouchikhi, E.H.; Choqueuse, V.; Benbouzid, M. Induction machine faults detection using stator current parametric spectral estimation. Mech. Syst. Signal Process. 2015, 52–53, 447–464. [Google Scholar] [CrossRef] [Green Version]
- AETS Sudamérica. Estudio de Mercado de Motores Eléctricos en Chile. Santiago de Chile. 2010. Available online: http://dataset.cne.cl/Energia_Abierta/Estudios/Minerg/10.Estudio%20Motores%20El%C3%A9ctricos%20en%20Chile_Final%20(1045).pdf (accessed on 8 October 2019).
- Stroker, J.J. What’s the real cost of higher efficiency? IEEE Ind. Appl. Mag. 2003, 9, 32–37. [Google Scholar] [CrossRef]
- Stavrakakis, G.S. Electrical parts of wind turbines. Compr. Renew. Energy 2012, 2, 269–328. [Google Scholar] [CrossRef]
- Chen, S. Induction Machine Broken Rotor Bar Diagnostics Using Prony Analysis. Master’s Thesis, University of Adelaide, Adelaide, Australia, 2008. [Google Scholar]
- Pyrhönen, J.; Jokinen, T.; Hrabovcová, V. Design of Rotating Electrical Machines; John Wiley & Sons: Chichester, UK, 2008. [Google Scholar]
- Bose, B.K. Modern Power Electronics and AC Drives; Prentice Hall PTR: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Yacamini, R.; Smith, K.S.; Ran, L. Monitoring Torsional Vibrations of Electro-mechanical Systems Using Stator Currents. J. Vib. Acoust. 1998, 120, 72–79. [Google Scholar] [CrossRef]
- Toliyat, H.A.; Campbell, S.G. DSP-Based Electromechanical Motion Control; CRC PRESS: Boca Raton, FL, USA, 2003. [Google Scholar]
- Orille, A.L.; Sowilam, G.M.A.; Valencia, J.A. New simulation of symmetrical three phase induction motor under transformations of park. Comput. Ind. Eng. 1999, 37, 359–362. [Google Scholar] [CrossRef]
- Bonnett, A.H. Root cause AC motor failure analysis with a focus on shaft failures. IEEE Trans. Ind. Appl. 2000, 36, 1435–1448. [Google Scholar] [CrossRef]
- Kia, S.; Henao, H.; Capolino, G. Diagnosis of broken-bar fault in induction machines using discrete wavelet transform without slip estimation. IEEE Trans. Ind. Appl. 2009, 45, 1395–1404. [Google Scholar] [CrossRef]
- Mohanty, A.R.; Kar, C. Fault detection in a multistage gearbox by demodulation of motor current waveform. IEEE Trans. Ind. Electron. 2006, 53, 1285–1297. [Google Scholar] [CrossRef]
- Penman, J.; Seddling, H.G.; Fink, W.T. Detection and Location of Interturn Short Circuits in the Stator Windings of Operating Motors. IEEE Trans. Energy Convers. 1994, 9, 652–658. [Google Scholar] [CrossRef] [Green Version]
- Filippetti, F.; Franceschini, G.; Tassoni, C.; Vas, P. Recent developments of induction motor drives fault diagnosis using AI techniques. IEEE Trans. Ind. Electron. 2000, 47, 994–1004. [Google Scholar] [CrossRef]
- Jung, J.H.; Lee, J.J.; Kwon, B.H. Online diagnosis of induction motors using MCSA. IEEE Trans. Ind. Electron. 2006, 53, 1842–1852. [Google Scholar] [CrossRef]
- Joksimovic, G.M.; Penman, J. The detection of inter-turn short circuits in the stator windings of operating motors. IEEE Trans. Ind. Electron. 2000, 47, 1078–1084. [Google Scholar] [CrossRef]
- Benbouzid, M.E.H. A review of induction motors signature analysis as a medium for faults detection. IEEE Trans. Ind. Electron. 2000, 47. [Google Scholar] [CrossRef] [Green Version]
- Thomson, W.T.; Fenger, M. Current signature analysis to detect induction motor faults. IEEE Ind. Appl. Mag. 2001, 7, 26–34. [Google Scholar] [CrossRef]
- Drozdowski, P.; Duda, A. Influence of magnetic saturation effects on the fault detection of induction motors. Arch. Electr. Eng. 2014, 63, 489–506. [Google Scholar] [CrossRef] [Green Version]
- Bellini, A.; Filippetti, F.; Tassoni, C.; Capolino, G. Advances in diagnostic techniques for induction machines. IEEE Trans. Ind. Electron. 2008, 5, 4109–4126. [Google Scholar] [CrossRef]
- Tavner, P.J. Review of condition monitoring of rotating electrical machines. IET Electr. Power Appl. 2008, 2, 215–247. [Google Scholar] [CrossRef]
- Vas, P. Parameter Estimation, Condition Monitoring, and Diagnosis of Electrical Machines; Clarendon Press: New York, NY, USA, 1993. [Google Scholar]
- Cameron, J.R.; Thomson, W.T.; Dow, A.B. Vibration and current monitoring for detecting airgap eccentricity in large induction motors. IEE Proc. B Electr. Power Appl. 1986, 133, 155–163. [Google Scholar] [CrossRef]
- Nandi, S.; Toliyat, H.A. Detection of rotor slot and other eccentricity related harmonics in a three phase induction motor with different rotor cages. IEEE Trans. Energy Convers. 2001, 16, 253–260. [Google Scholar] [CrossRef]
- Blödt, M.; Regnier, J.; Faucher, J. Distinguishing load torque oscillations and eccentricity faults in induction motors using stator current wigner distributions. IEEE Trans. Ind. Appl. 2009, 45, 1991–2000. [Google Scholar] [CrossRef]
- Teng, W.; Zhang, X.; Liu, Y.; Kusiak, A.; Ma, Z. Prognosis of the remaining useful life of bearings in a wind turbine gearbox. Energies 2017, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Cheatham, T.; Wiesner, J. Application of Correlation Analysis to the Detection of Periodic Signals in Noise. IEEE Trans. Ind Electron. Proc. IRE 1950, 38, 1165–1171. [Google Scholar] [CrossRef]
- Dalpiaz, G.; Rivola, A.; Rubini, R. Effectiveness and sensitivity of vibration processing techniques for local fault detection in gears. Mech. Syst. Signal Process. 2000, 14, 387–412. [Google Scholar] [CrossRef]
- Jardine, A.; Lin, D.; Banjevic, D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 2006, 20, 1483–1510. [Google Scholar] [CrossRef]
- Poyhonen, S.; Jover, P.; Hyotyniemi, H. Signal processing of vibrations for condition monitoring of an induction motor. In Proceedings of the First International Symposium on Control, Communications and Signal Processing, New York, NY, USA, 21–24 March 2004. [Google Scholar] [CrossRef]
- Baillie, D.; Mathew, J. A comparison of autoregressive modeling techniques for fault diagnosis of rolling element bearings. Mech. Syst. Signal Process. 1996, 10, 1–17. [Google Scholar] [CrossRef]
- Zhan, Y.; Makis, V.; Jardine, A. Adaptive model for vibration monitoring of rotating machinery subject to random deterioration. J. Qual. Maint. Eng. 2003, 9, 351–375. [Google Scholar] [CrossRef]
- Attoui, I.; Omeiri, A. Fault Diagnosis of an Induction Generator in a Wind Energy Conversion System Using Signal Processing Techniques. Electr. Power Compon. Syst. 2015, 43, 2262–2275. [Google Scholar] [CrossRef]
- Pinto, M. Procesamiento de Señales Utilizando el Análisis Tiempo-Frecuencia. Master’s Thesis, Centro de Investigación y Tecnología Digital, Instituto Politécnico Nacional, Tijuana, Mexico, 2005. [Google Scholar]
- Serie Discreta de Fourier. Available online: http://www.ehu.eus/Procesadodesenales/tema3/71.html (accessed on 27 December 2019).
- Artigao, E.; Honrubia-Escribano, A.; Gomez-Lazaro, E. Current signature analysis to monitor DFIG wind turbine generators: A case study. Renew. Energy 2018, 116, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Pons-Llinares, J.; Antonino-Daviu, J.; Riera-Guasp, M.; Lee, S.; Kang, T.; Yang, C. Advanced Induction Motor Rotor Fault Diagnosis Via Continuous and Discrete Time–Frequency Tools. IEEE Trans. Ind. Electron. 2015, 63, 1791–1801. [Google Scholar] [CrossRef]
- Scarpazza, D. A Brief Introduction to the Wigner Distribution. 2003. Available online: http://www.scarpaz.com/Attic/Documents/TheWignerDistribution.pdf (accessed on 24 April 2020).
- Misiti, M.; Misiti, Y.; Oppenheim, G.; Poggi, J. Wavelet Toolbox for Use with Matlab; The Math Works Inc.: Natick, MA, USA, 2004; Available online: https://www.ltu.se/cms_fs/1.51590!/wavelet%20toolbox%204%20user’s%20guide%20(larger%20selection).pdf (accessed on 29 January 2019).
- Cooley, J.; Tukey, J. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 1965, 19, 297–301. [Google Scholar] [CrossRef]
- Rabiner, L.; Schafer, R. Introduction to Digital Speech Processing. Found. Trends Signal Process. 2007, 1, 1–194. [Google Scholar] [CrossRef]
- Cohen, L. Time-Frequency Distributions: A Review. Proc. IEEE 1989, 77, 941–981. [Google Scholar] [CrossRef] [Green Version]
- Amirat, Y.; Choqueuse, V.; Benbouzid, M. Condition monitoring of wind turbines based on amplitude demodulation. In Proceedings of the IEEE International Energy Conference, Manama, Bahrain, 18–22 December 2008. [Google Scholar] [CrossRef] [Green Version]
- Harris, C.; Piersol, A. Shock and Vibration Handbook, 5th ed.; McGraw Hill: New York, NY, USA, 2002; ISBN 0-07-137081-1. [Google Scholar]
- Shi, L.; Qiu, J.; Xu, G.; Yang, J.; Wang, J. Online detection for blade imbalance of doubly fed induction generator wind turbines based on stator current. In Proceedings of the 2nd International Conference on Power and Renewable Energy (ICPRE), Chengdu, China, 20–23 September 2017. [Google Scholar] [CrossRef]
- Jin, X.; Cheng, F.; Peng, Y.; Qiao, W.; Qu, L. Drivetrain Gearbox Fault Diagnosis: Vibration and Current Based Approaches. IEEE Ind. Appl. Mag. 2018, 24, 56–66. [Google Scholar] [CrossRef]
- Cheng, F.; Qu, L.; Qiao, W.; Wei, C.; Hao, L. Fault Diagnosis of Wind Turbine Gearboxes Based on DFIG Stator Current Envelope Analysis. IEEE Trans. Sustain. Energy 2010, 10, 1044–1053. [Google Scholar] [CrossRef]
- Ibrahim, R.; Watson, S.; Djurović, S.; Crabtree, C. An Effective Approach for Rotor ElectricalAsymmetry Detection in Wind Turbine DFIGs. IEEE Trans. Ind. Electron. 2018, 65, 8872–8881. [Google Scholar] [CrossRef] [Green Version]
- Mallat, S. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef] [Green Version]
- Gueye-Lo, N.; Soualhi1, N.; Frini1, M.; Razik, H. Gear and Bearings Fault Detection Using Motor Current Signature Analysis. In Proceedings of the IEEE Conference on Industrial Electronics and Applications, Wuhan, China, 31 May–2 June 2018. [Google Scholar] [CrossRef]
- Kar, C.; Mohanty, A.R. Monitoring gear vibrations through motor current signature analysis and wavelet transform. Mech. Syst. Signal Process. 2006, 20, 158–187. [Google Scholar] [CrossRef]
- Gong, X.; Qiao, W.; Zhou, W. Incipient bearing fault detection via wind generator stator current and wavelet filter. In Proceedings of the 36th Annual Conference on IEEE Industrial Electronics Society IECON, Glendale, AZ, USA, 7–10 November 2010; pp. 2615–2620. [Google Scholar] [CrossRef]
- Ordaz-Moreno, A.; Romero-Troncoso, R.; Vite-Frías, J.; Rivera-Gillen, J.; Garcia-Perez, A. Automatic Online Diagnosis Algorithm for Broken-Bar Detection on Induction Motors Based on Discrete Wavelet Transform for FPGA Implementation. IEEE Trans. Ind. Electron. 2008, 55, 2193–2202. [Google Scholar] [CrossRef]
- Antonino-Daviu, J.; Riera-Guasp, M.; Roger-Folch, J.; Molina, M. Validation of a new method for the diagnosis of rotor bar failures via wavelet transformation in industrial induction machines. IEEE Trans. Ind. Appl. 2006, 42, 990–996. [Google Scholar] [CrossRef]
- Antonino-Daviu, J.; Jover, P.; Riera-Guasp, M.; Roger-Folch, J.; Arkkio, A. DWT analysis of numerical and experimental data for the diagnosis of dynamic eccentricities in induction motors. Mechan. Syst. Signal Process. 2007, 21, 2575–2589. [Google Scholar] [CrossRef]
- Kia, S.H.; Henao, H.; Capolino, G.A. Torsional vibration effects on induction machine current and torque signatures in gearbox-based electromechanical system. IEEE Trans. Ind. Electron. 2009, 56, 4689–4699. [Google Scholar] [CrossRef]
- Shinde, S.; Gadre, V. An uncertainty principle for real signals in the fractional Fourier transform domain. IEEE Xplore 2001, 49, 2545–2548. [Google Scholar] [CrossRef] [Green Version]
- Swami, A. HOSA-Higher Order Spectral Analysis Toolbox. Available online: https://www.mathworks.com/matlabcentral/fileexchange/3013-hosa-higher-order-spectral-analysis-toolbox (accessed on 24 March 2020).
- Goshvarpour, A.; Goshvarpour, A.; Rahati, S.; Saadatian, V. Bispectrum estimation of electroencephalogram signals during meditation. Iran. J. Psychiatry Behav. Sci. 2012, 6, 48–54. [Google Scholar]
- Chow, T.; Fei, G. Three phase induction machines asymmetrical faults identification using bispectrum. IEEE Trans. Energy Convers. 1995, 10, 688–693. [Google Scholar] [CrossRef]
- Ning, T.; Bronzino, J.D. Autoregressive and Bispectral Analysis Techniques: EEG Applications. IEEE Eng. Med. Biol. Mag. 1990, 9, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Nikias, C.L.; Raghuveer, M.R. Bispectrum Estimation: A Digital Signal Processing Framework. Proc. IEEE 1987, 75, 869–891. [Google Scholar] [CrossRef]
- Gu, F.; Shao, Y.; Hu, N. Electrical motor current signal analysis using a modified bispectrum for fault diagnosis of downstream mechanical equipment. Mech. Syst. Signal Process. 2011, 25, 360–372. [Google Scholar] [CrossRef]
- Saidi, L.; Fnaiech, F.; Henao, H. Diagnosis of broken-bars fault in induction machines using higher order spectral analysis. ISA Trans. 2013, 52, 140–148. [Google Scholar] [CrossRef]
- Gu, F.; Wang, T.; Alwodai, A. A new method of accurate broken rotor bar diagnosis based on modulation signal bispectrum analysis of motor current signals. Mech. Syst. Signal Process. 2015, 50–51, 400–413. [Google Scholar] [CrossRef] [Green Version]
- Li, D.Z.; Wang, W.; Ismail, F. An Enhanced Bispectrum Technique with Auxiliary Frequency Injection for Induction Motor Health Condition Monitoring. IEEE Trans. Instrum. Meas. 2015, 64, 2679–2687. [Google Scholar] [CrossRef]
- Garcia-Perez, A.; Romero-Troncoso, R.D.J.; Cabal-Yepez, E.; Osornio-Rios, R.A. The application of high-resolution spectral analysis for identifying multiple combined faults in induction motors. IEEE Trans. Ind. Electron. 2012, 58, 2002–2010. [Google Scholar] [CrossRef]
- Cupertino, F.; de Vanna, E.; Salvatore, L.; Stasi, S. Analysis techniques for detection of IM broken rotor bars after supply disconnection. IEEE Trans. Ind. Appl. 2004, 40, 526–533. [Google Scholar] [CrossRef]
- Kia, S.H.; Henao, H.; Capolino, G.A. A high-resolution frequency estimation method for three-phase induction machine fault detection. IEEE Trans. Ind. Electron. 2007, 54, 2305–2314. [Google Scholar] [CrossRef]
- Chakkor, S.; Baghouri, M.; Hajraoui, A. ESPRIT method enhancement for real-time wind turbine fault recognition. Int. J. Power Electron. Drive Syst. Porto 2015, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Lobos, T.; Rezmer, J.; Koglin, H. Analysis of Power System Transients using Wavelets and Prony Method. In Proceedings of the IEEE Power Tech Conference, Porto, Portugal, 10–13 September 2001. [Google Scholar] [CrossRef]
- Janik, P.; Leonowicz, Z.; Rezmer, J. Advanced Signal Processing Methods for Evaluation of Harmonic Distortion Caused by DFIG Wind Generator. IEEE Trans. Ind. Appl. 2006, 42, 1454–1463. [Google Scholar]
- Zidani, F.; Benbouzid, M.; Diallo, D.; Naït-Saïd, M. Induction Motor Stator Faults Diagnosis by a Current Concordia Pattern-Based Fuzzy Decision System. IEEE Trans. Energy Convers. 2003, 18, 225–2238. [Google Scholar] [CrossRef] [Green Version]
- Grainger, J.; Stevenson, W. Power System Analysis, 1st ed.; McGraw Hill: New York, NY, USA, 2012; ISBN 007-061293-5. [Google Scholar]
- Bacha, K.; Salem, S.; Chaari, A. An improved combination of Hilbert and Park transforms for fault detection and identification in three-phase induction motors. Int. J. Electr. Power Energy Syst. 2012, 43, 1006–1016. [Google Scholar] [CrossRef]
- Sahraoui, M.; Ghoggal, A.; Guedidi, S.; Zouzou, S. Detection of inter-turn short-circuit in induction motors using Park-Hilbert method. Int. J. Syst. Assur. Eng. Manag. 2014, 5, 337–351. [Google Scholar] [CrossRef]
- Cardoso, A.; Saraiva, V. Computer-aided detection of airgap eccentricity in operating three-phase induction motors by Park’s vector approach. IEEE Trans. Ind. Appl. 1993, 29, 897–901. [Google Scholar] [CrossRef]
- Cardoso, A.; Cruz, S.; Carvalho, J.; Saraiva, E. Rotor cage fault diagnosis in three phase induction motors, by Park’s vector approach. Electric Mach. Power Syst. 1995, 28, 289–299. [Google Scholar] [CrossRef]
- Cherif, B.; Bendiabdellah, A.; Khelif, M. Detection of open-circuit fault in a three-phase voltage inverter fed induction motor. Int. Rev. Autom. Control 2016, 96, 374–382. [Google Scholar] [CrossRef]
- Vilhekar, T.; Ballal, M.; Suryawanshi, H. Application of multiple parks vector approach for detection of multiple faults in induction motors. J. Power Electron. 2017, 17, 972–982. [Google Scholar] [CrossRef]
- Nandi, S.; Toliyat, H.A.; Li, X. Condition monitoring and fault diagnosis of electrical motors—A review. IEEE Trans. Energy Convers. 2001, 20, 719–729. [Google Scholar] [CrossRef]
- Al Ahmar, E.; Choqueuse, V.; Benbouzid, M.E.H.; Amirat, Y.; El Assad, J.; Karam, R.; Farah, S. Advanced signal processing techniques for fault detection and diagnosis in a wind turbine induction generator drive train: A comparative study. In Proceedings of the IEEE Energy Conversion Congress and Exposition ECCE 2010, Atlanta, GA, USA, 12–16 September 2010; pp. 3576–3581. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J. The Vibration Analysis Handbook, 2nd ed.; Vibration Consultants: Cambridge, MA, USA, 2003; ISBN 9780964051720. [Google Scholar]
- Gong, X.; Qiao, W. Imbalance Fault Detection of Direct-Drive Wind Turbines Using Generator Current Signals. IEEE Trans. Energy Convers. 2012, 27, 468–476. [Google Scholar] [CrossRef] [Green Version]
- Zhivomirov, H. On the Development of STFT-analysis and ISTFT-synthesis Routines and their Practical Implementation. TEM J. 2019, 8, 56–64. [Google Scholar] [CrossRef]
- Hafeez, S.; Zaide, C.; Siddiqui, A. Broken rotor bar detection of single phase induction motor using Wigner-Ville Distributions. In Proceedings of the IEEE 18th Conference on Emerging Technologies & Factory Automation, Cagliari, Italy, 10–13 September 2013. [Google Scholar] [CrossRef]
- Randall, R.; Antoni, J. Rolling element bearing diagnostics—A tutorial. Mech. Syst. Signal Process. 2011, 25, 485–520. [Google Scholar] [CrossRef]
- Da Silva, A.; Povinelli, R.; Demerdash, N. Induction machine broken bar and stator short-circuit fault diagnostics based on three-phase stator current envelopes. IEEE Trans. Ind. Electron. 2008, 55, 1310–1318. [Google Scholar] [CrossRef] [Green Version]
- Jaksch, I. Faults diagnosis of three-phase induction motors using envelope analysis. In Proceedings of the 4th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, SDEMPED 2003, Atlanta, GA, USA, 24–26 August 2003; pp. 289–293. [Google Scholar] [CrossRef]
- Antonino-Daviu, J.A.; Riera-Guasp, M.; Roger-Folch, J.; Perez, R.B. An Analytical Comparison between DWT and Hilbert-Huang-Based Methods for the Diagnosis of Rotor Asymmetries in Induction Machines. In Proceedings of the IEEE Industry Applications Annual Meeting, New Orleans, LA, USA, 23–27 September 2007; pp. 1932–1939. [Google Scholar] [CrossRef]
- Blödt, M.; Chabert, M.; Regnier, J.; Faucher, J. Mechanical load fault detection in induction motors by stator current time-frequency analysis. IEEE Trans. Ind. Appl. 2006, 42, 1454–1463. [Google Scholar] [CrossRef]
- Riera-Guasp, M.; Antonino-Daviu, J.A.; Pineda-Sanchez, M.; Puche-Panadero, R.; Perez-Cruz, J. A general approach for the transient detection of slip-dependent fault components based on the discrete wavelet transform. IEEE Trans. Ind. Electron. 2008, 55, 4167–4180. [Google Scholar] [CrossRef]
- Benbouzid, M.E.H.; Vieira, M.; Theys, C. Induction motors faults detection and localization using stator current advanced signal processing techniques. IEEE Trans. Power Electron. 1999, 14, 14–22. [Google Scholar] [CrossRef]
- Szabo, L.; Erno, K. An Overview on Induction Machine’s Diagnosis Methods. 2008. Available online: https://www.researchgate.net/publication/38112249_An_Overview_on_Induction_Machine’s_Diagnosis_Methods (accessed on 24 April 2020).
Brand | NEG Micon |
---|---|
Model | NM 52/900 |
Rotor diameter | 52.2 m |
blades | 3 |
Power | 900 kW |
Power control | Stall control |
Drive train | Gearbox type: Planetary-Parallel Transmission ratio: 1:67.5 Main bearing: spherical rollers Cooling system: refrigerant, heat exchanger and pump |
Electric Generator | Type: SCIG Speeds: 750/500 rpm Poles: 4/6 Power: 900 kW/200 kW Voltage: 690 V/50 Hz Cooling system: water |
Coupling to the power grid | Smooth, using thyristors |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merizalde, Y.; Hernández-Callejo, L.; Duque-Perez, O.; López-Meraz, R.A. Fault Detection of Wind Turbine Induction Generators through Current Signals and Various Signal Processing Techniques. Appl. Sci. 2020, 10, 7389. https://doi.org/10.3390/app10217389
Merizalde Y, Hernández-Callejo L, Duque-Perez O, López-Meraz RA. Fault Detection of Wind Turbine Induction Generators through Current Signals and Various Signal Processing Techniques. Applied Sciences. 2020; 10(21):7389. https://doi.org/10.3390/app10217389
Chicago/Turabian StyleMerizalde, Yuri, Luis Hernández-Callejo, Oscar Duque-Perez, and Raúl Alberto López-Meraz. 2020. "Fault Detection of Wind Turbine Induction Generators through Current Signals and Various Signal Processing Techniques" Applied Sciences 10, no. 21: 7389. https://doi.org/10.3390/app10217389
APA StyleMerizalde, Y., Hernández-Callejo, L., Duque-Perez, O., & López-Meraz, R. A. (2020). Fault Detection of Wind Turbine Induction Generators through Current Signals and Various Signal Processing Techniques. Applied Sciences, 10(21), 7389. https://doi.org/10.3390/app10217389