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Featured Application: 1. The hybrid machine learning (HML) classifier can easily classify the subjects
(healthy and bruxism), sleep stages (w and REM), and both with high accuracy. 2. The proposed
system automatically detects the bruxism sleep disorder and sleep stages. 3. Single C4-A1 channel
of the EEG signal found to be more accurate than ECG and EMG channels.

Abstract: Bruxism is a sleep disorder in which the patient clinches and gnashes their teeth. Bruxism
detection using traditional methods is time-consuming, cumbersome, and expensive. Therefore, an
automatic tool to detect this disorder will alleviate the doctor workload and give valuable help to
patients. In this paper, we targeted this goal and designed an automatic method to detect bruxism
from the physiological signals using a novel hybrid classifier. We began with data collection. Then, we
performed the analysis of the physiological signals and the estimation of the power spectral density.
After that, we designed the novel hybrid classifier to enable the detection of bruxism based on these data.
The classification of the subjects into “healthy” or “bruxism” from the electroencephalogram channel
(C4-A1) obtained a maximum specificity of 92% and an accuracy of 94%. Besides, the classification of the
sleep stages such as the wake (w) stage and rapid eye movement (REM) stage from the electrocardiogram
channel (ECG1-ECG2) obtained a maximum specificity of 86% and an accuracy of 95%. The combined
bruxism classification and the sleep stages classification from the electroencephalogram channel
(C4-P4) obtained a maximum specificity of 90% and an accuracy of 97%. The results show that more
accurate bruxism detection is achieved by exploiting the electroencephalogram signal (C4-P4). The
present work can be applied for home monitoring systems for bruxism detection.

Keywords: machine learning; hybrid classifier; sleep disorder; dental disorder; EEG; ECG; EMG

Appl. Sci. 2020, 10, 7410; doi:10.3390/app10217410 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-5307-9582
https://orcid.org/0000-0001-5009-3290
https://orcid.org/0000-0002-0077-6509
https://orcid.org/0000-0002-3057-4924
https://orcid.org/0000-0001-9070-1721
http://dx.doi.org/10.3390/app10217410
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/21/7410?type=check_update&version=2


Appl. Sci. 2020, 10, 7410 2 of 16

1. Introduction

Sleep is a vital need for human beings. It is characterized by altered consciousness, inhibited
sensory movement, and reduced muscle movement [1]. It is found in all zoological species such as
amphibians, animals, humans, insects, mammals, and reptiles. Some species sleep with open eyes, while
most species sleep with closed eyes. Sleep stages are divided into four parts such as wake (w), light
(non-rapid eye movement (NREM) 1 and 2), deep (NREM 3), and rapid eye movement (REM) [2–5].

Lack of sleep affects human life and causes many health problems: memory issues, mood changes,
concentration issues, risk of diabetes, increased risk of heart diseases, weight gain, high blood pressure,
and increased driver crash risk [6–9]. Lack of sleep also impacts negatively on a person’s energy towards
work, health, and emotional balance [10]. Good sleep is an indicator of a healthy person. It is a common
phenomenon that minor sleep loss can decrease efficiency, energy levels, ability to handle stress, and
mood [11]. Ignorance of sleep problems and sleep disorders is a serious issue because they may cause big
damages like accidents, frustration, poor job performance, and stress [12]. The survey report of China
sleep medicine and white paper on the internet (http://en.people.cn/n3/2018/0322/c90000-9440441.html,
http://www.china.org.cn/china/2018-03/21/content_50731983.htm) in 2018 showed that 50 to 60 million
Chinese people suffered from a sleep disorder [13]. Another survey shows that 3.5 million people
in the UK and more than 70 million people from the US suffer from sleep disorders [14]. Another
sleep survey (https://timesofindia.indiatimes.com/city/lucknow/World-Sleep-Day-93-Indians-are-sleep-
deprived/articleshow/46547288.cms) shows that 93% of Indians suffer from poor sleep [15]. Sleep
disorders are mainly classified as problems in staying awake, problems in falling asleep, and abnormal
activity in sleep [16].

Bruxism is a type of sleep disorder in which people clench, chew, and grind their teeth. It is
defined as a parafunctional habit consisting of involuntary rhythmic or spasmodic nonfunctional
gnashing, grinding, or clenching of teeth [17]. This clenching leads to occlusal trauma, causing flattened,
fractured, or chipped teeth (Figure 1). It is classified into two types such as awake bruxism and sleep
bruxism. If the person grinds their teeth during awake time, it is called awake bruxism; otherwise, if
the person grinds their teeth in their sleep, it is called sleep bruxism [18]. The symptoms of bruxism
are grinding or clenching of teeth, flattened, fractured or tipped teeth, pain and sensitivity in teeth,
abnormal jaw function, facial pain, earache, and sleep disturbances [19].
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Figure 1. Comparison between (A) healthy and (B) bruxism teeth of the human. The grinding of the
tooth is shown in the case of bruxism.

The diagnosis of bruxism is through various modalities, including history taking, clinical
examination of teeth, intraoral appliances to observe facets, and bite force recording. A definitive
diagnosis of bruxism is an expensive process that requires conducting a sleep study in an organized
environment, usually at sleep clinics, to measure multiple factors and physiological indications
during sleep. Some systems such as electrocardiogram (ECG) (cardiac signal) [20,21], electrooculogram
(EOG) (eye signal), electroencephalogram (EEG) (brain signal) [22], and electromyogram (EMG)
(muscles signal) [23] are used in automatic sleep stage detection [24]. Guillot et al. [25] evaluated
the clinical practice on French dental clinicians. The authors used one thousand three hundred
and eighty-eight practitioners based on five methods, such as oral rehabilitation, treatment of the
patient with occlusal splints, sociodemographic characteristics, diagnosis, and management of sleep
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bruxism. The work discovered 16.8% wide inequality and inadequate diagnosis, and 21.9% of applicants
planned cognitive-behavioral treatment. Saczuk et al. [26] evaluated the screening and detection
method of bruxism. The researchers used the total number of sixty adults, including twenty-five
healthy and thirty-five with bruxism. They evaluated the masseter muscle activity of the body.
Maeda et al. [27] studied the validity of the detection of bruxism using EMG and a cut-off rate with
optimum sympathy and specificity. A total number of 16 subjects were used in this work. The authors
suggested that one-channel EMG and a cut-off value are appropriate for the detection of bruxism
disorder. Miettinen et al. [28] suggested that the ambulatory electrode is the highest-precision device
for the diagnosis of bruxism sleep disorder and sleep stage scoring. Ruhland et al. [29] represented the
diagnosis of sleep bruxism using analysis and acquisition of the human masseter muscle by an EMG
signal. Martinez et al. [30] investigated that remote communication and piezoelectric sensors are used
in the diagnosis of bruxism sleep disorder. Kostka and Tkacz [31] investigated that multi-source data
with sympathovagal balance valuation are used for the early diagnosis of bruxism disorder stages.
Jirakittayakom and Wongsawat [32] designed an EMG instrument for the detection of sleep bruxism
patients on the masseter muscle.

We propose a new detection system for bruxism using the extraction of power spectral density on
physiological sleep recordings such as ECG (ECG1-ECG2), EMG (EMG1-EMG2), and EEG (C4-P4 and
C4-A1). Initially, the physiological signal is extracted from the sleep database. The 10/20 standard
sleep recording system recorded these data. It is used in the research work of sleep disorders such
as circadian rhythm sleep disorders, insomnia [33–37], bruxism [38–40], sleep apnea, restless leg
syndrome, narcolepsy [41], and nocturnal frontal lobe epilepsy [42]. We preprocessed the signals using
a low-pass finite impulse response (FIR) filter to remove the noise of the signal. After filtering the
signal, we estimated the power spectral density of the signals. Finally, we classified the sleep stages
(w and REM) [43,44], subjects (bruxism and healthy), and combined subjects (bruxism and healthy)
and sleep stages (w and REM) from the novel hybrid machine learning (HML) classifier. The proposed
hybrid classifier is the combination of ten machine learning classifiers, namely K-nearest neighbor
(KNN), support vector machine (SVM), random forest (RF), naive Bayes (NB), linear regression (LR),
classification and regression tree (CART), linear discriminant analysis (LDA), AdaBoost (AB), gradient
boosting (GB), and extra trees (ET). There are two common issues in the previous research of bruxism.
Firstly, there is a large number of features used in the studies, which results in a high computational
load. Secondly, most of these methods did not represent a classification with sleep stages. We address
these challenges in this study. Further, we focus on some goals, including estimation of the power
spectral density, applying the novel HML classifier for the classification methods on the same feature,
and comparison between the HML classifier and different previously used classifiers. The proposed
study is organized as follows: the used database is presented in Section 2. The feature extraction
and novel classification methods are presented in Section 3. The evaluation of the results and related
discussion are presented in Section 4. Finally, the conclusions of this paper are presented in Section 5.

2. Materials

Bruxism and healthy individuals were collected from the physionet website, which offers free
access to the collection of recorded healthy and patient data [45]. The signals of this database included
EEG, ECG, EOG, EMG, and respiration [46]. The sleep monitoring system recorded bilateral EOG, six
EEG channels, two channels of right- and left-leg EMG, respectively, submental EMG, nasal respiration
thermistor, and ECG channel. The sampling rates of the data were 200 Hz.

In this proposed work, we used EEG, ECG, and EMG channels such as C4-P4, C4-A1, ECG1-ECG2,
and EMG1-EMG2 for the detection of bruxism. Further, we used 936 segments including 244 of
ECG1-ECG2, 244 of EMG1-EMG2, 224 of C4-P4, and 224 of C4-A1 from 8.5 ± 0.577 (mean ± SD) subjects
in the proposed work shown in Table 1. The duration of one segment of the signal is 60 s. All channels
have two sleep stages, such as w and REM. The total duration of the 56,160 s segments is used in the
proposed work.
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Table 1. Dataset of the present work.

Name of the
Physiological

Signal

Channel of the
Physiological

Signal

Number of the Subjects
(n)

Number of the Segment
(n)

Duration of
the Signal

Male Female Total Bruxism Healthy Total (s)

ECG ECG1-ECG2 6 3 9 149 95 244 14,640
EMG EMG1-EMG2 6 3 9 149 95 244 14,640
EEG C4-P4 4 4 8 140 84 224 13,440
EEG C4-A1 4 4 8 140 84 224 13,440

Mean 5 3.5 8.5 144.5 89.5 234 14,040
±SD 1.154 0.577 0.577 5.196 6.350 11.547 692.820

3. Methods

In this section, we will describe the techniques used for the detection of bruxism. For the sleep
disorder, we collected, first, the dataset from the sleep database. After that, we extracted the physiological
signals such as ECG (ECG1-ECG2), EMG (EMG1-EMG2), and EEG (C4-P4 and C4-A1). We preprocessed
the channels and made the feature extraction of these channels. Then, the feature values were normalized
before passing them to the novel HML classifier. The procedure is illustrated in Figure 2. The classification
of subjects into “bruxism” and “healthy”, the classification of sleep stages into “w” and “REM”, and the
combined classification (both subjects and sleep stages) were performed by the novel HML classifier.
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3.1. Power Spectral Density

We estimated the power spectral density using the Welch method. Peter D Welch discovered this
method in 1967 [47]. It converts time series into (overlapping) segment data, calculating a modified
periodogram of every segment, and takes the average of the power spectral density [48]. The average
altered periodogram tends to reduce the variance [49]. Further, it estimates the relation to a single
periodogram of aggregate data. Power spectral density offers signal power with respect to the frequency
spectrum. We require specifying the number of frequency slots to allocate the power spectral that is called
the number of fast Fourier transform [50,51]. The Welch techniques are described in Equations (1)–(3)
below:

U =
1
L

L−1∑
n=0

{
whm(n)

}2 (1)

Pw( f ) =
1

LU

L−1∑
n=0

{
whm(n)x(n + iD)e− j2π f n

}2
(2)
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Pw( f ) = γ
L−1∑
n=0

({
Xn

a
}2 +

{
Xn

b

}2
)

(3)

where U is equal to compensate for the loss of signal, L and D are the data of the segment, whm(n) is
the hamming window, γ is a constant, Xn

a and Xn
b are the real and imaginary part of the nth segment,

and Pw( f ) is the Welch method.

3.2. Hybrid Machine Learning (HML) Classifier

The selection of a suitable classifier for efficient detection of bruxism is our goal in this study.
However, the performance of a machine learning classifier varies from one problem to another. Hence,
we opted to combine multiple machine learning classifiers to form a novel HML classifier. We combined
ten classifiers including KNN, SVM, RF, NB, LR, CART, LDA, AB, GB, and ET. For implementation of the
HML classifier, we used a scientific open source software, Anaconda [52,53]. We combined the machine
learning output through majority voting in which we took the outputs of ten classifiers and checked
the majority outputs. For example, if nine classifiers’ output is bruxism patients but one classifier’s
output is healthy, then bruxism is the majority. Hence, our final output will be bruxism. The HML
classifier improved the results and reduced the error of the system. In the literature, many classifiers
based on hybridization of multiple machine learning classifiers were proposed for other problems.
For example, Chen et al. [54] designed a hybrid AB classifier for the recognition of the cognitive radio
network. Rawat et al. [55] designed a hybrid machine learning model using artificial neural network
(ANN) and NB for the prediction of educational performance in the data mining field. Miskovic [56]
suggested a hybrid model for the classification of decision support. Chen et al. [57] used the hybrid
model for categorizing residential requests in natural language to provide timely replies back to citizens
under the vision of digital administration services in smart cities. In these approaches, the designed
HML models outperformed in all classifications.

3.3. Evaluation of the Proposed System

In this proposed work, we applied a novel 20-fold cross-validation model of the HML classifier
to discriminate the bruxism and healthy subjects. It is evaluated with 234 ± 11.547 recording of the
EMG1-EMG2, ECG1-ECG2, C4-P4, and C4-A1 channels, which includes 144.5 ±5.196 bruxism and
89.5 ± 6.350 healthy recordings, with a time duration of 14.040 ± 692.820 s. The evaluations of the
classification are applied in the EMG1-EMG2, ECG1-ECG2, C4-P4, and C4-A1 channels of the EMG,
ECG, and EEG signals. Previously, we used these channels separately. However, in the proposed study,
we used these four channels to find the best possible outcome of bruxism detection. It covered all
important signals such as EMG, ECG, and EEG. We evaluated the final performance of the model by
using different well-known parameters that are given in Equations (4)–(7).

Sensitivity =

(
TP

(TP + FN)

)
(4)

Speci f icity =

(
TN

(TN + FP)

)
(5)

Accuracy =

(
(TP + TN)

(TP + TN + FP + FN)

)
(6)

MCC =

 (TP× TN) − (FP× FN)√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

 (7)

where TP is the true positives, FP is the false positives, TN is the true negatives, and FN is the false
negatives.
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4. Results and Discussion

4.1. Analysis of the Physiological Signals

The physiological sleep channels, including ECG1-ECG2, EMG1-EMG2, C4-P4, and C4-A1 of
the bruxism and healthy subjects, are shown in Figures 3 and 4 [19,40,48]. The 10/20 standard sleep
recording system records these channels. Firstly, we extracted each channel and filtered each channel
with a 200th order low-pass finite impulse response filter with a cut-off frequency of 25 Hz as noise
removal. After filtration, we extracted the power spectral density of each physiological channel shown
in Figures 5 and 6. After normalizing the value of the power spectral density, we classified the signals
in terms of subjects, sleep stages, and combined using the novel HML classifier.
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4.2. Classification Results Using Proposed Novel HML Classifier

The performance for the classification of the subjects is shown in Table 2. Previously, we designed
the diagnostic of bruxism sleep syndrome and sleep stages using a decision tree classifier with 81.25%
accuracy [19]. Lai et al. [40] showed that the ECG channel and EMG channel are used for the detection
of bruxism syndrome using power spectral density (PSD) techniques. They used the 488-min data for
the two channels and classification of the subjects and stages using the machine learning method. Our
proposed system, the C4-A1 channel, has the best performance in the subjects (bruxism and healthy)
classification based on sensitivity, specificity, and accuracy, which are 95%, 92%, and 94%, respectively
(Figure 7).
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Table 2. Performance of the subjects (bruxism and healthy) classification using the novel 20-fold
cross-validation model of the HML classifier.

Name of the Channel PT NT TP TN FP FN F1 MCC Sen Spe Acc

EMG1-EMG2 64 17 46 17 18 0 0.83 0.59 1 0.48 0.77
ECG1-ECG2 78 3 46 3 32 0 0.74 0.22 1 0.08 0.60

C4-P4 48 26 45 24 3 2 0.94 0.85 0.95 0.88 0.93
C4-A1 47 27 45 25 2 2 0.95 0.88 0.95 0.92 0.94

Mean 59.2 18.2 45.5 17.2 13.7 1 0.86 0.63 0.97 0.59 0.81
±SD 14.7 11.1 0.57 10.1 14.1 1.15 0.09 0.30 0.02 0.39 0.16

PT: positive test; NT: negative test; TP: true positive; TN: true negative; FP: false positive; FN: false negative; MCC:
Matthews correlation coefficient; Sen: sensitivity; Spe: specificity; Acc: accuracy. Bold is the best model.
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Figure 7. Performance analysis of the subjects (bruxism and healthy) classification using the novel
20-fold HML classifier. (A) Comparison between all channels such as EMG1-EMG2, ECG1, ECG2,
C4-P4, and C4-A1 channels of the subjects classification. In addition, (B) highest and mean performance
of the subjects classification. The C4-A1 channel of the EEG signal has the highest accuracy (94%) in the
subjects classification.

The performance of the sleep stages classification is shown in Table 3. Previously, the unsupervised
learning architecture and hidden Markov model were used for the detection of sleep stages [58].
Boe et al. [59] used a multimodal sensor system evaluating hand acceleration, ECG, and ActiWatch for
diagnosing sleep stages such as w, REM, and NREM. Bajaj et al. [60] designed an automatic system for
diagnosing sleep stages using time–frequency images of the EEG signals. Matsuura et al. [61] studied
that heart rate measurement is helpful and easy to use in sleep stage monitoring. They successfully
calculated four stages and overall five stages with 66% accuracy of the system. Our proposed system,
the ECG1-ECG2 channel, has the best performance in the sleep stages (w and REM) classification based
on sensitivity, specificity, and accuracy, which are 100, 86, and 95%, respectively (Figure 8).
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Table 3. Performance of the sleep stages (w and REM) classification using the novel 20-fold cross-validation
model of the HML classifier.

Name of the Channel PT NT TP TN FP FN F1 MCC Sen Spe Acc

EMG1-EMG2 54 27 50 25 4 2 0.94 0.83 0.96 0.86 0.92
ECG1-ECG2 56 25 52 25 4 0 0.96 0.89 1 0.86 0.95

C4-P4 47 27 42 23 5 4 0.9 0.73 0.91 0.82 0.87
C4-A1 59 15 45 14 14 1 0.85 0.57 0.97 0.5 0.79

Mean 54 23.5 47.25 21.75 6.75 1.75 0.91 0.75 0.97 0.76 0.88
±SD 5.09 5.74 4.57 5.25 4.85 1.70 0.04 0.13 0.03 0.17 0.06

Bold is the best model.
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 Figure 8. Performance analysis of the sleep stages (w and REM) classification using the novel 20-fold
HML classifier. (A) Comparison between all channels such as EMG1-EMG2, ECG1, ECG2, C4-P4, and
C4-A1 channels of the sleep stages classification. In addition, (B) highest and mean performance of the
sleep stages classification. The ECG1-ECG2 channel of the ECG signal has the highest accuracy (95%)
in the sleep stages classification.

The performances for the combination of subjects and sleep stages classification are shown in
Table 4. Our proposed system, the C4-P4 channel, has the best performance in the combined (subjects
and sleep stages) classification based on sensitivity, specificity, and accuracy, which are 98, 90, and 97%,
respectively (Figure 9).

Table 4. Performance for the combination of subjects (bruxism and healthy) and sleep stages (w and
REM) classification using the novel 20-fold cross-validation model of the HML classifier.

Name of the Channel PT NT TP TN FP FN F1 MCC Sen Spe Acc

EMG1-EMG2 63 18 63 17 0 1 0.99 0.96 0.98 1.00 0.98
ECG1-ECG2 65 16 63 15 2 1 0.97 0.88 0.98 0.88 0.96

C4-P4 63 11 62 10 1 1 0.98 0.89 0.98 0.90 0.97
C4-A1 65 9 62 8 3 1 0.96 0.77 0.98 0.72 0.94

Mean 64 13.5 62.5 12.5 1.5 1 0.97 0.87 0.98 0.65 0.96
±SD 1.15 4.20 0.57 4.20 1.29 0 0.01 0.07 0 0.37 0.01

Bold is the best model.
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Figure 9. Performance analysis for the combination of subjects (bruxism and healthy) and sleep stages
(w and REM) classification using the novel 20-fold HML classifier. (A) Comparison between all channels
such as EMG1-EMG2, ECG1, ECG2, C4-P4, and C4-A1 channels of the sleep stages classification. In
addition, (B) highest and mean performance of the combined classification. The C4-P4 channel of the
EEG signal has the highest accuracy (97%) in the combined classification.

4.3. Comparison with the Previous and Proposed Sleep Disorders and Sleep Stage Detection Methods

Performances of the subjects (healthy and bruxism) classification on the EEG (C4-A1 channel)
signal in terms of sensitivity, specificity, and accuracy were found to be 0.95, 0.92, and 0.94, respectively.
The performance of the sleep stages (w and REM) classification on the ECG (ECG1-ECG2 channel)
signal in terms of sensitivity, specificity, and accuracy were found to be 1, 0.86, and 0.95, respectively.
Additionally, the performance of the combined (subjects and sleep stages) classification on the EEG
(C4-P4 channel) signal in terms of sensitivity, specificity, and accuracy were found to be 0.98, 0.90, and
0.97, respectively. The C4-P4 channel of the combined classification has better performance than the
others. Previously, bruxism detection methods were limited, so we compared with sleep disorder
and sleep stage detection methods. Patients of bruxism are recognized through various diagnosis
methods involving questionnaires, clinical examinations, and various appliances. The questionnaires
involve the patient history of tooth mobility and tooth wear, muscle pain, hypersensitivity of teeth and
masticatory muscle discomfort, fatigue, or pain [62]. Clinically, Ekfeldt et al. [63] detected a bruxism
patient through intraoral and extraoral examination. Takeuchi et al. [64] suggested that bruxism is more
accurately measured extraorally through masticatory muscle EMG recordings and polysomnography.
We compare our proposed method with previously selected sleep disorders and sleep stage methods
in terms of author, publication year, subject detection, signal, classifier, sensitivity, specificity, and
accuracy, as mentioned in Table 5. The data from sleep disorders and sleep stage detection methods
include EEG, EMG, and ECG signals. The classifiers involve decision tree (DT), KNN, SVM RBF
kernel, threshold, and the novel HML classifier. Compared with them, our method shows a better
performance in detecting bruxism (Figure 10A). Additionally, the proposed HML classifier is also
compared with some existing hybrid classifiers, which are reported in Table 6. Our proposed HML
classifier achieves satisfactory performance in detecting bruxism (Figure 10B).
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Table 5. Comparison of the proposed method with the existing methods.

Reference Year Disease Signal Classifier Sen (%) Spe (%) Acc (%)

Heyat et al. [40] 2019 Bruxism EEG DT 89 78 81
Lai et al. [19] 2019 Bruxism EMG DT 94 92 93

Bhattacharjee et al. [65] 2019 SA EEG KNN 98 83 91
Zarei et al. [66] 2019 OSA ECG SVM RBF Kernel 94 94 94
Dong et al. [67] 2018 OSA ECG Threshold 88 90 90

Kassiri et al. [68] 2017 Sleep Stage EEG, EMG Threshold 81 93 81
Kohtoh et al. [69] 2008 Sleep Stage EEG, EMG Threshold 71 96 84
Louis et al. [70] 2004 Sleep Stage EEG, EMG Threshold 66 84 82

Subjects
(Bruxism and Healthy)

EEG
(C4-A1)

HML
95 92 94

Proposed Sleep Stages
(w and REM)

ECG
(ECG1-ECG2) 100 86 95

Combine
(Subjects and Sleep Stages)

EEG
(C4-P4) 98 90 97

SA: sleep apnea; OSA: obstructive sleep apnea; DT: decision tree. Bold is the best model.
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Table 6. Comparison of the proposed HML classifier with the existing hybrid classifiers.

Reference Year Disease Acc (%)

Asri et al. [71] 2020 Cancer 97
Mohan et al. [72] 2019 Heart 88
Reddy et al. [73] 2019 Heart 90
Yang et al. [74] 2010 Schizophrenia 87
Yang et al. [75] 2007 Cushing 92

94
Proposed Bruxism 95

97

Bold is the best model.

4.4. Application and Limitation of the Proposed System

The proposed work showed an application for the detection of bruxism disorder and sleep stages
using ECG1-ECG2, EMG1-EMG2, C4-P4, and C4-A1 channels. This work would provide a more



Appl. Sci. 2020, 10, 7410 12 of 16

effective and accurate detection system of bruxism and sleep stages for medical application. The most
important application of the present research is to diagnose people with a mental health condition in a
fast and accurate manner. This system also helps to find the problem during the sleep stage.

The present work has some limitations in that the proposed data from the physionet website were
old and small for the evaluation. Further work could be required for a large number of real-time
data to analyze the present work for higher accuracy. Secondly, the proposed physiological signals,
including ECG, EEG, and EMG, did not cover all sleep recordings. Moreover, we used two sleep stages,
including w and REM. In the future, we will use different signals and different sleep stages for the
detection of bruxism sleep disorders.

5. Conclusions

Bruxism is a sleep disorder in which people clinch, grind, and gnash their teeth during sleep.
In this proposed study, we have developed a novel HML classifier to detect bruxism. The results show
that the HML classifier can effectively discriminate subjects, sleep stages, and these two combined
(subjects and sleep stages) with 94, 95, and 97% accuracy, respectively. In our knowledge, this method
(HML classifier) is used for the first time to detect bruxism. We summarized that the EEG (C4-P4
channel) signal of the HML classifier could be utilized in bruxism detection. This method can achieve
an effective result with PSD with potential application for sleep disorder and sleep stage detection.
The upcoming study will quickly detect sleep disorders with higher accuracy.
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