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Abstract: With the climate change adding to the frequency and intensity of natural disasters, drought
has devastated large areas of lands in South Korea. Still, the exact beginning and end of the
drought is difficult to identify, and this impedes the development and implementation of disaster
predictions. Although the drought phenomenon has been well-documented, predictions thereof are
limited due to the non-linear and complex temporal fluctuations of the hydrologic factors. Hence,
this study set up some reference points for disaster-prediction rainfall based on South Korea’s
agricultural drought damage data, to help in drought relief. To set up the proposed reference points
for disaster-prediction rainfall, we analyzed rainfall in light of the disaster-prevention relevance to
agricultural droughts and the disaster reduction. As an analysis method, rainfall of municipality
was calculated through Thiessen’s polygonal method, to apply rainfall weighting value for each
rainfall observatory. In addition, the linear regression analysis was applied to suggest the calculation
formula for setting the annual disaster reduction rainfall. The results of this study, standard of
judgment point for disaster prevention of agricultural drought at the time of disaster management,
were analyzed for rainfall for local governments and the whole country. Rather than using various
drought indices that are currently developed, policy makers or public servant made suggestions
based on rainfall that is most accessible and convenient for judging the timing of agricultural drought.
As the disaster-prevention rainfall with agricultural droughts is expected to occur, we established
the average annual rainfall of ≤1200 or 100 mm below the preceding year’s average annual rainfall.
Moreover, as the disaster-reduction rainfall for agricultural droughts to end, we determined the
average monthly rainfall of ≥150 mm.

Keywords: agricultural drought; droughts-damage data; agricultural-disaster prediction;
agricultural-disaster prevention; agricultural-disaster reduction

1. Introduction

Unlike other natural disasters, such as floods, typhoons, earthquakes and tsunamis, droughts
occur slowly, expansively and persistently for months or years. Droughts cause extensive damage,
and their spatial scale or intensity is difficult to identify [1]. As part of the impact of global climate
change, the rising temperature is projected to cause more frequent droughts, which will presumably
last for years, exerting an enormous impact on agriculture and water resources. Recently, years-long
droughts have been defined as mega-droughts in studies [2–6]. Furthermore, many researchers have
developed methods of assessing and predicting droughts and analyzed their applicability, in view of
diverse hydrologic factors, with the intent to minimize the damage from droughts.

Utilizing parameters such as rainfall data, drought indices, statistical methods and climate models,
drought researchers have assessed and predicted droughts, as well as developed some quantitative
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disaster indices. Hydrologic drought indices such as PDSI (Palmer Drought Severity Index), SPI
(Standardized Precipitation Index) and SPEI (Standardized Precipitation Evapotranspiration Index)
are widely used to assess droughts and applied in research as the reference points for predicting and
assessing short-term or prolonged droughts [7,8]. Neuro-Fuzzy, Log linear and ANN (Artificial Neural
Network) methods of predicting droughts were used to analyze the drought indices and verify the
accuracy thereof [9,10]. Moreover, to develop the methods of predicting and assessing droughts in
relation to future climate, hydrologic factors from climate change models were used to calculate the
drought indices by means of such analytical methods as MLP (Multi-Layer Perceptron), ANN, ANFIS
(Adaptive Neuro-Fuzzy Inference System), SVM (Support Vector Machine), ARIMAX (Autoregressive
Integrated Moving Average with Explanatory Variable) and SVR (Support Vector Regression) [11–16].

In North America, data from the Multi Model Ensemble Prediction and Global Precipitation
Climatology Centre were used to calculate the SPI based on a 100 km grid for analytical drought
predictions. In other regions, high-resolution drought-prediction models were developed and applied
based on the SPI and SPEI [17,18]. In Virginia, a US state, long-term trends of droughts were calculated
in PDSI to develop some reference points for a drought early warning system [19]. The drought-duration
thresholds in relation to hydrologic shapes over varying periods were used as a parameter to predict
droughts via the PDSI [20]. Although many previous studies calculated drought indices and assessed
the accuracy thereof to predict droughts, no research has analyzed the extent of rainfall or set up
applicable reference points by comparatively analyzing hydrologic factors associated with the actual
droughts. In case of South Korea, drought occurs in the same region for three to four months, rather
than long-term drought, as in the United States. Therefore, it is necessary to establish standards for
disaster prediction and disaster prevention through drought damage analysis.

By applying the Time Series Analysis or ANA (Artificial Neural Network) to non-linear actual
rainfall, some researchers predicted and analyzed droughts effectively. Based on the observed rainfall
data, others applied the multiple linear regression analysis, PN (Percent of Normal Precipitation)
and UM (Unified Model) to short-term droughts to develop prediction techniques and test their
accuracy [21,22]. To predict prolonged droughts, many studies applied non-linear hydrologic data
to the probabilistic analysis of ANN and ARIMA [23–33]. Some studies reported that SVR analysis
proved to be more accurate than ANN when it comes to predicting a 12-month-long drought [34–36].
However, criteria for disaster management by using long-term damage data from past droughts have
not been collected. In addition, it was only a study on disaster prediction, and studies on droughts
were not conducted. Unlike previous studies that intended to develop some methods of predicting
droughts and validate their accuracy, this study regarded droughts as a natural disaster and established
some reference points for disaster management.

Others proposed a drought-prediction system, which analyzed and adjusted the uncertainties
of probability distributions, using the Bayesian Network in relation to drought persistence [37,38].
An array of studies used actual rainfall data to propose highly accurate drought analysis methods and
mostly focused on assessing their drought prediction results, without analyzing the end of droughts or
setting up applicable reference points.

The parameters for drought predictions, diverse observational data including rainfall,
evapotranspiration and underground water were collected and monitored to predict disasters.
To manage hydrologic data, many governments run drought information and prediction/warning
systems. Additionally, the reference points for drought-related prediction and decision making were
established to help in developing drought indices for disaster managers and decision-makers [39].
Droughts are difficult to predict, and this warrants for the need to develop diverse prediction models
and apply appropriate prediction methods in line with a range of reference points [40].

Despite previous studies on various droughts, the importance of disaster management for drought
in Korea has been recognized since 2010. In Korea, drought is mostly short-term drought that occurs
for three to four months before monsoon season, and large-scale damage has not occurred since 1994.
Recently, the need for disaster management has emerged due to the continuous drought caused by
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climate change. However, the data of drought damage were only published in the year of the large-scale
drought damage, but only brief damage contents were recorded. Thus, in this study, we intended
to set up some reference points for rainfall in view of disaster prediction for drought relief based on
South Korea’s agricultural drought damage. The final goal of the study is to set the criteria for disaster
management, not to analyze the damage range of extreme drought or drought, in calculating the
disaster prediction rainfall for agricultural drought. The research method is to analyze annual rainfall
from 1965 to 2018 for 68 rainfall observation stations that have more than 30 years of rainfall observation
data nationwide. In addition, in order to analyze the rainfall characteristics of the occurrence of damage
to agricultural drought, the annual average rainfall based on the beginning of the drought damage
and the monthly average rainfall in the months before and after the end of the drought damage were
analyzed. Various methods of analysis for drought were proposed to analyze the drought with high
accuracy or to evaluate the results of drought prediction. However, this study applied linear regression
analysis to establish rainfall standard for disaster reduction of agricultural drought considering linear
variation characteristics by year. This study aims to establish a rainfall standard that can predict the
occurrence and termination of agricultural drought in Korea.

2. Materials and Methods

2.1. Damage from Agricultural Droughts

In this study, we analyzed the damage from agricultural droughts that occurred from 1965 to
2018, based on the data available from the local governments in South Korea. Drought in South Korea
caused damage every 10 years, but there was a lot of interest in the frequent storm and flood damage.
Systematic disaster management and drought damage data were established after the revision of
“Enforcement Decree of Countermeasures against Natural Disasters Act” in June 2018. As for droughts
prior to 2018, local governments keep only the damage data for understanding the status. Mostly, local
governments collected the data on the periods when droughts occurred and the areas of damage. The
damage data of agricultural drought were reported in 1995, 2001, 2009 and 2018, not only in the current
year, but also in the past. In addition, from 2010 to 2018, the special report on climate change includes
some of the damage data of agricultural drought [41–53]. Thus, in this study, we reviewed the damage
caused by agricultural droughts based on the data available from 17 local governments in South Korea
(Figure 1).
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South Korea has a total of 17 local governments, that is, 1 special city, 1 metropolitan autonomous
city, 1 special self-governing province, 6 metropolitan cities and 8 provinces, as outlined in Table 1.
South Korea comprises a land area of 106,285.8 km2 and has a total population of 51.850 million. The
country’s special and metropolitan cities account for approximately 14% of its total land area and
approximately 45.6% of its total population, while 54.4% of its population resides in the provinces,
which take up approximately 86% of its total land area.

Table 1. State of study area.

Region Index Municipality Population
(Thousand People)

Area
(km2)Number Acronyms

42 GW Gangwon-do 1540 16,902.2
41 GG Gyeonggi-do 13,240 10,381.1
48 GN Gyeongsangnum-do 3360 11,815.8
47 GB Gyeongsangbuk-do 2670 19,128.7
29 GJ Gwangju Metropolitan City 1460 501.2
27 DG Daegu Metropolitan City 2440 883.5
30 DJ Daejeon Metropolitan City 1470 539.9
26 BS Busan Metropolitan City 3410 993.5
11 SE Seoul 9730 605.6
36 SJ Sejong Metropolitan Autonomous City 340 465.5
31 US Ulsan Metropolitan City 1150 1144.6
28 IC Incheon Metropolitan City 2960 1156.4
46 JN Jeollanam-do 1870 15,434.2
45 JB Jeollabuk-do 1820 8131.3
50 JJ Jeju Province 670 2051.3
44 CN Chungcheongnum-do 2120 8744.1
43 CB Chungcheongbuk-do 1600 7406.9

Sum 51,850 106,285.8

South Korea went through 22 agricultural drought events from 1965 to 2018, which caused damage
to rice paddies and fields, where crops failed and wilted. Agricultural drought events caused damage
to 1~12 municipalities apart from Ulsan Metropolitan City. Municipalities suffered damage from 1~16
agricultural droughts, excluding Ulsan, as shown in Figure 2. The special and metropolitan cities
suffered damage from 0~2 agricultural droughts, while 7~16 devastating agricultural drought events
occurred in 8 regional provinces. Eleven droughts, or more than 50% of 22 devastating drought events,
occurred in regional provinces: Chungcheongbuk-do(11), Chungcheongnam-do(12), Jeollanam-do(13),
Gyeongsangbuk-do(15) and Gyeongsangnam-do(16).

Agricultural droughts caused damage on a yearly basis from 1965 to 1982. Then, in 1994, 1995 and
2013~2018, the drought damage affected the agricultural sector. A total area of 1,993,874 ha suffered
damage with crops failing and wilting, whilst a large-scale damage affected an area of 100,000 ha
in 1967, 1968, 1982 and 1994 (Table 2). From 1965 to 1977, the beginning of the drought was June,
and the end was September, the same period was recorded. The reason for this is that the records
of past droughts remain only brief records, and the rough period of occurrence and damage area
are presented in the 1995 drought record report. 108 regions were affected by the 22 agricultural
drought events, where 4~5 regions on average were affected by agricultural droughts. Compared to
special and metropolitan cities, Gyeongsangnam-do, Gyeongsangbuk-do, Chungcheongnam-do and
Chungcheongbuk-do suffered the greatest damage from agricultural droughts.
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Figure 2. Damage from agricultural droughts by municipality (1965–2018).

Table 2. Damage from agricultural droughts by year.

Year
Agricultural Drought

Damage Month Period Damage Area (ha) Region Index of Drought Damage

Start End

1965 06 09 89,134 JN, GG, GN
1966 06 09 44,857 JN, GN
1967 06 09 420,488 JN, GN, JB, CN, JJ
1968 06 09 470,423 JN, JB, GB, GN, CN, JN, GG
1969 06 09 5977 GB, JN
1970 06 09 6015 JN
1971 06 09 12,774 JN, JJ
1972 06 09 13,545 JN
1973 06 09 48,493 GB, GN
1975 06 09 37,401 GN, GB, CN, CB, GG
1976 06 09 28,218 GN, GB, CN, JN, CB

1977 06 09 60,246 SE, BS, GG, JN, CB, CN, JB, JN, GB,
GN, JJ

1978 05 06 18,563 SE, GG, JN, CB, CN
1981 05 07 145,457 CB, CN, JB, JN, GB, GN
1982 05 07 231,244 CB, CN, JB, JN, GB, GN
1994 07 09 253,803 CB, CN, JB, JN, GB, GN, JJ, DG, GJ, DJ
1995 07 08 20,370 CB, CN, JB, JN, GN
2013 07 08 7626 JN, GB, GN, JJ
2015 06 06 7358 IC, GG, JN, CB, GB
2016 07 08 39,826 CN, JN, JB, GB
2017 05 07 9549 JN, GN

2018 07 08 22,507 JB, JN, GB, GN, CB, CN, GG, JN, IC,
SJ, GJ, DJ

Count 22 1,993,874 108
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2.2. Local Rainfall Observatories and Rainfall Status

Not only South Korean local governments but also other multiple departments run approximately
68 rainfall observatories and retain rainfall DB (database). The Korean Meteorological Administration
(KMA) operates rainfall observatories, where they keep over a three-decade observational data and
provide diverse reference points for designing or planning disaster reduction initiatives. 68 rainfall
observatories operated by the Korea Meteorological Administration have more than 30 years of proven
observation data. Local rainfall observatories are shown in Figure 3.
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Figure 3. Local rainfall observatories and Thiessen’s polygon.

Sixty-eight rainfall observatories are distributed throughout 17 municipalities of interest to this
study. The KMA-led rainfall observatories collected the rainfall data, on a daily basis, from 1965 to
2018. The branch numbers and names of the 68 observatories are outlined in Appendix A Table A1.
Depending on the size of the municipalities, 1–19 rainfall observatories are in operation, where they
calculate the rainfall weighted based on the area ratios of the Thiessen’s polygon, to get the average
rainfall. The weight of the Thiessen’s polygon was calculated as the ratio of the area of rainfall
observation stations to municipality in the land area. Appendix A Table A2 shows the weight of each
municipality by rainfall observation station.

From 1965 to 2018, the amount of rainfall in South Korea averaged 1271 mm (min 882 mm–max
1860 mm). The non-linear average annual rainfall curve repeatedly rises above and falls below the
average with minimum and maximum rainfall recorded in 1988 and 2003, respectively (Figure 4). The
average annual rainfall in South Korea has been increasing and decreasing over a period of about 5
years. The average annual rainfall is small, and about 1000 mm, and in most cases, about 1600 mm.
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With the impact of North Pacific and Okhotsk sea air masses, monsoonal fronts are formed
in South Korea from June to September, when 65% of the country’s total rainfall occurs (Table 3).
Due to such rainfall patterns, the country’s October–March rainfall averaged 5% or less of its total
annual rainfall. Therefore, the agricultural drought damage in South Korea occurs during the spring
drought, from April to May, and during the fall drought, from October to November, based on the
monsoon season.

Table 3. Average monthly rainfall trends (1965–2018).

Month Rainfall (mm) Cumulative Rainfall (mm) Ratio (%)

1 27.2 27.2 2.1
2 35.4 62.6 2.8
3 55.4 118.0 4.4
4 89.0 207.0 7.0
5 95.3 302.3 7.5
6 143.7 446.0 11.3
7 285.8 731.9 22.5
8 259.4 991.2 20.4
9 147.1 1138.3 11.6

10 57.8 1196.1 4.5
11 49.1 1245.2 3.9
12 26.1 1271.4 2.1

2.3. Setting Up Reference Points for Disaster-Prediction Rainfall Relevant to Agricultural Drought Damage

In this study, we examined the damage from agricultural droughts that occurred in South Korea,
from 1965 to 2018. The period or the time of year when the drought damage occurred and the affected
area are described under Section 2.1. A total of 22 agricultural drought events occurred from May to
September (Figure 5). Due to the effects of monsoonal fronts, 65% of Korea’s average monthly rainfall
is concentrated in June to September, on which agricultural drought season largely falls. The type of
damage caused by agricultural drought has been repeated continuously for a certain period of time on
an annual basis. Despite the monsoon lasting from June to September, the monsoonal season partially
overlaps with the agricultural droughts. Therefore, short-term storm events fail to end the droughts,
but above-average rainfall has the capacity to end the droughts. Thus, in this study, we attempted to
set up the reference points for disaster-prevention rainfall relevant to the beginning of agricultural
droughts and for disaster-reduction rainfall relevant to the end of droughts.
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South Korea’s agricultural drought occurs in the form of a 1-year-cycle short-term, rather than
long-term, drought and ends in the course of the country’s monsoon season, lasting from June to
September. In this study, we comparatively analyzed the past agricultural drought damage versus
the average rainfall of drought-free years to set up the disaster-prevention rainfall for predicting the
agricultural droughts. For the reference points for disaster-prevention rainfall, we analyzed the extent
to which the rainfall in the preceding year fell short of the rainfall in the year prior to the occurrence of
agricultural droughts. Agricultural droughts end in the course of the monsoon season as early as July
or in September at the latest when a certain amount of rain falls.

To set up the reference points for disaster-reduction rainfall, we analyzed the average monthly
rainfall for the months preceding and following the point of time when agricultural drought damage
ended. Given agricultural droughts hardly end with a single rainfall event but above a certain amount
of rainfall, we analyzed the average monthly rainfall for the months preceding and following the point
of time when droughts ended. Thus, in this study, we took into account the past agricultural drought
damage data, to set up the reference points of rainfall for predictable disaster prevention and reduction.
We analyzed the rainfall to set up the reference points for disaster-prediction rainfall, as shown in
Figure 6.

2.4. Linear Regression Analysis

Linear regression is a linear approach to modeling the relationship between dependent variable y
and one or more independent variables x. In linear regression, the relationships are modeled by using
linear predictor functions whose unknown model parameters are estimated from the data. Such models
are called linear models. Given a dataset

{
yi, xi1, . . . , xip

}n
i=1

of n statistical units, a linear regression
model assumes that the relationship between the dependent variable yi and the p of repressors xi is
linear. The model has the following form.

yi = β1xi1 + ···+ βpxip + εi = XT
i β+ εi, i = 1, . . . , n,
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In the given equation, β is the coefficient of each independent variable, and p is the number of
parameters estimated by linear regression. T means transpose, and xT

i β means internality of xi and β.
Moreover, εi is an error term, an error variable, which is an unobserved random variable, and means
an error between the dependent variable and the independent variable. This is called linear regression
because it assumes that the dependent variable is in a linear function relationship to the independent
variable. However, it is wrong to think that the graph of yi = XT

i β+ εi is a straight line and yi is a linear
function of xi. For example, there is the following linear regression. Since y = β1 + β2x + β3x2 + ε is
linear with respect to x and x2, it can be said to be a linear regression even if the graph having the x-
and y-axes is not linear. This expression is expressed in vector format, so it can be expressed as follows.

y = Xβ+ ε

The meaning of each term in this equation is as follows.

y =


y1

y2
...

yn

, X =


XT

1
XT

2
...

XT
n

 =


x11 . . . x1p
x21 . . . x2p

· · ·

xn1

. . .

. . .

· · ·

xnp

, β =


β1

β2
...
βn

, ε =


ε1

ε2
...
εn
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3. Results

3.1. Setting Up Reference Points for Rainfall in View of Disaster Prevention Relevant to Agricultural Droughts

We set up the reference points for disaster-prevention rainfall relevant to agricultural droughts
by comparatively analyzing the average rainfall with and without agricultural drought damage,
respectively, by municipality and year. An integrated standard of disaster reduction rainfall was
proposed by analyzing the difference in annual rainfall for municipalities. Based on the days when
agricultural drought damage occurred from 1965 to 2018 in South Korea, we calculated the past average
annual rainfall to derive the final average rainfall per municipality. For the years without agricultural
drought damage, we calculated the average annual rainfall per municipality, to derive the final average
rainfall. We analyzed the average rainfall, both with and without agricultural droughts, respectively,
per municipality, as shown in Figure 7.
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Figure 7. Setting up rainfall for disaster prevention relevant to agricultural droughts by municipality.

Across the municipalities, agricultural drought damage occurred when the average annual rainfall
was 1199 mm (min 913 mm~max 1704 mm). Agricultural drought damage did not occur when the
average rainfall was 1297 mm (min 1063 mm~max 1631 mm). It was determined that the annual
average rainfall of agricultural drought damage is about 100 mm less than the whole country’s average
rainfall. We analyzed the average rainfall trend lines, both with and without agricultural droughts,
respectively, in each municipality, as shown in Table 4. Based on the municipalities’ rainfall-trend lines,
with drought damage and the average rainfall trend lines analyzed, the agricultural drought occurred
in South Korea when the municipalities recorded nearly 100 mm below the average annual rainfall.

Table 4. Analysis of disaster-prevention rainfall of municipality.

Region Index Average Rainfall (mm)
2)−1)

Agricultural Drought Damage Municipality

GW 1156 1335 179
GG 1123 1335 212
GN 1275 1369 94
GB 1036 1110 75
GJ 1213 1357 145
DG 913 1063 150
DJ 1412 1252 −160
BS 1088 1481 393
SE 1092 1393 301
SJ 1638 1218 −420
US - 1272 -
IC 973 1230 257
JN 1202 1313 111
JB 1126 1254 129
JJ 1704 1631 −73

CN 1127 1237 110
CB 1086 1203 117

Average 1199 1297 101

1) Agricultural Drought Damage; 2) Municipality.

However, the average rainfall in Daejeon, Sejong and Jeju Island was smaller than the amount
of rainfall in agricultural drought damage. Average rainfall for agricultural drought damage was
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calculated a year ago based on the time of drought occurrence. In Daejeon and Sejong, the reason why
the amount of rainfall in agricultural drought damage was higher than the average annual rainfall was
one and two times. The rainfall for drought damage in 2018 was 1548 mm in Daejeon and 1638 mm in
Sejong, and many rainfalls occurred from July to December 2017. On Jeju Island, rainfall is relatively
high because it is located on the coast: 1974 mm in 2013 and 1876mm in 2016, and the rainfall is the
same in the previous year. Despite the occurrence of agricultural drought damage in the three regions,
the annual rainfall for agricultural drought damage was high due to the occurrence of large rainfall in
the previous year, and the average rainfall increased due to the less frequent occurrence of agricultural
drought. However, in Daejeon, Sejong and Jeju Island, the frequency of agricultural droughts is low,
and less than 3% of the total area of Korea is expected to have a small impact on the whole country.

For the whole country, the annual average rainfall and the amount of agricultural drought damage
from 1965 to 2018 were analyzed for rainfall in the past year (Figure 8). For the years with agricultural
drought damage, the average annual rainfall was 1166 mm (min 846 mm~max 1621 mm). For the years
without agricultural drought damage, the average annual rainfall in whole country was 1271 mm (min
882 mm~max 1860 mm). Agricultural drought damage was observed to occur at a small rainfall of
about 105 mm, based on the average annual rainfall.
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The characteristics of rainfall were reviewed through a linear regression analysis of annual
average rainfall in the whole country and rainfall in agricultural drought damage. The annual average
rainfall estimation formula for whole country, calculated by using linear regression analysis, was
Rwcar = −3710 + 2.50Y, and the rainfall estimation formula for agricultural drought damage was
analyzed as Radr = −2815 + 2.00Y. Here, Y is the year, Rcar is the annual average rainfall in the whole
country and Radr is the agricultural drought damage rainfall. Using the linear regression equation,
annual rainfall and annual average annual rainfall of agricultural drought damage were analyzed
(Table 5). In the whole country, the damage of the past agricultural drought occurred when the average
annual rainfall was less than 97 mm. The average rainfall with agricultural drought damage was
1154 mm (min 1115 mm~max 1221 mm) per year, whilst the average annual rainfall was 1251 mm (min
1203 mm~max 1335 mm). The rainfall with drought damage in South Korea averaged 97 mm (min
88 mm~max 114 mm) per year.
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Table 5. Analysis of disaster-prevention rainfall by year, considering linear regression analysis.

Year Agricultural Drought Damage Rainfall
(mm)

Average Rainfall
(mm) 2)−1)

1965 1115 1203 88
1966 1117 1205 88
1967 1119 1208 89
1968 1121 1210 89
1969 1123 1213 90
1970 1125 1215 90
1971 1127 1218 91
1972 1129 1220 91
1973 1131 1223 92
1975 1135 1228 93
1976 1137 1230 93
1977 1139 1233 94
1978 1141 1235 94
1981 1147 1243 96
1982 1149 1245 96
1994 1173 1275 102
1995 1175 1278 103
2013 1211 1323 112
2015 1215 1328 113
2016 1217 1330 113
2017 1219 1333 114
2018 1221 1335 114

Average 1154 1251 97

1) Agricultural Drought Damage Rainfall; 2) Average Rainfall.

In this section, for disaster prevention of agricultural drought, the average rainfall and the amount
of agricultural drought damage occurred were analyzed for municipality and the whole country. The
damage of agricultural drought in the municipality occurred when the annual rainfall was less than
1199 mm or less than the municipality annual average rainfall of 101 mm at the time of observation.
In the whole country, the damage of agricultural drought occurred when the annual rainfall was 1154
mm or less at the time of observation, or 97 mm or less than average rainfall in the whole country. The
annual rainfall amount of 1154 to 1199 mm, which is the cause of damage to agricultural drought, was
analyzed for the whole country and municipality, and the average annual rainfall was analyzed to be
97 to 101 mm. In this study, the standard of judgment point for disaster prevention of agricultural
drought at the time of disaster management was analyzed for rainfall for municipality and the whole
country. Rather than using various drought indices that are currently developed, policy makers or
public servant made suggestions based on rainfall that is most accessible and convenient for judging
the timing of agricultural drought. Thus, in this study, we set up the annual rainfall of ≤1200 or 100 mm
below the average annual rainfall for the preceding year as the reference rainfall for disaster prevention
relevant to agricultural droughts.

3.2. Setting Up Rainfall in View of Disaster Reduction Relevant to Agricultural Droughts

South Korea has four seasons, and about 65% of annual average rainfall occurs in summer. Most
agricultural droughts occur before the monsoon season in summer, and droughts are reduced based on
this. Since the start or end of an agricultural drought cannot be accurately determined, we want to
analyze the rainfall before and after a month based on the time when the drought ends in the past data.
Rainfall for reduction disasters in agricultural drought was analyzed for local governments and the
whole country average monthly rainfall before and after a month based on the end date of the past
agricultural drought damage. It analyzes municipality and the whole country and calculates monthly
rainfall for disaster reduction to propose an integrated standard.
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The rainfall for disaster reduction of municipality was analyzed for total average rainfall of
monthly rainfall about a month before and after the end of the agricultural drought damage (Figure 9).
The average monthly rainfall for the month preceding the days when the agricultural drought damage
ended by municipality was 164 mm (min 42 mm~max 311 mm). The average monthly rainfall for the
month following the days when the damage ended was 140 mm (min 22 mm~max 239 mm). It was
analyzed that the average rainfall before and after the month to disaster reduction of agricultural
drought damage to all municipality is required.
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Monthly rainfall was analyzed about a month before and after the end date of the agricultural
drought damage, by year, to reduce disasters for the whole country (Figure 10). The average monthly
rainfall for the month preceding the day when the agricultural drought damage ended was 166 mm
(min 67 mm~max 447 mm) per year. The average monthly rainfall for the month following the day
when the agricultural drought damage ended was 131 mm (min 20 mm~max 393 mm) per year.Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 20 
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Rainfall characteristics were reviewed through a linear regression analysis on the monthly average
rainfall before and after a month for agricultural drought damage across the country. The monthly
rainfall estimation equation for disaster reduction of agricultural drought damage in the whole country,
using linear regression analysis, was determined to be Radrr = −1255 + 0.71Y. Here, Y is the year,
and Radrr is the average monthly rainfall for disaster reduction of agricultural drought damage.
Monthly rainfall for disaster reduction of agricultural drought damage, using linear regression, was
analyzed (Table 6). The analysis of the disaster-reduction rainfall, using linear regression for ending
the agricultural droughts by year, indicated that approximately 154 mm or more rainfall was required
to end the agricultural droughts. The rainfall for ending the agricultural droughts averaged 154 mm
(min 140 mm~max 178 mm).

Table 6. Analysis of disaster-reduction rainfall by year considering linear regression analysis.

Year Agricultural Drought Relief Rainfall
(mm) Year Agricultural Drought Relief Rainfall

(mm)

1965 140 1977 149
1966 141 1978 149
1967 142 1981 152
1968 142 1982 152
1969 143 1994 161
1970 144 1995 161
1971 144 2013 174
1972 145 2015 176
1973 146 2016 176
1975 147 2017 177
1976 148 2018 178

Average 154

In this section, monthly rainfall in the month before and after the end of the agricultural drought
was analyzed for municipality and the whole country for disaster reduction of agricultural drought.
The monthly rainfall for solving agricultural drought by municipality was determined to be 152 mm as
the average monthly rainfall for total municipality. The linear regression equation was calculated for
monthly rainfall for the whole country to overcome agricultural drought, and 154 mm was determined
based on past agricultural drought. In this study, the monthly rainfall was analyzed for municipality
and the whole country, as a criterion for judging disaster reduction of agricultural drought at the time
of disaster management. In South Korea, the agricultural drought ends within four months, due to
monsoon season, but the timing of the end of the drought is unclear. Therefore, based on the end time
of the agricultural drought, the monthly rainfall before and after a month was analyzed, and the policy
manager proposed a criterion for determining when the agricultural drought would end. In this study,
we intend to set the standard as the case where the monthly rainfall amount for disasters reduction in
agricultural drought occurs more than 150 mm.

4. Discussion

In the past, previous studies on drought predicted and evaluated drought by using the drought
index [17,18]. Moreover, Prediction of drought using drought index is widely used in many fields, and
its applicability has been reviewed [9,10,51–53]. However, previous studies validated the analysis of
droughts only with hydrologic parameters, hardly paying attention to the damage from droughts or
quantitatively analyzing the rainfall leading to droughts, to propose the reference points for preventing
disasters or ending droughts. In Korea, the drought prediction using the drought index is based
on meteorological drought prediction using SPI6 only in the Korea Meteorological Administration
among the various ministries. The Ministry of Environment, Ministry of Ministry of Agriculture, Food
and Rural Affairs, and Ministry of the Interior and Safety, which manage drought, make drought
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prediction through observational data. The drought index is used as a reference for drought prediction.
Therefore, this study analyzed rainfall of disasters prediction for in local governments across the
country, not the drought index, for agricultural droughts in Korea. In disaster management, drought
should first determine the presence or absence of drought occurrence, using observational data, and
second, assess the depth of drought, using the drought index. In addition, when evaluating the
depth of drought, it is necessary to prepare for drought by using a drought index suitable for each
department’s characteristics.

We collected the cases of damage from agricultural droughts that had occurred in South Korea
from 1965 to 2018 and analyzed the impacts of the damage from droughts by municipality and year.
A total of 22 agricultural droughts devastated an area of 90,631 ha, causing crops to fail and wilt
across 108 regions (min 5977 ha~max 470,423 ha). Furthermore, we analyzed the rainfall in each
municipality, based on the data from 68 KMA-led rainfall observatories, and calculated the rainfall
by applying the area ratios of the Thiessen’s polygon. In South Korea, the average annual rainfall
from 1965 to 2018 was 1271 mm, with min 882 mm and max 1860 mm rainfall forming a non-linear
curve repeatedly rising and falling. Moreover, South Korea’s monthly rainfall was characterized
by monsoonal fronts built in summer with 65% of the country’s total annual rainfall concentrated
in June to September. In this study, we focused on agricultural droughts, calculated the average
rainfall leading to droughts by municipality and year, and established integrated reference points for
disaster prevention. Furthermore, we calculated the average monthly rainfall for droughts to end by
municipality and year, and established integrated reference points of rainfall for disaster reduction. The
rainfall standard for disaster prediction that can judge agricultural drought in disaster management
was established. The findings in this study involved the reference points based on the limited past
damage from agricultural droughts, that is, the disaster-prevention and disaster-reduction rainfall
based on average annual and monthly rainfall, respectively. In South Korea, agricultural droughts
mostly occur from June to September and end within three to four months, as the country’s drought
season overlaps with its monsoon season. However, due to the recent effects of climate change, damage
to agricultural drought continues to occur, and not only the importance of drought, but also interest in
mega drought is increasing. Despite the increase in agricultural drought damage, the past damage
data for agricultural drought were presented with only fragmentary information, and the data were
constructed based on various reports.

In this study, disaster reduction rainfall for agricultural drought was proposed. For future research,
we will use SPI and SPEI to develop a disaster prediction drought index. We intend to use the drought
index considering regional rainfall characteristics to calculate the damage standard of agricultural
drought as a drought depth and to calculate an appropriate drought index for various durations.
Through this study and future studies, we intend to establish an integrated standard for judging both
standard and depth for disaster prediction of agricultural drought.

5. Conclusions

A drought is a natural disaster resulting from the decreasing rainfall attributable to long-term
hydro-meteorological imbalance, affecting a range of areas including farming, living and some
industries. Moreover, prolonged droughts cause water shortages, crop failure and depletion of
reservoirs on a yearly or seasonal basis. In this study, we established integrated reference points of
disaster-prediction rainfall for disaster prevention and reduction to help drought relief, based on South
Korea’s agricultural droughts.

The rainfall criteria, considering the disaster prevention of agricultural drought, was compared to
the annual rainfall amount of agricultural drought damage and the total annual rainfall of municipality
by year for municipality and the whole country. The annual rainfall of agricultural drought damage was
calculated by municipality to be higher than the national average. The annual rainfall of agricultural
drought damage was analyzed to be 1199 mm for municipality and 1154 mm for the whole country.
In addition, as a result of comparing with the annual average rainfall in the year when the agricultural
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drought damage occurred, it was observed that the difference in rainfall occurred 97 mm. Therefore,
the rainfall considering the disaster prevention of agricultural drought was set to be less than about
1200 mm annual rainfall or about 100 mm less than the previous year, based on annual average rainfall.

Monthly rainfall in the month before and after the end of the drought was compared to the
municipality and the whole country based on the rainfall considering the disaster reduction of
agricultural drought damage. Municipality and the whole country of monthly rainfall to solve
agricultural drought damage were analyzed similarly. Based on date of end of drought to solve the
agricultural drought damage, the monthly rainfall was analyzed by municipality 152 mm and the
whole country 154 mm. Therefore, the monthly rainfall for disaster reduction of agricultural drought
was set to be more than about 150 mm.

In this study, we set up the reference points for disaster-prevention rainfall relevant to the
occurrence of damage from agricultural droughts and disaster-reduction rainfall for droughts to
end in South Korea. The present findings should be applicable to not all countries but those whose
climatic impacts are comparable to South Korea’s or whose drought season lasts for less than a year.
Moreover, the proposed reference points for disaster prediction relevant to agricultural droughts may
be conducive to central and local governments’ decision making on disaster management.
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Appendix A

Table A1. Rainfall observatories.

No. Station
Index Station Name No. Station

Index
Station
Name No. Station

Index
Station
Name

1 90 Sokcho 24 156 Gwangju 47 243 Buan
2 95 Cheorwon 25 159 Busan 48 244 Imsil
3 100 Daegwallyeong 26 162 Tongyeong 49 245 Jeongeup
4 101 Chun Cheon 27 165 Mokpo 50 247 Namwon
5 105 Gangneung 28 168 Yeosu 51 248 Jangju
6 108 Seoul 29 170 Wando 52 256 Juam
7 112 Incheon 30 184 Jeju 53 260 Jangheung
8 114 Won-ju 31 185 Gosan 54 261 Goheung
9 115 Ulleungdo 32 188 Seongsan 55 262 Goheung

10 119 Suwon 33 189 Seogwipo 56 271 Bonghwa
11 127 Chungju 34 192 Jinju 57 272 Youngju
12 129 Seosan 35 201 Gangjwa 58 273 Mungyeong
13 130 Uljin 36 202 Yangpyeong 59 277 Yeongdeok
14 131 Cheongju 37 203 Icheon 60 278 Uiseong
15 133 Daejeon 38 211 Inje 61 279 Gumi
16 135 Chupungryeong 39 212 Hongcheon 62 281 Yeongcheon
17 136 Andong 40 216 Taebaek 63 284 Geochang
18 138 Pohang 41 221 Jecheon 64 285 Hapcheon
19 140 Gunsan 42 226 Boeun 65 288 Miryang
20 143 Daegu 43 232 Cheonan 66 289 Sancheong
21 146 Jeonju 44 235 Boryeong 67 294 Geoje
22 152 Ulsan 45 236 Buyeo 68 295 Namhae
23 155 Changwon 46 238 Geumsan
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Table A2. Thiessen weight of rainfall observation stations for municipality.

Region
Index

Station
Index

Thiessen
Weight

Station
Index

Thiessen
Weight

Station
Index

Thiessen
Weight

GW

90 0.04 95 0.06 100 0.16
101 0.10 105 0.06 114 0.09
130 0.01 211 0.15 212 0.11
216 0.14 221 0.08 271 0.01

GG

95 0.19 101 0.04 108 0.15
112 0.02 114 0.01 119 0.18
201 0.06 202 0.15 203 0.15
212 0.01 232 0.04

GN

152 0.02 155 0.09 159 0.03
162 0.04 192 0.12 248 0.02
279 0.10 284 0.11 285 0.12
288 0.15 289 0.12 294 0.04
295 0.05

GB

130 0.04 135 0.10 136 0.08
138 0.08 143 0.07 152 0.03
216 0.01 226 0.01 271 0.07
272 0.06 273 0.09 277 0.09
278 0.11 281 0.10 284 0.01
285 0.02 288 0.02

GJ 156 1.00

DG 143 0.93 285 0.07

DJ 133 0.95 238 0.05

BS 152 0.10 159 0.90

SE 108 1.00

SJ 131 0.44 133 0.34 232 0.22

US 152 0.98 288 0.02

IC 112 0.55 201 0.45

JN

156 0.17 165 0.14 168 0.06
170 0.06 192 0.01 245 0.03
247 0.05 256 0.17 260 0.13
261 0.09 262 0.09 295 0.01

JB

135 0.01 140 0.08 146 0.17
156 0.01 236 0.01 238 0.10
243 0.10 244 0.09 245 0.16
247 0.11 248 0.13 284 0.02

JJ 184 0.30 185 0.19 188 0.26
189 0.25

CN
129 0.29 131 0.01 133 0.05
140 0.04 232 0.20 235 0.14
236 0.19 238 0.08

CB

114 0.01 127 0.26 131 0.17
133 0.02 135 0.08 203 0.04
221 0.13 226 0.16 232 0.02
238 0.05 272 0.04 273 0.03
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