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Featured Application: Functionally graded materials composed of cellular structures have the
characteristics of high specific stiffness/strength, energy absorption, etc. On the occasion of
their structural lightweight and energy absorption, functionally graded materials are often used
in engineering.

Abstract: In recent years, the functionally graded materials (FGM) with cellular structure have
become a hot spot in the field of materials research. For the continuously varying cellular structure
in the layer-wise FGM, the connection of gradient cellular structures has become the main problem.
Unfortunately, the effect of gradient connection method on the overall structural performance lacks
attention, and the boundary mismatch has enormous implications. Using the homogenization theory
and the level set method, this article presents an efficient topology optimization method to solve the
connection issue. Firstly, a simple but efficient hybrid level set scheme is developed to generate a
new level set surface that has the partial features of two candidate level sets. Then, when the new
level set surface is formed by considering the level set functions of two gradient base cells, a special
transitional cell can be constructed by finding the zero level set of this generated level set surface.
Since the transitional cell has the geometric features of two gradient base cells, the shape of the
transitional cell fits perfectly with its connected gradient cells on both sides. Thus, the design of
FGM can have a smooth connectivity with C! continuity without any complex numerical treatments
during the optimization. A number of examples on both 2D and 3D are provided to demonstrate
the characteristics of the proposed method. Finite element simulation has also been employed to
calculate the mechanical properties of the designs. The simulation results show that the FGM devised
by the proposed method exhibits better mechanical performances than conventional FGM with only
CY continuity.

Keywords: functional graded material; level set; topology optimization; homogenization

1. Introduction

Organisms like bamboo, to adapt the environment [1], often consist of a gradient structure.
Inspired by the materials that already exist in nature [2], functionally graded materials (FGM) is
usually composed of continuously varying cellular structures in one direction and self-repeated in
the other direction. Due to their excellent performances, FGM has been extensively studied and
reported [3,4]. In particular, this study focuses on the man-made FGMs constructed by a series of
porous microstructures due to their design flexibility and high performances [5]. With the development

Appl. Sci. 2020, 10, 7449; d0i:10.3390/app10217449 www.mdpi.com/journal/applsci


http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-1485-0722
https://orcid.org/0000-0003-4295-1288
http://dx.doi.org/10.3390/app10217449
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/21/7449?type=check_update&version=2

Appl. Sci. 2020, 10, 7449 20f23

of additive manufacturing, the fabrication of complex cellular structures has become possible and
artificial FGMs are also widely utilized in engineering applications [6-8]. However, cellular FGM
often contains complex and spatially varying microstructures. It is difficult to simultaneously devise
all the different microstructures and ensure their connection at the boundaries. Because different
microstructures usually have different topologies, and there often lacks a proper mechanism on the
macro scale to connect all the microstructures, especially when tailoring the FGMs with the topology
optimization [9-11].

Over the past few years, for the design of the cellular structures, researchers have widely adopted
topology optimization (TO) technology and the numerical homogenization method [12]. Topology
optimization is regarded as an effective structure optimization method by using the finite element
method (FEM) and advanced optimization algorithms. Under the given boundary and loading
conditions, TO takes the structural performances as the design objective and gradually achieves the
optimal material distribution within the design domain [13]. Up to now, several TO methods have been
developed, e.g., the homogenization method [14], solid isotropic material with penalization (SIMP)
method [15,16], evolutionary structural optimization (ESO) [17,18], level set methods (LSM) [19-22],
and so on. There are many other ways to describe the configuration of the structure, such as the
SIMP approach based on non-uniform rational basis spline (NURBS) framework [23-25]. Moreover,
the numerical homogenization method has been developed as an efficient tool to evaluate effective
properties of the periodic porous materials [26]. Considering the scale effect, the above cellular
solid performs more like a material whose elasticity tensor can be approximately calculated by
imposing periodic boundary assumptions. For the topological optimization design of periodic
cellular materials, the incorporation of the topology optimization scheme with the homogenization
theory can automatically devise the geometrical configuration of cellular structures with extreme
performances, such as maximum bulk or shear modulus [27], negative Poisson’s ratio [28-30],
thermoelastic property [31], and so on. On the other hand, cellular structures with desired properties
can also be tailored by utilizing an inverse homogenization procedure [32,33]. The above studies
mainly assume that the whole design domain consists of a number of uniform cellular materials.
However, FGMs with spatially varying cellular microstructures always have more design freedom and
can facilitate the exploration of combined functions for real-world applications [6,34].

FGM can be regarded as a kind of artificial composite that can continuously change their volume
fraction, composition or microstructures, so as to adapt to the service environments [35]. Therefore,
mechanical performances (e.g., stiffness, strength, and toughness) of the FGM can be greatly improved
when compared to the traditional materials with uniform cellular structures [3]. However, how to
achieve FGM properties via the change of material constituents or porous microstructures over layer
or volume is always a difficult task. In later studies, researchers focus on the design of the cellular
structure with specific performances [36-38] or gradient properties [30,39] by using the discipline of
topology optimization. Particularly, for an FGM composed of cellular structures, the connectivity issue
along the gradient direction has to be considered. Otherwise, the fabrication of the FGM structure is
not able to be guaranteed [40,41]. As a result, many researches have been done for tackling this specific
issue in the topology optimization of FGMs. For instance, Zhou and Li [9] systematically proposed three
different approaches to solve the connectivity issue between adjacent cellular structures, and made an
in-depth discussion about the connection effect. Radman et al. [10] devised a way to optimize all three
cells simultaneously, and developed a filtering scheme to enhance the connectivity between different
material microstructures. Cadman et al. [11] used a kinematically connective constraint approach
to guarantee the connectivity of the neighboring cellular structures. Zong et al. [42,43] proposed a
VCUT level set method to generate functional graded cellular structure, where a high-order continuity
between the graded microstructures can be achieved. Maskery et al. [44] investigated the surface-based
FGM, and illustrated the connection issue between completely different unit cells. Above-mentioned
studies revealed that while considering the connectivity, the smoothness of the boundary makes a
significant impact on the mechanical property and manufacturability of the cellular FGMs [40,41].
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However, the existing methods used to tackle the connectivity problem are usually coupled with the
optimization process, which may reduce the efficiency of the optimization process and increase the
complexity of the design formulation. An efficient method that is independent of the optimization
process can alleviate this issue.

Level set methods [45], owing to their perfect description of the smooth boundary, are effective
ways to divide solid and void parts of the structure in topology optimization. This favorable feature of
the level set methods makes it to be considered as a favorable candidate to handle the connectivity
issue in the topology optimization design for FGMs. The main concept of LSM is to describe a
low-dimensional structural geometry with the high-dimensional level set function, and the zero
level set represents the structural boundary. In the classic level set method, the structural boundary
propagation is governed by solving the Hamilton-Jacobi partial differential equation (H-] PDE) [19,46],
which usually requires complex numerical schemes. Furthermore, it is not easy to incorporate the
classic level set method with the well-established structural optimization algorithms, like the optimality
criteria (OC) method [47], the method of moving asymptotes (MMA) [48], and so on. In order to use
the existing optimization algorithms and reduce the computational complexity, several alternative
LSMs [49-51] have been developed. Especially, the parametric level set methods (PLSM) use the
radial basis functions (RBFs) [52] to interpolate the level set function, and thus the time and spatial
variables in the level set function are decoupled. In this fashion, the complicated H-] PDE-driven
topology optimization problem in the traditional LSM can be converted into a compact parameterized
optimization problem, which can be easily solved by the gradient-based algorithms. This study adopts
the PLSM due to its high efficiency.

Based on the above considerations, this paper systematically investigates the topological
optimization design of FGMs, from the generating of cellular structures to the connectivity of adjacent
microstructures. In this study, the cellular FGMs endowed the property of extreme bulk or shear
modulus are devised by using the incorporation of the TO method with numerical homogenization
theory. Specifically, a PLSM is employed to ensure the smoothness of the boundary, the numerical
homogenization method is introduced to evaluate the microstructural property, and the OC optimization
algorithm is applied to iteratively update the design boundary until the final design is achieved.
Based on the characteristics of level sets, this study proposes a simple but efficient hybrid level set
scheme to solve the connection issue. For the two gradient base cells that are separately tailored by the
PLSM, a special transitional cell is constructed with the level set function of the existing base cells.
This transitional cell contains the geometry characteristics of both the two gradient base cells, and the
interface with C! continuity between gradient cells can be guaranteed. Because the transitional cell is
the interpolation result that is out of the optimization loop, the efficiency of this method can be ensured.
More importantly, the introduction of the transitional cell will not affect the upper optimization design
results by using the PLSM and numerical homogenization. Several FGM design examples in both
2D and 3D are provided to show the merits of the proposed method. To prove the validity of this
method, examples of the proposed transitional connection (C! continuity) and conventional gradient
connection (C° continuity) for the FGM design are given, and comparative simulation analysis has
been performed. Moreover, the proposed method is also applicable to the hybridization of different
types of cellular structures.

2. Design of Base Cells

In this section, the optimization design process of the base cells is presented, including the PLSM,
the numerical homogenization method, the optimization formulation, and the design sensitivity analysis.
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2.1. Description of the Cellular Configuration

In the level set method, the solid and void regions are represented by different values of the level
set function. The mathematical expression for the design domain can be described as [53,54]:

Dd(x) >0, VYxeQ\dQ (Solid)
P(x) =0, VYxedQNnD (Boundary) 1)
P(x) <0, VYxeD\Q (Void)

where D ¢ RY(d = 2,3) denotes a reference design domain, () denotes the set of possible shape in the
domain, JQ) is the structural boundary, and x denotes the point coordinates in D. The readers can refer
to [53,54] for more details of the level set-based boundary description. By introducing the time variable
t, we can gain the following Hamilton-Jacobi partial differential equation (H-] PDE) [19,46]:

dD(x,t)
ot

~ Vi |[VO(x,1)| =0 @)

Equation (2) reflects that the structural boundary evolution is described by the velocity field.
In the level set method, the propagation of level set surface is triggered by the moving of velocity
field [21]. Therefore, for a structural optimization design, the key step is to find an appropriate V,
to drive the change of structural topology and shape [21]. However, the H-] PDE is usually hard to
solve, and the reinitialization scheme of the level set function consumes a lot of extra computing efforts.
Thus, in this study, the more efficient PLSM is adopted. In the PLSM [51], the level set function is
interpolated by a series of compactly supported radial basis functions (CSRBFs). More specifically,
the discrete level set function is represented by a set of constant CSRBFs ¢(x) and a number of varying
expansion coefficients a(t) [51]:

N

O(x,t) = p(x)-alt) = Y @ilx) - ai(t) )

i=1

where N is the total interpolation points in the design domain. Substituting Equation (3) into Equation (2),
the complicated H-J] PDE coverts to an ordinary differential equation, and the velocity field used to
propagate the level set front can be naturally extended from the boundary to the whole design region.
As the CSRBFs ¢(x) are constant during the optimization, the cellular structure configuration is mainly
affected by the expansion coefficients a(t). Therefore, the complex PDE-driven design problem for
cellular structures is converted to a relatively simple parametric optimization problem with the design
variables of a(t). By using the PLSM, the cellular structure optimization can be conveniently solved by
the gradient-based algorithms, including the OC and MMA. Moreover, we can use a level set function
to denote a particular cellular structure configuration, which paves the way for the latter transitional
cell method.

2.2. Property Evaluation for the Cellular Structure

To design the gradient structure made up with special porous microstructure, the numerical
homogenization method [26] is applied. It is an effective method to estimate the properties of periodic
microstructure imposing periodic boundary conditions. When the size of a cellular structure is small
enough compared to the bulk structure, the elasticity tensor DY of a periodic composite material is
calculated by:

1 0(ij)  #(ij) 0(k! +(kl
ngl - mfv(qul] _5qu] )qurS(fSrs( )_Sré ))dV 4)

where i, j, k,I = 1,2. |[V| denotes the volume of the cellular structure, and Dygs is the stiffness tensor of
0(ij)

solid material. In the 2D case, Epg

represent the macroscopic strain field, including the horizontal
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directional unit strain 521(711) = (1,0, O)T, the vertical directional unit strain epg 2)_ (0,1, 0) and the
shear unit strain 82‘(112)2 (0,0, 1)T. s;gj ) represents the locally varying strain fields, and it can be
described by:

g = eq) = 507 + ) ©)

The displacement field u("/) can be calculated by the Equation (6):

poqrsérs(v( )) (”(1]))0”/ poqrseis(v(ij))sg,gij)dV YoeV (6)
v

where v denotes the virtual displacement field in the cellular structure, while V denotes the set of
displacements over the design domain. In the 2D case, the elasticity tensor D of a periodic composite
material is represented by a 3 x 3 matrix. While for the 3D case, it is a 6 X 6 matrix.

Due to the gradient characteristics, the macrostructures in practice cannot be filled exactly with
a periodic arrangement of identical microstructures in the layer-wise FGMs. However, as reported
in [27,30,31,36,37], the numerical homogenization method is still applicable for approximating the
effective properties of layer-wise composites with FGMs, especially when the property gradient
variation between the adjacent microstructures is relatively small [27,30,31,36,37].

2.3. Topology Optimization and Sensitivity Analysis

Combining the PLSM and numerical homogenization theory, the topology optimization model
for cellular structure with extreme properties can be established:

find : a;(i =1,2,3..N)
d
Maximize : J(u,®) = Y, a)i]«le?kl(u,CI))
i,j.k,l= 7
fVH dV < Viax ( )
Subject to : (u v,®) = l(u,v)

Omin < @ < Omax

In the optimization model, «; is the expansion coefficient of level set function ®, which works
as the design variable. amin, and amax respectively represent the lower and upper bounds of the
design variables. In the PLSM, ani, can be selected as 2 X min(al-(V_l)), amax can be defined as
2 x max(a;’~) [51]. Here, y represent the iteration number, and ;=1 denotes the design variables
in the last iteration. N is the total number of design variables, which is also the number of the level
set nodes or finite element nodes [50,51]. w;j in the objective function represents the weight factors
of different parameters in the elasticity tensor DY. G(®) is the volume constraint with a maximum
volume Vinax. H(®) is the Heaviside function used to distinguish different parts in the design domain.
Considering a smooth Heaviside function, H(®) can be defined as [20]:

n, D <-A
3(1- 3 1

H@) =200 @2 L Ln _Acos<a ®)
1, D> A

In case of the numerical singularity, n is set to be a small positive number. A represents the
width of the numerical approximation. The equation of bilinear energy form and linear load form are
respectively defined as follows:

(1,0, @) = [, &3 (1) Dygrotss (V7)) H(®)AV o
I(v, @) = fV gtgzj)DWSErs( UD)H(®)dV
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To solve the optimization Formulation (7), the derivatives of the objective function and
the volume constraint with respect to the design variables should be computed. Based on the
theory of shape derivative [21], the sensitivity analysis can be conducted, and the derivatives of
DH (u, ®),a(u, v, ®),l(v, ) with respect to time t are respectively described by:

i & O(ki *
at/kl _ |V|f ( )))qurs( (*) érs(u(kl)))vnlvq)lé((b)dv (10)
ki
mqu“mw#%t%UWW@w
= Jy el mesm< D) Vavals(@)dv » a
+ J (& Dqu’Sérs( o)) + &5, (D)) Dpgroess (0) ) H(@)dV
dl i . i N o
= fv E;Z)qursers(v(”))Vn|V<I>|6(d>)dV+ fv e Dygrsese (07 H(®)aV (12)
where 6(®) is the derivative of H(®) [20], and the conjugate equation can be established:
[ a0 Dy (0 (@Y = [ e Dyt (67 (@) (13)

It was known from the equivalent equation that the derivative of a(u, v, ®) and I(v, @) with respect
to time ¢ are equal. By combining Equations (11)—(13), it yields:

fv (ep? — ey (D)) Dpgrsey (01 V,[V@I (@)dV = fv 3,1 ) Dyt @ H(@)AV (14)
Substituting Equation (14) and the velocity field in Equation (2) into Equation (10), we can have:

angl 1 0G) _ .« (. (if) O(k) _ .« ¢ (K]) /
ot :_ML(qu _qu(u ))qu‘fs(grs _‘Srs(u ))qo(x)a (t)é(@)dv (15)

Based on the chain rule, the derivative of elasticity tensor D' with respect to time ¢ can be computed:

oDH oDH
e 40 (16)

By comparing the corresponding terms in Equations (15) and (16), the derivative of elasticity
tensor D with respect to design variables a can be obtained by:

ijkl (i & i O(kl) _ _« kl
M-Mf D 3 ) Dy (5 = 5, ) ()5 (@) )

Similarly, the sensitivity of the volume constraint can be derived by:

JG 1
E—mﬁﬂM@W/ as)

After the sensitivity of the objective function and the volume constraint are obtained, the OC
algorithm [47] can be used to iterative optimize the cellular structure according to the sensitivity information.

3. Transitional Cell for Connectivity

In this article, the FGM is formulated by a family of cellular base structure (CBS) with different
layouts or shapes. In order to enable the gradient change in the FGM, geometric differences between
two connected cells along the gradient direction are bound to exist, so the connectivity issue must be
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considered to make sure the feasibility and manufacturability. Shape interpolation technology [12] can
be used to connect the CBS, in which the C° connectivity is maintained due to the similar topologies.
However, the smoothness of boundary isn’t taken into consideration, as shown in Figure 1. Obviously,
the boundary mismatch will cause a stress concentration or manufacturing issue for the cellular
structural FGM.

Figure 1. C¥ connectivity in FGM.

In order to ensure the smooth boundary, PLSM is adopted. Considering that the cellular
structural boundary is embedded in the level set function ®(x), a specific level set determines the exact
configuration of a cellular structure. Usually, for a periodic cellular structure, ®(x) is a square matrix,
and the dimension is depended on the number of level set knots. To connect two adjacent cellular
structures, a transitional cellular structure (TCS) can be generated via the interpolation of two level sets
that respectively represent those two cellular structures. The constructed TCS can have partial features
of both the adjacent cellular structures, so as to better fit the continuous change between different
boundaries. A C! connection between gradient microstructures by using the proposed method is
shown in Figure 2. Through the proposed method, the mismatch phenomenon can be completely
avoided. To design the layer-wise FGM, this study creates a TCS between every two CBS over layers
to maintain the C! connection. The macro configuration of the concerned FGM is shown in Figure 3,
where every two CBS layers contain a transitional connecting TCS layer.

Figure 2. Transitional cell (middle) to connect two CBS (left and right) with C! continuity.

Layer CBS 1
Layer TCS 1
Layer CBS 2

Gradient direction

Layer CBSN
Layer TCSN
Layer CBS N+1

Figure 3. Configuration of the considered FGM.
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To construct a TCS, the corresponding level set functions of two optimized CBS are required.
Different from the existing work, the ®(x) of TCS is not optimized but numerically interpolated.
Thus, the level set function ®(x) of TCS can be obtained by using a very small computational effort.
The interpolation process for TCS can be mathematically expressed as:

Dprans (i) = (1= B(i)) - P1(i) + (i) - D2(i) (i=1,2..n) (19)

where ®y45 is the level set function of the TCS. @1 and P, respectively represent the level set function
of the left and right CBS in Figure 2. n is the number of columns in the matrix of the level set function.
B is a weighting factor reflecting the degree of transition from left to right. In the interpolation process,
the parameter f§, which is a continuously changing value from 0 to 1, governs the geometry varying
process from one CBS to the other CBS. Considering all the CBS in the FGM design, a transition
cell can be easily constructed by using the level set functions of every two adjacent CBS. Therefore,
the geometric continuity between two layers of the FGM can reach up to C'. More importantly,
the construction of every TCS in a cellular FGM has nothing to do with the optimization for the CBS.
This means the CBS can be topologically designed without considering the connectivity constraints,
and the performances of all the CBS will not be affected.

4. Numerical Examples in 2D Case

Generally, when considering the stiffness of a cellular structure, the bulk modulus and shear
modulus are two main key properties to take into consideration [10]. In this section, to verify the
validity of the proposed method, a family of CBS with maximum bulk modulus or shear modulus
is firstly optimized with the volume fraction gradient change. Then, a series of TCS between every
two CBS is interpolated, and the perfect connection state with C! smoothness is achieved by using the
proposed transitional connection method.

In this study, the material properties of the CBS are reflected by the elasticity tensor D. For the
topological optimization of CBS with extreme performances (i.e., maximum shear and bulk modulus)
in 2D case, the objective function can be respectively established as follows:

] = maxDZ; (20)

1
J= maxZZ D 1)

ij

Similarly, in the 3D case:
1

J= maxz (DY, + DE + D) (22)

13
J= max§ Z Dfi (23)

i,j=1

4.1. Comparison of FGMs with C° and C! Smoothness

For comparison, two different gradient connection methods are considered to construct the FGM,
where the interfaces between different CBSs are respectively characterized with C° and C! smoothness.
First of all, FGM is devised by using the proposed transitional cell method, in which the FGM is
consisting of CBSs and TCSs. Here, CBSs are optimized with the extreme performance of maximum
bulk modulus, and the property gradient is governed by the gradually changing volume fraction along
the predefined direction. In this example, each CBS is discretized into 20 X 20 four-node quadrilateral
elements. The Young’s modulus and Poisson’s ratio of the solid material are set as E = 910 MPa
and v = 0.3, while in case of computational singularity, for the void material, Eyqq = 0.001 MPa and
Vyoid = 0.3. The volume fraction of each CBS and TCS are displayed in Table 1. The optimized FGM
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with the specified gradient in volume fraction is presented in Figure 4. With the construction of
transition cells, a smooth connection is achieved between the neighboring cellular structures. At the
same time, the required characteristic of the volume fraction gradient is maintained.

Table 1. Volume fraction of each cellular structure in Figure 4 (from left to right).

Serial Number CBS1 TCS1 CBS2 TCS2 CBS3
Volume fraction 0.25 0.3 0.35 04 0.45

Figure 4. FGM with maximum bulk modulus cellular structure.

Under the condition that each layer of the cellular structures in the FGM has the same volume
fraction, the conventional FGM constituted by C’ connection is designed. In particular, the FGM
with C? connection can be implemented by respectively devising the CBSs with the corresponding
gradient volume constraints. Then, the tailored CBSs are resembled along the gradient direction
without constructing the TCS layers. In order to compare the effects of the two gradient connection
methods on the structural mechanical properties, statics analysis in ANSYS Workbench is conducted.
To ensure the validity of simulation, the gradient structure is tiled into 9 columns (Figure 5) and
modelled with 1 mm thickness. The loading and boundary conditions are shown in Figure 6, where the
bottom of the structure fixed and a set of uniformly distributed forces F = 20 N is applied at the
top. The Young’s modulus and Poisson’s ratio of the solid material are set to be the same with the
optimization configurations.

The simulation results are plotted in Figure 7, where the stresses on two selected joints in both
the FGMs obtained by considering different interface smoothness are displayed. For the design with
the CO connection, the magnitude of the stresses is 5.9 MPa and 12.7 MPa. While for the design
with C! smoothness, the magnitude of the stresses is 3.6 MPa and 5.9 MPa at the same sample
points. From the results of the simulation analysis, it can be clearly seen that with the force applying
on the top, the obvious stress concentration occurs at the interface between two adjacent cellular
structures. When comparing to the result obtained by using the proposed transitional connection
method, conventional FGM design with C? connection displayed more serious stress concentration.
Because the C” connection only ensures that the similar CBSs can be connected, the connected interface
lacks a smooth transition. In such a case, the connection surfaces in the FGM with CY connection will
be more likely to collapse. This proves that the proposed method can guarantee the higher-order
continuity at the interfaces between the optimized CBSs, and thus alleviate the stress concentration at
those interfaces.

In this study, the strain energy caused by the applied loads is selected as an indicator to illustrate
the structural stiffness of the devised FGM. In other words, the smaller internal strain energy of a
structure is, the better structural stiffness it will be [41]. For the two different FGM designs, the strain
energy generated inside the structure is shown in Table 2. The results show that the relative difference
in the FGM with different connection methods is 8.65%, which means the proposed transitional
connection method can also greatly increase the stiffness of the optimized FGM.

Table 2. Strain energy in simulations.

Connection Methods C% Connection C! Connection

Strain energy (m]) 3.12 2.85
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Figure 5. Two different connection method for the design of FGM: (a) conventional FGM with C°
connection; (b) FGM with C! connection by using the transitional connection method.
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Figure 6. Loading and boundary conditions for optimized FGMs in ANSYS simulation analysis.
4.2. FGM with Maximum Bulk Modulus CBS

Section 4.1 illustrates that the FGM devised by using the transitional connection method can
show the greater structural mechanical performances. In this section, the FGM design is compared
to the design with uniformly shaped CBS. Here, the FGM with a smaller volume fraction gradient is
considered. Each single cellular structure is discretized with 20 X 20 four-node quadrilateral elements,
and the material properties are selected as E = 910 MPa and v = 0.3. The optimization objective of
each CBS is the maximum bulk modulus. For comparison, the conventional porous structure with
a single type CBS is also devised, under the same total volume constraint as well as the identical
objective function. Two design results are shown in Figure 8, and the volume fraction of each CBS or
TCS is shown in Table 3.
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A: Static Structural
Equivalent Stress
Type: Equivalent (von-Mises) Stress
Unit: MPa
Time: 1

17.827 Max
16.554
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Figure 7. The stress distribution of optimized FGMs (specified gradient in volume fraction) with two
different connection methods: (a) conventional FGM with C? connection; (b) FGM with C! connection
by using the transitional connection method.

31982
21332
1.0683
00032755 Min ‘ ’ 0 N
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Figure 8. Two different porous structures with the maximum bulk modulus: (a) FGM design; (b) design
with single type CBS.
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Table 3. Volume fraction of cellular structure in Figure 8 (from left to right).

Cell Number CBS1 TCS1 CBS2 TCS2 CBS3 TCS3 CBS4
Volume fraction of each cell in Figure 8a 0.25 0.274 0.3 0.325 0.35 0.376 0.4
Volume fraction of each cell in Figure 8b 0.325 0.325 0.325 0.325 0.325 0.325 0.325

For the convenience of simulated analysis, two design results are tiled into 11 columns, and modelled
with 1 mm thickness. For comparison, three different loading and boundary conditions are investigated,
as shown in Figure 9. The magnitude of all the forces in the examples is set to be F = 50 N. Figure 10
shows the structure deformation within the two types of designs under the cantilever beam type
condition. The strain energy under different loading and boundary conditions is compared in Figure 11.
The improvement in structural stiffness of the FGM design when compared to the design with a single
type CBS is also presented in Table 4. The results clearly indicate that, under three common boundary
conditions, the FGM design always performs better than the design with a single type CBS. It implies
that the gradient structure can improve the mechanical performance. It is worth nothing that in some
particular loading cases, the total deformation of FGM designs might be worse than that of the designs
with uniform structures. In this case, the FGM design should be achieved by considering the coupling
between macro and micro scales. However, this is beyond the scope of this study.

(a)

NVAVAVAVAVARERVAVAVAVAYS

(b)

Ll

AVAVAVAVAVAVAVA

(©

Figure 9. Three different loading and boundary conditions: (a) cantilever beam; (b) half MBB beam;
(c) Loading on top.
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o

(b)
Figure 10. Structural deformation under the cantilever beam type condition: (a) FGM design; (b) design
with single type CBS.
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Table 4. The improvement on structural stiffness of the FGM design comparing to the design with

single type CBS.
Loading Condition Cantilever Beam MBB Beam Loading on Top
Performance improvement (%) 10.6 15.8 21

4.3. FGM with Maximum Shear Modulus CBS

In this example, CBS with extreme performance of maximum shear modulus is adopted for the
design of FGM. Identically, the transitional connection method is used for the smooth connection of
the microstructural boundary. The gradient of volume fraction is varying from 0.25 to 0.4. Each single
cell is discretized by 20 X 20 four-node quadrilateral elements, and the material properties are selected
as E = 910 MPa and v = 0.3. Similarly, for comparison, the conventional porous structure with single
type CBS is devised with the same total volume fraction. Two design results are shown in Figure 12,
and the volume fraction of each CBS or TCS is shown in Table 5.

(a)

(b)

Figure 12. Two different porous structures with the maximum shear modulus: (a) FGM design;
(b) design with single type CBS.

Table 5. Volume fraction of cellular structure in Figure 12 (from left to right).

Cell Number CBS1 TCS1 CBS2 TCS2 CBS3 TCS3 CBS4
Volume fraction of each cell in Figure 12a 0.25 0.274 0.3 0.325 0.35 0.376 0.4

Volume fraction of each cell in Figure 12b 0.325 0.325 0.325 0.325 0.325 0.325 0.325

In the simulation analysis, the FGM is tiled into 11 columns, and modelled with 1 mm thickness.
Similarly, three common boundary conditions given in Figure 9 are considered. The magnitude of
all the forces in the examples is set to be 50 N, and the material properties in the simulation process
are exactly the same as those in the optimization process. Figure 13 shows the structure deformation
within the two designs under the same loading case of the cantilever beam type. The strain energy
under different loading and boundary conditions is compared in Figure 14. The improvement in
structural stiffness of the FGM design when compared to the design with a single type CBS is also
presented in Table 6. It can be seen from the numerical results that, with the transitional connection,
the FGM with maximum shear modulus CBS also shows a greater stiffness under the three different
loading and boundary conditions.

Table 6. The improvement on structural stiffness of the FGM design comparing to the design with
single type CBS.

Loading Condition Cantilever Beam  MBB Beam Loading on Top

Performance improvement (%) 8.8% 13.9% 25%
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Figure 13. Structural deformation under the cantilever beam type condition: (a) FGM design; (b) design

with single type CBS.

B gradient structure with transitional connection

900
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Figure 14. Strain energy comparison for two designs under different loading and boundary conditions.

4.4. FGM with Hybrid CBS

The rapid development of additive manufacturing promotes the design of complex structures.
Another form of functionally gradient materials is the variation in the type of CBSs. For different
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type of CBSs, the discrepancy in both the shape and topology is even more obvious. As a result,
the boundary mismatches are more prominent. What is worse, there are cases that two adjacent cellular
structures are too different in their configurations to be able to connect. Fortunately, the proposed
method can also be used to solve the smooth connection between different types of cellular structures.

Here, two different design methods are compared: one is to directly assemble the two types of
cellular structures, the other is to use the proposed connection method to realize the smooth connection
between the two types of cellular structures. In particular, two types of CBSs are optimized, i.e., the CBS
with maximum bulk modulus and the CBS with maximum shear modulus. The volume fraction of
every CBS is chosen as 0.35. Two FGM designs that are consisting of two different types of CBSs are
shown in Figure 15. The constructed transitional cellular structure in Figure 15b shows the geometric
features of both the two CBSs, which clearly illustrates the process of transition from one type of CBS
to another type of CBS. It is obvious that the FGM in Figure 15b has a smooth boundary between two
different types of CBSs. Thus, it can greatly facilitate the manufacturing process and a decrease in
stress concentration is expected.

maximum bulk
modulus CBS

0 20% %0 %0 %0 % %%
7020 %20 % %0 % %%
K S

maximum shear
modulus CBS

| maximum bulk
modulus CBS

Transitional
cellular structure

/\/\/\ /\/\

XK .0\ .,0 .0 .0 .0 .0 .0 .0

O .\0 & .\0 .0,.>0,.\0 MO
KKK

(b)

Figure 15. Designs with two connection methods: (a) FGM with mismatched interfaces by directly connecting
the two types of CBSs; (b) FGM with smooth interfaces by using the transitional connection method.

| maximum shear
modulus CBS
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5. Numerical Examples in 3D Case

To demonstrate the proposed method for the design of 3D FGM, this example gives several 3D
FGM with a volume fraction gradient. The 3D CBSs are optimized with maximum bulk modulus and
maximum shear modulus. Each of the cellular structure is discretized with 20 x 20 X 20 eight-node
cubic elements. The Young’s modulus and Poisson’s ratio of the solid material in the optimization
are selected as E = 10,000 MPa and v = 0.3. The Young’s modulus and Poisson’s ratio for the void
part in the optimization are Eyq = 0.001 MPa and vy,iqg = 0.3. In the same way, the 3D transitional
cellular structures are constructed using the proposed method. The 3D FGM with two different extreme
performances CBS are shown in Figure 16, and the volume fraction of each CBS or TCS are shown
in Table 7. The design results show that the boundaries between different cellular structures can
be connected smoothly. From the connection modality, it clearly demonstrates that the proposed
transitional connection method also applies to the 3D case.

(b)
Figure 16. Two kinds of 3D FGM by using the proposed transitional connection method: (a) 3D FGM

with maximum bulk modulus CBSs; (b) 3D FGM with maximum shear modulus CBSs.

Table 7. Volume fraction of each cellular structure in Figure 16 (from left to right).

Cell Number CBS1 TCS1 CBS 2 TCS 2 CBS 3
Volume fraction of each cell in Figure 16a 0.325 0.337 0.35 0.363 0.375
Volume fraction of each cell in Figure 16b 0.325 0.337 0.35 0.362 0.375

For comparison, the porous structure with a single type 3D maximum shear modulus CBS is also
devised. The volume fraction of every single CBS is selected as 0.35, which ensures the total volume
fraction of the design is exactly the same as that of the FGM design in Figure 16b. The optimized porous
structure with a single type 3D maximum shear modulus CBS is shown in Figure 17. The comparative
analysis of the mechanical properties is implemented in ANSYS Workbench. The two designs are
arrayed in a 5 X 5 structure. The loading and boundary conditions are presented in Figure 18, and the
magnitude of the force is set to be 10 kN. Figure 19 displays the structural deformation within the two
types of structures under the same loading and boundary conditions. Identically, the strain energy is
chosen as a reference to evaluate the structural stiffness. The strain energy for different designs is given
in the Table 8. The simulation results showed that the FGM design can perform better than the design
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with a single type of CBS in the 3D scenario. It implies that the gradient structure can also improve the
mechanical performance in the 3D case. Particularly, in this study, the volume fraction is selected as
the key parameter to induce the gradient property. The TCS can ensure a precise control on its volume
fraction, which is highly related to its structural stiffness. However, the proposed approach relies
uniquely on pure geometrical considerations, and it is restricted to the design of the layer-wise cellular
FGMs. Although we use the strain energy to evaluate the performance of the FGMs, the proposed
method does not consider the strong coupling on the macro and micro scales. A future extension of
this approach will be the solution of multiscale design for the FGMs with C! connection.

Figure 17. Porous structure with single type 3D maximum shear modulus CBS.

F

——
—
——
——
—

AWAWAYA

Figure 18. Loading and boundary conditions for the 3D porous structure.
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Figure 19. Cont.
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A: Static Structural
Total Deformation
Type: Total Deformation
Uniit: mm

Time: 1

0.10997 Max
0097755
0.085536
0073316
0.061097
0.048878
0.036658
0.024439
0012219

0 Min

(b)

Figure 19. Structural deformation under the considered loading and boundary conditions: (a) FGM
design; (b) design with single type CBS.

Table 8. Strain energy for the 3D cases.

Type of Design FGM Design with Single Type CBS
Strain energy(m]) 449 468

In addition, the proposed transitional connection method is also applied to the design of 3D FGM
with different types of CBSs. In this example, two types of CBSs are considered, including the CBS with
maximum bulk modulus and the CBS with maximum shear modulus. The final design is presented in
Figure 20. To make the structure joints more visible, the configuration of transitional cellular structure
is exhibited in Figure 21 with different views. On both sides of the transitional cellular structure,
its surface shape is the same with that of the connected cellular structures, so the geometry of different
cells can fit perfectly. Figure 22 shows a sectional view. It can be seen that the transitional cellular
structure has the geometric features of both CBSs. Therefore, even in the 3D cases, the transitional
connection method can be used to tackle the different types of CBSs, so as to guarantee a smooth
interface between adjacent cells in the cellular FGMs.

maximum shear
modulus CBS

Transitional
cellular structure

maximum bulk
modulus CBS

Figure 20. 3D FGM with smooth interfaces by using the transitional connection method.
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(b)

Figure 21. Different perspectives of the 3D transitional cellular structure: (a) perspective 1, top surface
connects perfectly with the maximum shear modulus CBS; (b) perspective 2, top surface connects
perfectly with the maximum bulk modulus CBS.

Figure 22. Sectional view of the connection between different cells.
6. Conclusions

This paper proposes a transitional connection method for the optimization design of FGMs. Based
on the parametric level set method, the configuration of every cellular based cell is represented by
a specific level set function. For every two gradient base cells in a FGM, a special transitional cell is
constructed using the two level set functions of two candidate base cells. Since the transitional cell has
the geometric features of two gradient base cells, the shape of the transitional cell fits perfectly with
its connected gradient cells on both sides. Thus, the FGM design can have smooth connectivity with
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C! continuity. In particular, the interpolation of the transitional cell independent of the optimization
avoids added computing time.

To validate the proposed method for devising the FGMs, several 2D and 3D examples are provided.
In addition, a series of comparative simulation analyses are carried out. Firstly, a number of FGM
designs obtained by using the proposed connection method exhibit smooth interfaces between different
layers. Secondly, simulation results demonstrate the advantages of the proposed method over the
direct connection method to alleviate the stress concentration in the design. Thirdly, compared to
the conventional porous structure with single type CBS, when the structural strain energy is taken
as a reference, the devised gradient structure can exhibit better structural stiffness. Finally, for the
FGM with different types of CBSs, the proposed method can be effectively used to solve the boundary
mismatches. The optimization design process and the comparative simulation analysis indicate the
easiness and effectiveness of the proposed method. Note that the proposed method is developed
under the assumption that the material microstructures are with the plane symmetry. The more
general elastic symmetries (e.g., tetragonal or monoclinic symmetries) are also quite important and
worth a comprehensive investigation. In that case, the approach based on tensor invariants can be
adopted [55,56]. The consideration of general elastic symmetries can be a future extension of the
proposed method.
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