Supporting Information

Dual Functional Composite of Montmorilloniterich/Chitosan (MCC) for Decolorizing the Water Used in Joss Paper Process: Thermodynamic, Isotherm, and Kinetic Studies

Witsarut Muangrak ¹, Nutthavich Thouchprasitchai ¹, Yuththaphan Phongboonchoo ^{1,2} and Sangobtip Pongstabodee ^{1,2,*}

- ¹ Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand; casionalz@hotmail.com (W.M.); nutthavich.t@gmail.com (N.T.)
- ² Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Soi Chula 12, Phayathai Rd., Pathumwan, Bangkok 10330, Thailand; yuththaphan.p@gmail.com (Y.P.)
- * Correspondence: sangobtip.p@chula.ac.th; Tel.: +66-2-218-7676; Fax: +66-2-255-5831

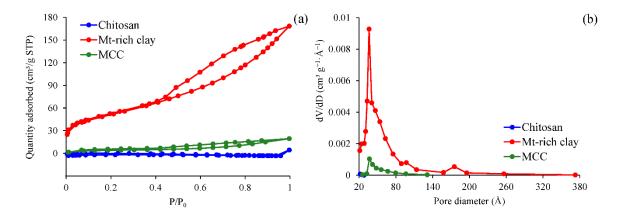
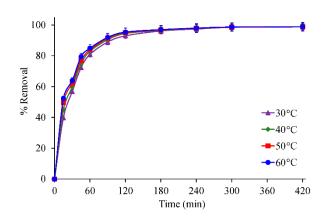
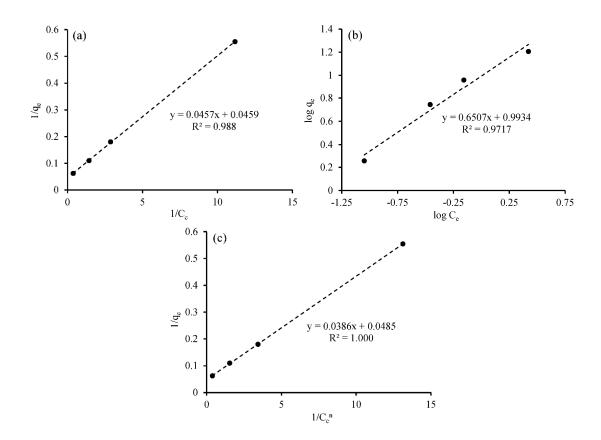




Figure S1. (a) N_2 adsorption/desorption isotherms and (b) pore size distribution of the adsorbents.

Figure S2. The effect of the temperature on the dye removal with time (dosage level of 0.6 g, initial dye concentration of 100 mg L⁻¹ and pH 5.5).

Figure S3. Adsorption isotherms on the MCC :(a) Langmuir model; (b) Freundlich model and (c) Koble–Corrigan model (dosage level of 0.6 g, pH 5.5 and adsorption temperature of 30 °C).

Adsorbent type	Dyes	Adsorption conditions		Regeneration	Adsorption	Reference	
		pН	T (°C)	Cycles	method	capacity	
						(mg g ⁻¹)	
CSA	Acid Black-172	3	25	5	NaOH/HCl	350.0	[1]
3D GO/HCS	Reactive Black-5	7	30	5	NaOH/HCl	296.7	[2]
benzodiimidazole	Methyl Orange	3	25	5	NaBr	256.0	[3]
COF							
Eggshell/ <i>Plantago</i>	Methyl Orange	3	30	4	Reuse	3.25 ¹	[4]
psyllium bio-					without		
composite					washing		
Sn(II)-BDC MOF	Congo Red	6	25	3	NaOH	95.2	[5]
MCC	Reactive Red-120	5.5	30	8	Reuse	1,330 1	This work
					without		
					washing		

Table S1. Comparison with other relevant adsorbents.

¹ accumulated adsorption capacity since the adsorbent was reused without regeneration process.

References

- 1. Zhao, X.; Wang, X.; Lou T. Preparation of fibrous chitosan/sodium alginate composite foams for the adsorption of cationic and anionic dyes. *J. Hazard. Mater.* **2021**, *403*, 124054.
- 2. Lai, K.C., Lee, L.Y., Hiew, B.Y.Z., Yang, T.C.-K., Pan, G.-T., Thangalazhy-Gopakumar S.; Gan, S. Utilisation of eco-friendly and low cost 3D graphene-based composite for treatment of aqueous Reactive Black 5 dye: Characterisation, adsorption mechanism and recyclability studies. *J. Taiwan Inst. Chem. Eng.* **2020**.
- 3. Xu, S.-X.; Yao, Z.-Q.; Zhang, Y.-H. A covalent organic framework exhibiting amphiphilic selective adsorption toward ionic organic dyes tuned by pH value. *Eur. Polym. J.* **2020**, *133*, 109764.
- 4. Mirzaei, S.; Javanbakht, V. Dye removal from aqueous solution by a novel dual cross-linked biocomposite obtained from mucilage of Plantago Psyllium and eggshell membrane. *Int. J. Biol. Macromol.* **2019**, *134*, 1187–1204.
- 5. Ghosh, A.; Das, G. Green synthesis of Sn(II)-BDC MOF: Preferential and efficient adsorption of anionic dyes. Micropor. Mesopor. Mater. **2020**, *297*, 110039.