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Featured Application: Essential technology for practical machine-reading and
comprehension systems.

Abstract: Recently, the performance of machine-reading and comprehension (MRC) systems has
been significantly enhanced. However, MRC systems require high-performance text retrieval models
because text passages containing answer phrases should be prepared in advance. To improve the
performance of text retrieval models underlying MRC systems, we propose a re-ranking model,
based on artificial neural networks, that is composed of a query encoder, a passage encoder, a phrase
modeling layer, an attention layer, and a similarity network. The proposed model learns degrees
of associations between queries and text passages through dot products between phrases that
constitute questions and passages. In experiments with the MS-MARCO dataset, the proposed model
demonstrated higher mean reciprocal ranks (MRRs), 0.8%p–13.2%p, than most of the previous models,
except for the models based on BERT (a pre-trained language model). Although the proposed model
demonstrated lower MRRs than the BERT-based models, it was approximately 8 times lighter and
3.7 times faster than the BERT-based models.

Keywords: passage re-ranking; passage retrieval; machine-reading comprehension

1. Introduction

Machine-reading and comprehension (MRC) is a question answering task in which computers
are required to understand contexts based on passages and answer related questions. With the rapid
evolution of deep neural network techniques, the performance of MRC models has been substantially
enhanced [1–3]. However, conventional MRC models have deficiencies in that text passages relevant
to user queries (i.e., text passages containing phrases answering user queries) should be prepared in
advance. Figure 1 illustrates an example in which an MRC model returns different answers according
to given passages.
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To overcome this problem, open-domain MRC models based on information retrieval (IR) have 
been proposed [4,5]. These models conventionally follow a two-stage process: passage retrieval based 
on an IR model and answer extraction based on an MRC model, as illustrated in Figure 2. 
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In several cases, the performance of IR-based MRC models depends on those of underlying IR 
models that employ term frequency and inversed document frequency (TF-IDF) rankings. As 
illustrated in Figure 1, when the relevant passage (i.e., the upper document) is given, the MRC model 
returns the correct answer “April 1975”, but when the irrelevant passage (i.e., the lower document) 
is given, it returns the incorrect answer “2010”. Although recent IR models have demonstrated 
superior performances, the highly ranked documents often do not contain answers to the relevant 
questions. This leads to a decrease in answer recall in open-domain MRC. Therefore, certain models 
have been proposed for enhancing IR performance [6]. Similar to Lee et al. [6], we propose an artificial 
neural network (ANN) model that re-ranks retrieved documents to improve answer recall in MRC 
(i.e., for ensuring that documents containing answers are ranked high). The proposed model 
complements the underlying IR model by learning degrees of associations (i.e., possibilities for the 
documents to contain answer phrases) between queries and documents through a deep neural 
network. 

The remainder of this paper is organized as follows. In Section 2, we briefly review earlier re-
ranking models. In Section 3, we describe our model. In Section 4, we explain our experimental setup 
and report some of our experimental results. In Section 5, we provide the conclusions of our study. 
  

Figure 1. Different answers of a machine-reading and comprehension (MRC) system according to
given passages.

To overcome this problem, open-domain MRC models based on information retrieval (IR) have
been proposed [4,5]. These models conventionally follow a two-stage process: passage retrieval based
on an IR model and answer extraction based on an MRC model, as illustrated in Figure 2.
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Figure 2. Two-stage process of open-domain MRC.

In several cases, the performance of IR-based MRC models depends on those of underlying IR
models that employ term frequency and inversed document frequency (TF-IDF) rankings. As illustrated
in Figure 1, when the relevant passage (i.e., the upper document) is given, the MRC model returns the
correct answer “April 1975”, but when the irrelevant passage (i.e., the lower document) is given, it returns
the incorrect answer “2010”. Although recent IR models have demonstrated superior performances,
the highly ranked documents often do not contain answers to the relevant questions. This leads to a
decrease in answer recall in open-domain MRC. Therefore, certain models have been proposed for
enhancing IR performance [6]. Similar to Lee et al. [6], we propose an artificial neural network (ANN)
model that re-ranks retrieved documents to improve answer recall in MRC (i.e., for ensuring that
documents containing answers are ranked high). The proposed model complements the underlying
IR model by learning degrees of associations (i.e., possibilities for the documents to contain answer
phrases) between queries and documents through a deep neural network.

The remainder of this paper is organized as follows. In Section 2, we briefly review earlier
re-ranking models. In Section 3, we describe our model. In Section 4, we explain our experimental
setup and report some of our experimental results. In Section 5, we provide the conclusions of
our study.
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2. Previous Studies

The earlier IR models that employ TF-IDF rankings do not consider semantic information such as
homonyms properly because it depends on token-matching methods. To resolve this problem, some IR
models based on ANNs have been proposed. Xiong et al. [7] proposed a ranking model called KNRM
(Kernel based Neural Ranking Model). It generates a translation matrix that uses similarities between
queries and documents. In addition, KNRM used a kernel pooling method to effectively summarize
the translation matrix and to generate scores for ranking learning. Guo et al. [8] proposed a ranking
model termed DRMM that was based on cosine similarities between query vectors and document
vectors in a latent vector space generated by a multilayer perceptron (MLP). DRMM demonstrated
superior performance in certain retrieval tasks. However, Dai et al. [9] pointed out that DRMM
returns inconsistent similarities based on the lengths of the query and document vectors. To resolve
this issue, Dai et al. proposed a cross-mapping function based on a convolutional neural network
(CNN) with kernel pooling [7] that always returns fixed lengths of query vectors and document
vectors. To overcome the limitation that several ANN models cannot properly reflect term frequency
and document frequency, Mitra et al. [10] proposed a joint model in which a local model based on
conventional term frequencies and a distributed model based on the distributed representation of words
are co-trained. Alaparthi et al. [11] proposed a ranking model that was based on the bi-LSTM with a
co-attention mechanism between a query and a document. In addition to co-attention, we also used
self-attention mechanism on various word embeddings (e.g., word2vec [12], GloVe [13], fastText [14]).

3. Re-Ranking Model Based on Artificial Neural Network

Figure 3 illustrates the overall architecture of the proposed re-ranking model. As depicted,
the proposed model consists of five parts: query encoder, passage encoder, phrase modeling layer,
attention layer, and similarity network. In this paper, the term “passage” refers to an indexing unit
that is typically referred to as a document in IR.
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The input units of the query and passage encoders are words, and each word is represented by a
concatenation of four types of embeddings, as depicted in Figure 4.
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In Figure 4, wi is the ith word in a query or a passage and Eg(wi) is a pre-trained k-dimensional
GloVe embedding [13] of wi. Thus, Ep(wi) is an l-dimensional position embedding of wi that represents
a word position in the query or passage, and EIDF(wi) is an l-dimensional inversed document frequency
(IDF) embedding [15] that is set to a discrete value according to the score intervals of 0.05. Further,
Eop(wi) is an l-dimensional position embedding of an overlapped word in the other text between the
query and the passage. For example, when the query “I go to school” and the passage “We should
come back to school” are presented, Eop(w4) of the overlapping word “school” in the query is set
to 6, meaning that the overlapping word occurs in the 6th position in the passage (opponent text).
We empirically set the embedding sizes of Ep(wi), Eop(wi), and EIDF(wi) to all the same dimensions
because we cannot distinguish them in terms of the quantity of information. All embeddings except the
GloVe embedding are randomly initialized and fine-tuned during training. To simplify the equations,
we rewrite E(wi) for the ith input unit in a query and a passage as qi and pi, respectively.

The query and passage encoders convert the query vector Q = (q1, q2, . . . , qn) with n word
vectors and the passage vector P = (p1, p2, . . . , pm) with m word vectors into the encoded vectors,
↔

Q and
↔

P , respectively, which embed contextual information using bidirectional gated recurrent units
(biGRUs) [16], as represented by Equation (1):
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In Equation (1),
[
→

h i,
←

h i

]
is the concatenation of a forward hidden state

→

h i and a backward hidden

state
←

h i. The weights in the query encoder and passage encoder are not shared. Thus, the encoded-word
vectors (outputs of the query encoder and the passage encoder) are input to the phrase-modeling layer.

The phrase-modeling layer generates phrase-level features based on word n-grams (from word
unigram to word trigram) using CNNs [17]. The CNNs used in the phrase modeling layer do not have
any pooling layers, unlike conventional CNNs, as depicted in Figure 5.
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attention pooling layer. In the P–Q attention layer, the proposed model calculates the degrees of
associations between the n-gram phrases in a query and those in a passage. The P–Q attention vector of
an n-gram phrase vector, Pn

att, is calculated using the scaled dot product [18] expressed in Equation (2):
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In Equation (3), wn and bn denote a weight matrix and bias vector, respectively. Therefore, gq
n and

gp
n are generated by feed-forward neural networks (FNNs). Then, × denotes a cross product between

two vectors. The normalized attention vectors Q̃n and P̃n for the n-gram phrase vectors are input to
the similarity network.
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To calculate the similarity between the normalized attention vector P̃n and the normalized query
vector Q̃n, we adopt the similarity vector representation proposed in a report on sentence embedding
by Conneau et al. [20], as expressed in Equation (4):

sim
(
Q̃n, P̃n

)
=

[
Q̃n, P̃n,

∣∣∣∣Q̃n − P̃n

∣∣∣∣, Q̃n × P̃n

]
(4)

In Equation (4),
[
Q̃, P̃, . . .

]
and × denote the concatenation of vectors and a cross product,

respectively. The final logit function for the similarity calculation between a query and a passage is
expressed in Equation (5):

simlogit

(
Q̃, P̃

)
= w·

[
sim

(
Q̃1, P̃1

)
, sim

(
Q̃2, P̃2

)
, sim

(
Q̃3, P̃3

)]
+ b. (5)

In Equation (5),
[
sim

(
Q̃1, P̃1

)
, . . .

]
denotes the concatenation of n-gram similarity vectors. Thus,

w and b denote a weight matrix and bias vector, respectively, to represent similarity distributions
through an FNN. Finally, the model is trained using cross-entropy loss, as expressed in Equation (6):

loss = −
∑

i

yi log
(
softmax

(
simi

logit

))
(6)

4. Evaluation

4.1. Datasets and Experimental Settings

We trained and evaluated our model on the Microsoft Machine-Reading Comprehension
(MS-MARCO) dataset [21]. The training set contains approximately 400 M tuples of queries and relevant
and non-relevant passages. The development set contains approximately 6900 queries, each paired
with the top 1000 passages retrieved with BM25 [22] from the MS-MARCO dataset. On average,
each query has one relevant passage. We trained the model via negative sampling using the ratio of 1:5
for the 1000 passages corresponding to each query. To implement the proposed model, we adopted the
pre-trained GloVe algorithm. The vocabulary size of GloVe was 300. We set the hidden size of the GRU
neural network to 200. The model optimization was performed with Adam [23] at a learning rate of
0.0001, and the learning rate was halved if the validation performance did not improve. The dropout
rate was set to 0.2, and the mini-batch size was set to 256 sequences.

We used mean reciprocal rank at 10 (MRR@10) [24], which represents the MRR score of documents
ranked in the top 10 because it is essential for relevant documents to be highly ranked for MRC models,
as expressed in Equation (7):

MRR@10 =
1
n

∑10

i=1

1
ri

(7)

In Equation (7), ri is the rank of the first passage containing a correct answer produced by the ith
query and n is the number of queries.

4.2. Experimental Results

The first experiment was conducted to evaluate the effectiveness of the additional input
embeddings (i.e., position embedding, overlapped position embedding, and IDF embedding) and the
phrase modeling layer by comparing the changes in performance, as presented in Table 1.
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Table 1. Performance changes in development set.

Model MRR@10

Proposed model 0.303
w/o additional input embeddings 0.223

w/o phrase modeling layer 0.295

In Table 1, “w/o additional input embeddings” refers to a modified model in which only word
embeddings are used as input units. Therefore, “w/o phrase modeling layer” means a modification of
our model in which the phrase modeling layer is excluded. As presented in Table 1, the additional
input embeddings and phrase modeling layer contribute to the improvement of MRR@10 by 8%p and
0.8%p, respectively. In addition, to check whether the word n-gram features can effectively contain
phrase information or not, we visualized the degrees of associations between the n-gram phrases in a
query and those in a passage (i.e., P–Q attention scores in Equation (2)) through 2-dimensional heat
maps, as shown in Figure 6.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 10 
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Figure 6. Heat map for visualizing the degrees of associations between a query and a passage.

In Figure 6, the n-gram phrases with higher attention scores were colored in bluer. As illustrated
in Figure 6, the uni-gram features were colored in bluer between single words or short phrases, and the
tri-gram features were colored in bluer between long phrases. It reveals that each n-gram feature
differently contributes to capturing associations between a query and a passage.

The second experiment was conducted to compare the proposed model with the earlier models,
as presented in Table 2.

Table 2. Performance comparison.

Model
MRR@10

Development Set Test Set

BM25 [22] 0.167 0.167
KNRM [7] 0.218 0.218

Duet v2 [10] (official baseline) 0.243 0.245
Duet v2 [10] (ensembled) 0.252 0.252

Conv-KNRM [9] 0.247 0.247
Conv-KNRM [9] (ensembled) 0.271 0.290

Alaparthi et al., 2019 [11] 0.298 0.291
Proposed model 0.303 0.299

BERT-Base [25] 0.347 0.347
BERT-Large [25] 0.365 0.365

Referring to Table 2, BM25 is a traditional retrieval model termed Okapi BM25, and Duet
v2 is a joint ANN model comprising a local model based on term frequencies and a distributed
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model based on word vectors. Conv-KNRM is an ANN model in which queries and documents are
encoded using CNNs. Alaparthi et al. [11] refer to a bidirectional long short-term memory network
model with a co-attention mechanism between query and passage representations. BERT-Base and
BERT-Large are fine-tuned classification models based on the base and large models of BERT [25],
which is a pre-trained language model with state-of-the-art performance in several downstream natural
language processing tasks such as span prediction, sequence labeling, and text classification [26].
As presented in Table 2, the proposed model outperformed all the previous models except the
BERT-based models (The proposed model named “n-gram co-attention” can be found in the official
rankings: https://microsoft.github.io/msmarco/). Table 3 presents the memory usages and the response
times of the proposed and BERT-based models.

Table 3. Comparison of memory usage.

Model Memory Usage (MB) Training Parameters (MB) Response Time
(ms)

BERT-Base [25] 1289 110 1100
Proposed model 161 3.5 300

In Table 3, the response time is the average time per query that is spent to rank the top
1000 passages retrieved with BM25 [22]. In order to re-rank the passages retrieved against 6900 queries
in the development set, BERT-Base spent approximately 2.108 h, but the proposed model spent
approximately 0.575 h. As presented in Table 3, although the proposed model demonstrated lower
performance than the BERT models, it demonstrated significantly less memory usage (about 8.0 times
less) and faster response time (about 3.7 times faster) than the latter. The ratio between the response
times, 300/1100 ≈ 0.27, is bigger than the ratio between the sizes of parameters, 3.5/110 ≈ 0.03. It is
caused by the difference of neural network frameworks: the recurrent neural network framework used
for the proposed model should sequentially process input words, but the transformer framework used
for BERT-Base can process all input words in parallel. Based on these experimental results, we conclude
that the proposed model may be more suitable for practical open-domain MRC systems that should
respond to multiple substantial user queries simultaneously.

5. Conclusions

We proposed an ANN-based model to re-rank documents retrieved using a conventional IR
model, BM25, to improve the performance of MRC models. The proposed model was composed of five
subnetworks: query encoder, passage encoder, phrase modeling layer, attention layer, and similarity
network. By calculating the mutual information of the phrase unit for queries and passages, the passage
scores for queries were effectively reflected. In the experiments with the MS-MARCO dataset,
the proposed model demonstrated better MRRs, 0.8%p–13.2%p, than the previous models, except for
the BERT-based models. Although the proposed model demonstrated lower MRRs than the BERT-based
models, it demonstrated significantly more efficient (approximately 8 times less memory usage and
approximately 3.7 times faster response time) than the latter in terms of memory usage and response
time. We conclude that these efficiencies are very important engineering factors in the development of
a practical MRC system for massive concurrent users.
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