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Abstract: Recently, micro-perforated panels (MPP) have become a popular sound absorbing material
in the field of architectural acoustics. However, the cost of MPP is still high for the commercial market
in Taiwan, and MPP is still not very popular compared to other sound absorbing materials and devices.
The objective of this study is to develop a prediction model for MEMM via a machine learning
approach. An experiment including 14 types of MEMM was first carried out in a reverberation room
based on ISO 354. To predict the sound absorption coefficient of the MEMM, the capability of three
conventional models and three machine learning (ML) models of the supervised learning method were
studied for the development of the prediction model. The results showed that in most conventional
models, the sound absorption coefficient of using an equivalent perimeter had the best agreement
compared with other parameters, and the root mean square error (RMSE) between prediction models
and experimental data were around 0.2~0.3. However, the RMSE of all ML models was less than 0.1,
and the RMSE of the gradient boost model was 0.033 in the training sets and 0.062 in the testing sets,
which showed the best agreement with the experiment data.

Keywords: building acoustics; sound absorption coefficient; prediction models; supervised
learning method

1. Introduction

The micro-perforated panel (MPP) has recently become a popular sound absorber in the field
of noise control and building acoustics. The attractive appearance, durability, and environmental
friendliness of MPP relative to the conventional porous absorbing materials made from minerals
and synthetics, which present problems of indoor air quality [1]. However, the cost of MPP is still
high for the commercial market in Taiwan, so MPP is not yet popular in public buildings like public
transportation stations because the costs are prohibitive to the government. In this study, we developed
a micro-expanded metal mesh (MEMM) absorber with a lower cost and high sound-absorbing quality.

Many studies have proposed prediction models for perforated panels and MPPs, but most of them
have assumed that the shape of the perforations are circular [1–4]. However, the MEMM expanding
process makes the holes on both sides uneven (Figure 1). Therefore, before using these theoretical
models to predict the absorption coefficient of MEMM, we have to make assumptions regarding
transforming the geometric conditions of the perforation.
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prediction models, including image and speech recognition [5,6], market analysis [7], etc. In the ML 
approach, a prediction model can be trained with input data to achieve a goal without solving 
theoretic equations. In the field of building acoustics, ML has been adopted to predict the 
reverberation time (RT) of the auditorium, thus demonstrating that using neural networks has a 
higher correlation coefficient (R2) than traditional prediction formulas, such as Sabine and Eyring [8]. 
Falcon Perez [9] developed the prediction model of indoor acoustic parameters in a single room; 
compared with the Sabine formula, the neural network had a higher mean accuracy in predicting RT. 
In addition, using the speech recognition method to predict RT also provided accurate prediction 
results [10]. Most of such ML models have achieved higher accuracy than conventional models. 

The objective of this study is to develop a MEMM absorber with a lower cost that provides high 
sound-absorbing quality and propose a prediction model via the machine learning approach. 
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Figure 1. Picture of the MEMM: (a) Small side; (b) Large side. 

2. Materials and Methods 

An experiment including 14 types of MEMM was first carried out in a reverberation room based 
on ISO 354. To predict the sound absorption coefficient of the MEMM, the capability of three 
conventional models and three machine learning models of supervised learning method were 
studied for the development of the prediction model. 

With regard to practical use, the conventional model and the machine learning model need to 
input different variables (Table 1). Since we can determine the input variables of machine learning, 
the four variables used in this study are all simple geometric conditions that can be easily obtained. 
In contrast, the conventional model needs to use the microphotograph of the MEMM to convert the 
orifice diameter. 

Table 1. Input variables of prediction models (O: necessary; X: unnecessary). 

 Conventional Models Machine Learning Models 
Panel thickness O O 
Airspace depth O O 
Perforation ratio O X 
Orifice diameter O X 
Coefficient of viscosity of air O X 
Density of air O X 
Velocity of air O X 
Horizontal center distance of the hole X O 
Vertical center distance of the hole X O 
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Figure 1. Picture of the MEMM: (a) Small side; (b) Large side.

Furthermore, machine learning (ML) can solve specific problems or perform certain tasks through
relevant information and experience and has been widely used in various studies of prediction models,
including image and speech recognition [5,6], market analysis [7], etc. In the ML approach, a prediction
model can be trained with input data to achieve a goal without solving theoretic equations. In the field
of building acoustics, ML has been adopted to predict the reverberation time (RT) of the auditorium,
thus demonstrating that using neural networks has a higher correlation coefficient (R2) than traditional
prediction formulas, such as Sabine and Eyring [8]. Falcon Perez [9] developed the prediction model of
indoor acoustic parameters in a single room; compared with the Sabine formula, the neural network
had a higher mean accuracy in predicting RT. In addition, using the speech recognition method to
predict RT also provided accurate prediction results [10]. Most of such ML models have achieved
higher accuracy than conventional models.

The objective of this study is to develop a MEMM absorber with a lower cost that provides high
sound-absorbing quality and propose a prediction model via the machine learning approach.

2. Materials and Methods

An experiment including 14 types of MEMM was first carried out in a reverberation room
based on ISO 354. To predict the sound absorption coefficient of the MEMM, the capability of three
conventional models and three machine learning models of supervised learning method were studied
for the development of the prediction model.

With regard to practical use, the conventional model and the machine learning model need to
input different variables (Table 1). Since we can determine the input variables of machine learning,
the four variables used in this study are all simple geometric conditions that can be easily obtained.
In contrast, the conventional model needs to use the microphotograph of the MEMM to convert
the orifice diameter.

Table 1. Input variables of prediction models (O: necessary; X: unnecessary).

Conventional Models Machine Learning Models

Panel thickness O O
Airspace depth O O
Perforation ratio O X
Orifice diameter O X
Coefficient of viscosity of air O X
Density of air O X
Velocity of air O X
Horizontal center distance of the hole X O
Vertical center distance of the hole X O
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2.1. Experiment

The sound absorption performance of the MEMM was measured in the reverberation room
of the architectural acoustics lab at National Cheng Kung University, Taiwan (Figures 2 and 3).
The volume of the reverberation room is 171.3 m3, the surface area is 184.3 m2, and the floor area is
32.8 m2. The laboratory uses a floating structure to reduce the outside interference of the experiment.
The experiment was based on ISO 354:2003 [11], and the rating of sound absorption was based on
ISO 11654 [12]. Measurements were analyzed in 1/3-octave bands with the center frequencies of
125~4000 Hz.
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The test specimen is composed of a MEMM and a closed air space layer, which together 
represent the structure of a common ceiling construction in Taiwan. The total area of the test 
specimen was 10.8 m2 (3 m × 3.6 m), and each unit was 600 mm × 600 mm, and the 18 mm thick lumber 
core plywood is used for edge sealing (Figure 4). In the experiment, five kinds of MEMM with 
different hole distances and panel thicknesses were utilized with different air space depths, as shown 
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The test specimen is composed of a MEMM and a closed air space layer, which together represent
the structure of a common ceiling construction in Taiwan. The total area of the test specimen was 10.8
m2 (3 m × 3.6 m), and each unit was 600 mm × 600 mm, and the 18 mm thick lumber core plywood is
used for edge sealing (Figure 4). In the experiment, five kinds of MEMM with different hole distances
and panel thicknesses were utilized with different air space depths, as shown in Table 2.
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perforations, so the parameters of the geometric conditions of the MEMM have to be transformed to 
fit the model. Therefore, we adapted the circle diameters and perforation ratio obtained via 
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The detailed information of perforation in the microphotograph was converted to obtain 
different diameters and perforation ratios. For example, when considering case E on the condition of 
the small side, the results are as follows: circle diameters = 0.198 mm and perforation ratio = 0.014 
obtained by equivalent area; circle diameters = 0.301 mm and perforation ratio = 0.033 obtained by 
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Figure 4. Specimen of MEMM absorber: (a) Structure of specimen; (b) Picture of specimen.

Table 2. Experiment cases.

Case
Number

Horizontal Center
Distance of the Hole (mm)

Vertical Center
Distance of the Hole (mm)

Thickness of
the Panel (mm) Air Space Depth (mm)

A1
1 2 0.5

210
A2 260
A3 460

B1
2 4 0.5

210
B2 260
B3 460

C1
1 2 0.6

210
C2 260
C3 460

D1
2 4 0.6

210
D2 260
D3 460

E1
1 2 0.8

200
E2 450

2.2. The Conventional Models

In this study, two prediction models for the perforated panel and one for MPP were adapted for
the prediction models of MEMM. Note that in these models, the assumptions of the holes are circular
perforations, so the parameters of the geometric conditions of the MEMM have to be transformed to fit
the model. Therefore, we adapted the circle diameters and perforation ratio obtained via equivalent
area, equivalent perimeter, and the circumcircle on different sides of the panel (Figure 5, Table 3).
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Table 3. Circle orifice diameter transforming method.

Transforming Method Diagram

Equivalent perimeter perimeter of the hole = L
2πr = L
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2.2.2. Lee & Kwon’s Model 

The detailed information of perforation in the microphotograph was converted to obtain different
diameters and perforation ratios. For example, when considering case E on the condition of the small
side, the results are as follows: circle diameters = 0.198 mm and perforation ratio = 0.014 obtained
by equivalent area; circle diameters = 0.301 mm and perforation ratio = 0.033 obtained by equivalent
perimeter; circle diameters = 0.482 mm and perforation ratio = 0.084 obtained by circumcircle.
Furthermore, the basic parameter settings used in these models, such as viscosity coefficient of air,
density of air, and velocity of air, were set at a temperature of 25 ◦C.

2.2.1. The Semi-Theoretical Model of a Perforated Panel

The semi-theoretical model of a perforated panel assumes that each hole in the perforated panel
and the air space layer behind it are considered Helmholtz resonances [2,13,14]. The panel thickness,
orifice diameter, and distance of each hole, perforation ratio, and air space depth are represented
in Equations (1)–(9).

Equations (1)–(3) show the acoustic impedance of hole Zh, acoustic resistance R, which is based
on the viscosity and heat conduction of the inner wall of the hole, and correction factor δ for the orifice
diameter. Equations (4) and (5) represent the characteristic impedance za and propagation constant γa

of air. Equations (6)–(8) obtain the transfer matrix of the air space layer, the transfer matrix with
the perforated panel, and the acoustic impedance Z of the entire sound absorber, respectively. Finally,
the sound absorption coefficient α can be obtained from Equation (9).

Zh = R + jωρ0
t + 2δd

S
, (1)

R � 4
0.83× 10−2

√
f

S
t + d

d
, (2)

δ = 0.4
(
1− 1.47σ1/2 + 0.47σ3/2

)
, (3)

za = ρ0c0 , (4)

γa = jk , (5)[
t11 t12

t21 t22

]
=

[
coshγD zsinhγD
1
z sinhγD coshγD

]
, (6)

[
T11 T12

T21 T22

]
=

[
1 Zh
0 1

][
t11 t12

t21 t22

]
, (7)
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Z =
T11

T21
, (8)

α = 1−
∣∣∣∣∣ Z− 1
Z + 1

∣∣∣∣∣2 , (9)

2.2.2. Lee & Kwon’s Model

For the prediction model of perforated panels, a transfer matrix method is used instead of
an equivalent circuit to calculate the effect of sound through the perforated panel and the air space
layer [3]. The calculation considered the panel thickness, orifice diameter, perforation ratio, and air
space depth.

In this model, the empirical formula of Rao and Munjal [15] was corrected via Equation (10)
to calculate the normalized acoustic impedance ξ of the perforated panel. Equations (11) and (12)
represent the transfer matrix of the perforated panel and the air space layer, respectively. The transfer
matrix of the whole sound absorber can be obtained by Equation (13). Equations (14) and (15) calculate
the reflection coefficient γ′ of sound and obtain the sound absorption coefficient α.

ξ =
[
7.337× 10−3 + j× 1.3× 2.2245× 10−5(1 + 51t)(1 + 204d) f

]
/σ , (10)[

P11 P12

P21 P22

]
=

[
1 ρ0c0ξ
0 1

]
, (11)

[
S11 S12

S21 S22

]
=

[
cos kD ( jρ0c0) sin kD

( j/ρ0c0) sin kD cos kD

]
, (12)

[T] = [P][S], (13)

γ′ =
T11 − ρ0c0T21

T11 + ρ0c0T21
, (14)

α =
4Re(1 + γ′/1− γ′)

[1 + Re(1 + γ′/1− γ′)]2 + [Im(1 + γ′/1− γ′)]2
, (15)

2.2.3. Maa’s Model for MPP

In Maa’s model, the perforation of MPP was limited to less than 1 mm in diameter and
1% in perforation ratio [4,16]. The panel thickness, orifice diameter, and distance of each hole,
the perforation ratio, and the air space depth are all taken into consideration in this model, as shown
in Equations (16)–(20).

Equation (16) calculates the acoustic impedance ZMPP of the MPP; the acoustic resistance r and
mass reactance ωm are calculated by Equations (17) and (18), respectively. Equation (19) shows
the perforation constant k′ for the holes of the MMP, and the sound absorption coefficient α can be
obtained using Equation (20) through the previously calculated sound resistance and reactance.

ZMPP = r + jωm (16)

r =
32ηt

σρ0c0d2 kr , kr =

[
1 +

k′2

32

]1/2

+

√
2

32
k′

d
t , (17)

ωm =
ωt
σc

km , km = 1 +
[
1 +

k′2

2

]−1/2

+ 0.85
d
t

, (18)

k′ = d
√
ωρ0/4η, (19)



Appl. Sci. 2020, 10, 7612 8 of 22

α =
4r

(1 + r)2 + (ωm− cot(ωD/c))2 , (20)

2.3. The Machine Learning Model

In the ML model, a supervised learning method was used to train and obtain the prediction
model in this study. In the supervised learning method, the MEMM characteristics of panel thickness,
hole-to-hole distance, and air space depth were defined as input objects, and the output value was
the sound absorption coefficient.

The sound absorption coefficient of each frequency band was predicted via the ML process,
and the results were then compared with the experiment data to verify the applicability.
The root-mean-square error (RMSE) value between the prediction models and experiment data
were used to evaluate applicability.

The following describes the basic process of ML. First, the data were sorted and divided into
training, validation, and testing sets. In this study, the proportion was 65% training and validation set
and 35% testing sets. Furthermore, the k-fold cross validation was used (with k = 5), so that the training
and validation set would be shuffled.

The second step involves selecting models and adjusting the parameters of the model. In this
study, we used three kinds of ensemble learning methods, including the gradient boosting (Gboost)
model, the average model, and the stacking model, to obtain the prediction model. The last two models
are the combination method of the Gboost model and the three linear models. The algorithms of
the linear model are shown in Table 4 [17]. Note that the advantage of the ensemble learning method is
that it combines multiple learners to produce more accurate results than individual learners [18].

Table 4. Algorithm of linear regression models.

Model Objective Function

Lasso min
w

1
2nsamples

||Xw− y||22 + α||w||1

Elastic net (ENet) min
w

1
2nsamples

||Xw− y||22 + αρ||w||1 +
α(1−ρ)

2 ||w||22

Kernel ridge (KRR)
combines Ridge regression with the kernel trick
Ridge: min

w
||Xw− y||22 + α||w||22

1. The Gboost model

The Gboost model is a combination of the gradient descending model and the boost model.
A boost model can generate a strong learner from an ensemble of weak learners, each of which can
barely do better than random guessing [19]. The process of the Gboost model is to build a model,
then increase the weight of data that is incorrectly predicted on this model to create a second model,
and repeat the same steps to obtain a better-performing model.

2. The average model

The average model constructs and trains different models, combines the models to reduce errors
and overfitting, and averages the output values of each model. In this study, the average model is
a combination of the above models (three linear models and Gboost), and the average value of the four
models was used as the final output value.

3. The stacking model

The problem that an averaging method may encounter is that not every model is good, and a bad
model will cause the averaged result to be worse. Therefore, the stacking model is an improvement of
the average model by assigning weight to the contribution of each model (in the average model, each
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model contributes the same amount). The specific method uses trainable combiners, which develop
a learner (another meta-model) in order to first combine the models. Doing so allows researchers
to determine which learners are likely to be successful in which part of the feature space and then
combine them accordingly [19]. The prediction results of the first-level model are used as the input
variables of the meta-model (Figure 6).Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 24 
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3. Results

3.1. The Conventional Model

The equivalent area, equivalent perimeter, and circumcircle of the holes are used to obtain the value
of the orifice diameter. Comparing the small and big sides, we found that using the geometric condition
of the small side was more accurate in any transform method; therefore, the following discussion
uses the results of the small side. The results of different transform methods are shown in Figure 7.
Furthermore, Figure 8 shows the results of different models with the equivalent perimeter condition.

The orifice diameter converted by equivalent perimeter shows that Maa’s formula had the best
agreement with the experiment. However, the three models are more accurate in the low frequency
band, and the error is higher in the high frequency.

Figure 9 shows that the predicted value tends to under-estimate the sound absorption coefficient
of the MEMM. The root mean square error (RMSE) of the different models are listed in Table 5.
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Figure 7. Comparison of the different methods to the converted orifice diameter (using the small side condition): case E1. (a) Semi-theoretical model; (b) Lee &
Kwon’s model; (c) Maa’s model.
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Figure 9. Scatter plot of conventional models.

Table 5. RMSE of conventional models.

Model Converted Method RMSE

Semi-theoretical model
Equivalent area 0.248
Equivalent perimeter 0.276
Circumcircle 0.413

Lee & Kwon’s model
Equivalent area 0.394
Equivalent perimeter 0.301
Circumcircle 0.400

Maa’s model
Equivalent area 0.368
Equivalent perimeter 0.212
Circumcircle 0.401

3.2. The ML Model

In the machine learning part (Figures 10 and 11), the prediction of the basic linear regression models
was poor and failed to express the characteristics of such resonance absorption structure performing
better in a specific frequency band (resonance frequency). For the ensemble model, the Gboost model
and the stacking model were more accurate. The Gboost and stacking models are shown to express
better sound absorption at resonance frequency. Compared to conventional models, ML models had
better predictive ability for medium and high frequencies. Nevertheless, the average model could
not fit the sound absorption trend. Furthermore, the prediction performance of the training set was
better than that of the test set. The nomenclature and prediction results of other cases are attached
in Appendix A.

Table 6 shows the RMSE of each model’s prediction value and the experimented value. The RMSE
of all ML models was less than 0.1. The Gradient boost model had a RMSE of 0.033 in the training set
and 0.062 in the testing set, which is superior to the conventional theoretical model and shows the best
agreement with experiment data.
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Figure 10. Results of machine learning models: (a) training set: case A2; (b) testing set: case A1.



Appl. Sci. 2020, 10, 7612 14 of 22
Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 24 

 

  
(a) (b) 

Figure 11. Scatter plot of machine learning models: (a) training set; (b) testing set. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

So
un

d 
ab

so
rp

tio
n 

co
ef

fic
ie

nt
 o

f c
on

ve
nt

io
na

l m
od

el

Sound absorption coefficient of experiment

Gboost model

Average model
Stack model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

So
un

d 
ab

so
rp

tio
n 

co
ef

fic
ie

nt
 o

f c
on

ve
nt

io
na

l m
od

el

Sound absorption coefficient of experiment

Gboost model

Average model
Stack model

Figure 11. Scatter plot of machine learning models: (a) training set; (b) testing set.
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Table 6. RMSE of ML models.

Model RMSE

Training set

Lasso 0.069
ENet 0.069
KRR 0.070
Gboost 0.033
Average 0.056
Stack 0.040

Testing set

Lasso 0.092
ENet 0.092
KRR 0.095
Gboost 0.062
Average 0.081
Stack 0.067

4. Discussion and Conclusions

This study attempted to use different models to predict the sound absorption coefficient of
the MEMM and discuss its applicability. After comparing the conventional model and the machine
learning model, the machine learning model is more accurate with regard to predictive ability. As for
use, the geometric conditions of materials used in machine learning are simple to obtain, while
traditional models require microphotograph and conversion methods for orifice diameter.

In the first resonance frequency band, the predictive ability of the conventional model was not
poor, but regardless of the model, there was several resonance frequency bands (several resonance
frequencies), which are not show in the experimental results. The assumptions of the conventional
model were all speculated to be ideal physical environments. In the literature, the model was compared
with the measurement of impedance tubes to demonstrate the results of several resonance frequency
bands [3]. However, the results of this study, whose experiment was conducted in a reverberation room,
has no such situation. The measurement method of sound absorption consists of small-size—impedance
tubes [20,21] and large-size—reverberation room [11]. Further research is warranted to clarify
the difference and connection between the two.

The ML model did not have this problem because the sound absorption coefficient of the training
set was obtained from the reverberation room experiment. In the comparison of each ML model,
the average model was usually found to underestimate the sound absorption capacity of the MEMM at
the resonance frequency. It was speculated that during the average process, the result was affected
by the poorly performing linear model. Furthermore, the predictive ability still differed between
the training set and the testing set. If the number of the entire data set is increased, the model could be
further improved to decrease the performance gap between the two.

The generalization of machine learning models primarily depends on the data set. Therefore,
its predictive ability is more credible within the scope of the experiment of this study. For other types
of MEMM, their applicability remains to be studied. Furthermore, if the number and diversity of
experimental specimen are increased in the future, the scope of application of the prediction models
can be continuously increased.
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Nomenclature

Zh acoustic impedance of the hole (Pa·s/m3)
R acoustic resistance based on the viscosity and heat conduction of the inner wall of the hole

(Pa·s/m3)
f the frequency (Hz)
ω the angular frequency (rad/s)
ρ0 the density of air (kg/m3)
t the panel thickness (m)
δ correction factor (-)
d the orifice diameter (m)
S = πd2/4 cross section area of the hole (m2)
σ the perforation ratio (-)
za characteristic impedance of air (Pa·s/m3)
γa propagation constant of air (rad/m)
c0 the velocity of air (m/s)
k the wave number (rad/m)
D cavity thickness/airspace depth (m)
Z acoustic impedance of the absorber (Pa·s/m3)
α the absorption coefficient (-)
ξ the normalized acoustic impedance of the panel (Pa·s/m3)
[] The overall transfer matrix for perforated panel system
γ′ the pressure reflection coefficient (-)
ZMPP acoustic impedance of the MPP (Pa·s/m3)
r relative acoustic resistance (Pa·s/m3)
xm = ωm mass reactance (Pa·s/m3)
k′ the perforate constant
kr the resistance coefficient
km mass reactance coefficient
η coefficient of viscosity (Pa·s)
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Figure A1. Cont.
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Figure A1. Prediction Results of the ML Model.
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