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Abstract: The bit independence criterion was proposed to evaluate the security of the S-boxes used
in block ciphers. This paper proposes an algorithm that extends this criterion to evaluate the degree
of independence between the bits of inputs and outputs of the stream ciphers. The effectiveness of
the algorithm is experimentally confirmed in two scenarios: random outputs independent of the
input, in which it does not detect dependence, and in the RC4 ciphers, where it detects significant
dependencies related to some known weaknesses. The complexity of the algorithm is estimated based
on the number of inputs l, and the dimensions, n and m, of the inputs and outputs, respectively.
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1. Introduction

Randomness is an essential component in the security of cryptographic algorithms [1,2].
In particular, stream ciphers are composed of pseudo-random number generators and base their
security on the statistical characteristics of these generators [1]. Several stream ciphers can be found in
the literature whose description is based on different methods for the generation of pseudo-random
numbers [3].

In practice, to determine if a generator is suitable to be used for cryptographic purposes,
several statistical tests are usually applied on it to measure the randomness of its outputs [4–6].
There are numerous statistical tests to measure the randomness of the outputs of a pseudo-random
number generator, among these those grouped in the batteries of NIST [7], Diehard [8], TestU01 [9],
and Knuth [10], among others [2]. However, despite a large number of statistical tests being present in
these batteries, none of them measure the correlation between the inputs and outputs of the stream
cipher; they only measure the randomness of the outputs, which is a necessary, but not sufficient,
condition to consider the generator for use in cryptography.

To consider a stream cipher secure, there must be no statistically significant correlation between
the structure of its inputs and outputs. If “patterns” depending on the structure of the cipher input are
generated in the output of stream ciphers, this could provide information about the input used. In the
literature, there are reports of cryptanalysis based on this type of weakness [11,12]. In this way, it is
essential to avoid the previous weakness and to have methods to detect it in the design and evaluation
stage of the algorithm; in particular, it is necessary to have statistical tests that are capable of detecting
the existence of significant statistical dependencies between the inputs and outputs of stream ciphers.
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In general, there are very few statistical test reports to detect the existence of statistical dependencies
between the outputs and inputs of a stream cipher. Therefore, the design of statistical tests that allow
for the evaluation of them in this sense is highly important in cryptography.

The strict avalanche criterion (SAC) and the bit independence criterion (BIC) were proposed
in [13] to evaluate the strength of the S-boxes used in block ciphers [14]. These two criteria measure
different characteristics of the change’s effect that an input bit has on the output bits; while the SAC
verifies uniformity in the distribution of each output bit, the BIC measures the degree of independence
between the output bits [15]. The SAC has been extended to be applied to stream ciphers [16–22].
In [22], the RC4 stream cipher [23] was evaluated through the SAC and the existence of statistical
dependence between the input bits and outputs of the RC4 was detected for inputs of large size.
This confirms the results obtained in [24–27], where the existence of related inputs in RC4 was reported.
The idea developed in [22] was to determine the behavior of the distribution of the bits in the output by
changing any bit in the input. In the design of stream ciphers, the distribution behavior of the output
elements must be uniformly distributed, regardless of the bit that is being changed at the input [5].
Otherwise, the outputs could provide information on the input bits, which constitutes a weakness
that, in the worst-case scenario, could lead to an attack. A discussion of attacks on stream ciphers
can be found in [28]. However, the BIC has not been applied, to the best of our knowledge, to assess
the degree of statistical independence between the bits of the output stream ciphers from changing
a bit of the input. In this paper, we propose an algorithm that extends this criterion to evaluate the
degree of independence between the input bits and the outputs of the stream ciphers. The effectiveness
of the algorithm was experimentally confirmed in two scenarios: random outputs independent of
the input, in which it does not detect dependence, and in the RC4 cipher, where it detects significant
dependencies related to some known weaknesses [22,24–26].

2. Preliminaries

A stream cipher can be viewed as a function f : Fn
2 → Fm

2 that transforms a binary input
vector X = (x1, . . . , xn) of n bits into a binary output vector Y = f (X) = (y1, . . . , ym) of m bits,
where n, m ∈ N. In [13], the difference between the outputs Y = f (X) and Yi = f (Xi), corresponding
to the inputs X and Xi, is called the avalanche vector and denoted by Vi = Y⊕Yi, where Xi = X⊕ ei,
with 1 ≤ i ≤ n and ei the unit vector with 1 in the i-th component. In Vi = Y⊕ Yi = (vi

1, vi
2, . . . , vi

m)

each vi
j ∈ F2, with 1 ≤ j ≤ m, is called an avalanche variable (see Table A1, Appendix A).

Given the set D = {X1, . . . , Xl} of l inputs Xr of n bits, with 1 ≤ r ≤ l, a binary matrix Hi is
constructed for each ei, 1 ≤ i ≤ n. To construct the matrix Hi, the avalanche vectors Vi

r = Yr ⊕ Yi
r =

(vi
r1, vi

r2, . . . , vi
rm) are calculated, with Yr = f (Xr), Yi

r = f (Xr ⊕ ei). It is said that f satisfies the BIC if,
by changing any bit i in the l inputs Xr ∈ D, it is satisfied that every pair of avalanche variables vi

·j and

vi
·k are independent, with 1 ≤ j, k ≤ m. The matrix Hi will be called the SAC matrix associated with

the vector ei and is shown in Table 1.
To measure the degree of independence between the pairs of avalanche variables,

Webster and Tavares [13] used Pearson’s correlation coefficient. In [29], the maximum value of these
coefficients was used as a test statistic, denoted here by

BICPearson( f ) = max
1 ≤ i ≤ n

1 ≤ j, k ≤ m
j 6= k

ρ(vi
·j, vi

·k). (1)

If all pairs of avalanche variables vi
·j and vi

·k are independent, then ideally, BICPearson( f ) = 0. Therefore,
in practice, when BICPearson( f ) ≈ 0, it is concluded that f satisfies the BIC.
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Table 1. SAC matrix Hi = (vi
rj) of dimension l ×m for the change of bit i over the set D of l inputs.

Avalanche
Vectors

Avalanche Variables

vi
·1 vi

·2 . . . vi
·j . . . vi

·k . . . vi
·m

Vi
1 vi

11 vi
12 . . . vi

1j . . . vi
1k . . . vi

1m

...
...

...
...

...
...

...
...

...

Vi
r vi

r1 vi
r2 . . . vi

rj . . . vi
rk . . . vi

rm

...
...

...
...

...
...

...
...

...

Vi
l vi

l1 vi
l2 . . . vi

l j . . . vi
lk . . . vi

lm

2.1. Comparison between SAC and BIC

The SAC [13] verifies whether each output bit changes approximately half of the time by changing
an input bit. Using the SAC matrix Hi, it is said that f satisfies the SAC if for all i and every avalanche
variable vi

·j, with 1 ≤ j ≤ m and 1 ≤ i ≤ n, HW(vi
·j) is binomial distributed with parameters n = l

and p = 1
2 , i.e., vi

·j ∼ B
(

l, 1
2

)
, where HW(·) is the Hamming weight. On the other hand, the BIC [13]

measures the degree of independence between each pair vi
·j, vi
·k of avalanche variables. Thus, the two

criteria measure a different characteristic from the effect produced on the output bits changing an
input bit; the SAC verifies uniformity in the distribution of each output bit, while the BIC measures
the degree of independence between the output bits.

In [30], a new method to assess the correlation between statistical randomness tests based on
mutual information was presented, using some test statistics and p-values of the tests. This tool can be
used to determine the degree of correlation between these two statistical tests. In [29], an assessment
of the independence between these two tests through absolute correlation coefficient is given,
concluding that these tests are quite uncorrelated.

2.2. Stream Ciphers and RC4

The stream ciphers perform the encryption by converting plain text into bit-by-bit cipher-text
through the use of a keystream and the XOR operation. A keystream is nothing more than a sequence of
numbers generated in a pseudo-random way. This is achieved by building a pseudo-random number
generator. The sequence of pseudo-random numbers used must meet certain statistical properties to
be considered suitable for cryptographic use. In many applications (see [4,31]), ciphers of this type
have become very important tools since they are very fast and their implementation is simpler than
other ciphers, e.g., a block cipher. In these types of scenarios, the problem is in the transmission of a
large amount of data in communication networks in a short time.

There are a wide variety of design proposals [32] to build pseudo-random number generators.
Among these, the RC4 algorithm [23] stands out from others for its wide use in different applications
and protocols. The RC4 stream cipher [23] is optimized to be used in 8-bit processors, being extremely
fast and exceptionally simple. It was included in network protocols such as Secure Sockets Layer
(SSL), Transport Layer Security (TLS), Wired Equivalent Privacy (WEP), Wi-Fi Protected Access (WPA),
and in various applications used in Microsoft Windows, Lotus Notes, Apple Open Collaboration
Environment (AOCE), and Oracle Secure SQL [23]. In the last decade, some applications [33,34]
avoided RC4 encryption given some weaknesses found [35]. However, although it is not considered
very secure [36], RC4 is still one of the most widely used stream ciphers [37], and continues to motivate
research nowadays [36–38]. Furthermore, this cipher is a good option to measure the effectiveness of
methods that analyze weaknesses in stream ciphers related to those already known in RC4 [22,24–26],
or to check the performance of hardware or software schemes that make use of cryptography [39–41].
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The RC4 has two main components: the key scheduling, and the pseudo-random number
generator. The key scheduling generates an internal random permutation S of values from 0 to 255,
from an initial permutation, a (random) key K of l-byte length, and two pointers i and j. The maximal
key length is of l = 256 bytes (see Algorithm 1).

Algorithm 1 RC4 key-scheduling

1: for i = 0→ 255 do
2: S[i]← i
3: end for
4: j← 0
5: for i = 0→ 255 do
6: j← (j + S[i] + K[i mod l]) mod n
7: Swap S[i] and S[j]
8: end for

The main part of the algorithm is the pseudo-random number generator that produces one-byte
output in each step. As usual, for stream ciphers, the encryption will be an XOR of the pseudo-random
sequence with the message (see Algorithm 2).

Algorithm 2 RC4 pseudo-random generator

1: i← 0
2: j← 0
3: while Generating Output do
4: i← (i + 1) mod 256
5: j← (j + S[i]) mod 256
6: Swap S[i] and S[j]
7: Output S[(S[i] + S[j]) mod 256]
8: end while

The weaknesses found can be classified according to the theme they exploit, some of which are:

1. Weak keys.
2. Key recovery from the state.
3. Key recovery from the key-stream.
4. State recovery attacks.
5. Biases and distinguishes.

While the fifth point is the most studied subject in the literature, the third point is the most serious
attack made to RC4. The theme that is exploited in this paper has been deeply studied—in particular,
Grosul and Wallach [24] demonstrated that certain related key-pairs generate similar output bytes in
RC4. Later, Matsui [25] reported colliding key pairs for RC4 for the first time, and then stronger key
collisions were found in [26]. For the RC4 stream cipher, several modifications have been proposed;
while some modified only certain components or some operations, others completely changed the
algorithm (see [42]). It is important to note that even RC4 variants have had a lot of attention in the
scientific community (see [43]).

3. BIC Algorithm in Stream Ciphers

In this section, an algorithm is proposed to extend the bit independence criterion (BIC) to stream
ciphers, experimentally confirming its effectiveness. The two main differences that arise in this scenario
with respect to its application in S-boxes are discussed.

Let f be the function that will be evaluated by the BIC, D = {X1, . . . , Xl} the set of l inputs Xr of
n bits generated randomly and m the number of bits of the outputs of f , the proposed method consists
of the following steps:
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Step 1. Construct the n SAC Hi, (i = 1, . . . , n) matrices of dimension l ×m.

1. Evaluate Yr = f (Xr), (r = 1, . . . , l), and generate the output Yr of size m.
2. Evaluate Yi

r = f (Xr ⊕ ei), and generate the output Yi
r of size m, where ei is the

canonical vector.
3. Build the avalanche vector Vi

r = Yr ⊕ Yi
r = {vi

r1, . . . , vi
rm} of m avalanche variables

vi
·j, (j = 1, . . . , m).

Step 2. Evaluate the independence between the avalanche variables vi
·j and vi

·k.

1. For each pair (j, k), with 1 ≤ j, k ≤ m and j 6= k, measure the independence between
the avalanche variables vi

·j, vi
·k by a test statistic.

2. Set a significance level α1 and decide, using a statistical criterion, if the observed value
of the test statistic allows to reject or not the hypothesis of independence between vi

·j
and vi

·k.
3. Count the number Ti of rejections between Cm

2 pairs of the matrix Hi.

Step 3. Decision on whether or not to comply with the BIC criterion:

1. Count the total number T of rejections between the n matrices Hi.
2. Set a significance level α2

3. Decide, using a statistical criterion, whether the observed value of T allows to reject the
BIC compliance.

The following sections describe each of these steps and end with the proposal of an algorithm to
evaluate the BIC in stream ciphers.

3.1. Building the SAC Matrix

First difference. When evaluating the BIC in S-boxes, it is possible to go through the entire space of
l = 2n inputs since n usually takes small values; however, this is impractical in stream ciphers where
the dimension of the input space can be 2128 or greater. To solve this problem, it is proposed to use the
same approach applied in the randomness assessment to the outputs of pseudo-random generators
through statistical tests [2]. This approach consists of generating a sample of l inputs with l � 2n,
and to determine the strength of the cipher from the results obtained from this sample.

The l inputs are chosen randomly in the space of 2n possible inputs. This is the main difference;
while the BIC test works over all of the input space with S-boxes, the stream cipher works with a
randomly selected subset of the sample space.

3.2. Test of Independence between Two Avalanche Variables vi
· j and vi

·k

Second difference. In [13], Pearson’s correlation coefficient ρ was used to measure the degree of
independence between the pairs of avalanche variables. The use of such a coefficient in [13,29] has two
main disadvantages: the first one is that it only detects linear correlations, and the second one is that
the critical region for the rejection of the null hypothesis is not explicitly defined, i.e., a threshold is
not defined below which BICPearson( f ) ≈ 0 is decided. Thus, it can be a reason for an imprecision
in the decision when dealing with small coefficient values. In order to solve the first aforementioned
disadvantage, mutual information can be applied to measure the degree of independence between
pairs of avalanche variables [44], but in this case, it is important to determine which estimator to use,
since there are no estimators of unbiased entropy of minimal variance; the second disadvantage can
be solved by defining the critical region using a transformation of the correlation coefficient of the
type t =

√
(N − 2)ρ2/(1− ρ2), where t is distributed as a t-Student distribution with N − 2 degrees

of freedom [45].
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Another approach is that when vi
·j and vi

·k are independent, then si
jk = vi

·j
⊕

vi
·k is balanced [46].

In this work, independence will be evaluated by measuring the adjustment HW(si
jk) to the binomial

distribution B(l, 1/2), where HW(·) is the Hamming weight. This allows setting a threshold for the
decision criterion on independence between vi

·j and vi
·k.

Since Hi is a binary matrix, the adjustment to the binomial distribution will be measured by the
χ2-test with 1 degree of freedom, with the test hypothesis given by:

H0 : vi
·j and vi

·k independent,

H1 : vi
·j and vi

·k dependent.

That is,

H0 : HW(si
jk) ∼ B

(
l,

1
2

)
,

H1 : HW(si
jk) 6∼ B

(
l,

1
2

)
.

The test statistic used is

χ2
si

jk
=

(
HW(si

jk)−
l
2

)2

l
4

. (2)

As usual [2], the value α1 is such that

P
(

χ2
si

jk
≤ χ2

α1,1

)
= 1− α1. (3)

If χ2
si

jk
> χ2

α1,1 the null hypothesis H0 is rejected.

It is left for future works, to compare the effectiveness of these three criteria for evaluating
independence between the avalanche variables.

3.3. BIC Acceptance Test

To decide whether the stream cipher f satisfies the BIC, it is necessary to take into account the
number of rejections of H0 on the n matrices; for this, a random variable T, which counts the total
number of rejections on n matrices is defined:

T = T (n, m, α1) =
n

∑
i=1

Ti (m, α1), (4)

where

Ti (m, α1) = Ti =
m−1

∑
j=1

m

∑
k>j

t
(

vi
·j, vi

·k, α1

)
, (5)

and

t(vi
·j, vi

·k, α1) =


1 If H0 is rejected for vi

·j and vi
·k

with significance α1

0 otherwise.
(6)

The variable Ti counts the number of rejections of the null hypothesis H0 in the matrix Hi.
Expected number of rejections of H0. In each of the n SAC Hi matrices, Cm

2 pairs of columns are
formed, thus the number of rejections T satisfies

0 ≤ T ≤ n · Cm
2 . (7)
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When T = 0, we have the ideal case for compliance with the BIC, since all the pairs of columns
are independent, while as T � 0, the number of non-independent column pairs increases.

Under the hypothesis test above, with a significance level α1, the expected number of rejections of
H0 is:

E
(

Ti| H0

)
= (α1·Cm

2 ) , (8)

for each matrix Hi. In total, among the n matrices SAC are expected

E (T| H0) = n · (α1·Cm
2 ) , (9)

H0 rejections.
The random variable

T =
n

∑
i=1

m−1

∑
j=1

m

∑
k>j

t
(

vi
·j, vi

·k, α1

)
, (10)

follows a binomial distribution B(n · Cm
2 , α1). Taking into account that generally α1 < 0.1,

this distribution can be approximated, in this case, to the Poisson distribution with parameter
λ = (α1 · n · Cm

2 ). Since λ is large, due to large values of n · Cm
2 , then the Poisson distribution can be

approximated by the Normal distribution with mean and variance:

E(T|H0) = α1 · n · Cm
2 , σ2(T|H0) = α1 · n · Cm

2 · (1− α1). (11)

Thus

ZT =
T − E(T|H0)√

σ2(T|H0)
∼ N(0, 1). (12)

Decision criteria. To compare the ZT value with the N(0, 1) distribution, a significance level α2

is selected. Then, it is tested if f does not satisfy the BIC, with a significance level α2, if ZT > Z1−α2 .
It can be seen that if 0 ≤ T ≤ E(T|H0), then the values of ZT decreases with respect to Z1−α2 and
ZT > Z1−α2 is not satisfied, so the BIC is fulfilled. On the other hand, if T � E(T|H0), then the values
of ZT will be greater as T increases, so ZT > Z1−α2 is satisfied and the BIC compliance is rejected.

Normality of the test statistic T. In the expression of T there are n · Cm
2 Bernoulli variables

t(vi
·j, vi
·k, α1), whose distributions under H0 and H1 are different:

Under H0, all variables t(vi
·j, vi
·k, α1) are independent, identically distributed and take the value

of 1 with probability pi
jk = P(t(vi

·j, vi
·k, α1) = 1) = α1, so T follows exactly a binomial distribution

B (n · Cm
2 , α1). Although generally α1 ≤ 0.1 the binomial distribution B (n · Cm

2 , α1) can be
approximated by the normal distribution, with mean E (T|H0) = α1 · n · Cm

2 and variance
σ2 (T|H0) = α1 · n · Cm

2 (1− α1), taking into account that n · Cm
2 grows very quickly with m.

Under H1, the variables t(vi
·j, vi
·k, α1) that appear in the expression of T are not identically

distributed, since the rejection of the BIC means that there are several matrices Hi for which the
hypothesis H0 of independence between vi

·j and vi
·k is rejected. In this case, pi

jk 6= α1 and may be
different when i, j, k varies. For this reason, a binomial does not appear directly as the distribution of T.
However, it is still possible to approximate the distribution of T by the Normal distribution. For this it
is sufficient to calculate the mean

Pn·Cm
2
=

∑n
i ∑m−1

j ∑m
k>j pi

jk

n · Cm
2

, (13)

between the probabilities of all the variables t(vi
·j, vi
·k, α1) and the distribution of T can be approximated

by the binomial distribution B(n · Cm
2 , Pn·Cm

2
). This distribution, in turn, can be approximated by the

Normal distribution, taking into account high values of n · Cm
2 . The precision of this approximation
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depends on the difference between the probabilities pi
jk involved in Pn·Cm

2
, therefore the variance value

between these probabilities can be a measure of the quality of the approximation.
When comparing the distribution of T under H0 and H1, similarities and differences are observed.

They are similar in that in both cases T follows a Normal distribution, but there are two differences,
the first and most important is observed between the expected values of both distributions (it will be
higher under H1) and the second refers to the level of adjustment to this distribution (may be lower
under H1). In the rest of this work, the proposed method to evaluate the BIC in stream ciphers will be
called the BIC test.

3.4. BIC Test Algorithm

Given a set D = {X1, . . . , Xl} of l randomly chosen n bits inputs to the function f , constructs for
each binary vector ei (1 ≤ i ≤ n) its associated SAC matrix Hi and for all for j, k with j 6= k, it is
checked if HW(si

jk) follow the B
(

l, 1
2

)
distribution, see the proposed Algorithm 3.

Algorithm 3 BIC stream ciphers algorithm

Input: f function to evaluate, n size of the inputs of f , m size of the outputs of f , α1 and α2 levels of

significance, D set of l inputs to the function f .
Output: If f satisfies the BIC

1: T = 0
2: for i = 1→ n do
3: for r = 1→ l do . Matrix Construction Hi
4: Compute Vi

r = Yr ⊕Yi
r

5: end for
6: for each (j, k) do . Independence check between vi

·j and vi
·k

7: if χ2
si

jk
> χ2

α1,1 then
8: T = T + 1 . Independence is rejected between vi

·j and vi
·k

9: end if
10: end for
11: end for
12: if ZT > Z1−α2 then f does not satisfy the BIC
13: else f satisfies the BIC
14: end if

3.4.1. Complexity of the Algorithm

In steps 3–5 of the algorithm, f is used to generate m output bits. Assuming that the stream cipher
f generates each output with a constant cost, then O(lm) operations are performed in these steps,
since l times m output bits are generated from f . In steps 6–10 of the algorithm, O(m2l) operations are
performed due to the computation Cm

2 times the Hamming weight in a sequence of l bits.
Thus the algorithm performs O

(
n max(l m, l m2)) = O

(
n l m2) operations, and the number of

algorithm operations depends on the number n of input bits, the number m of output bits, and the
number l of inputs used. It can be seen that the increase in the parameter m has a greater influence
than n and l in increasing the number of operations of the algorithm. In the particular case m = n = l,
O(m4) operations are performed.

3.4.2. Parameter Selection

As seen in the previous section, the number of operations of the BIC algorithm depends on three
parameters, the number l of inputs, the number n of bits of each input, and the number m of bits of
each output.

Selection of l such that p̂ ≈ 0.5 and HW(si
jk) fit to the binomial distribution B(n, 1/2). The number l of

entries influences the effectiveness of the χ2-test in determining whether two columns are independent.
Increasing l guarantees a greater fit of HW(si

jk) to the binomial distribution B(n, 1/2); however,
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it causes an increase in the number of operations. In practice, the idea is to obtain a cost-effectiveness
ratio using a value of l such that it maintains the fit and provides a practical number of operations.
Using the confidence interval for proportions [47], it is possible to obtain a value of l0, such that
prefixing l > l0 achieves a good fit. This confidence interval is given by

P

−Zα1/2 <
p̂− p√

pq
l

< Zα1/2

 = 1− α1. (14)

Solving for l we get to

l > l0 =
Z2

α1/2 pq

e2 , (15)

where e = p̂− p, is the deviation of p̂ over p, and q = (1− p).

Example 1. Calculation of the lower bound l0 for l. A value l0 from which, with high probability, it is
satisfied that q̂ ≈ p̂ ≈ 0.5 is needed. Then, substituting for a significance level α1 = 0.01 and a deviation
e whose absolute value |e| satisfy inequality |e| = | p̂− 0.5| ≤ 0.03, we get

l0 =
Z2

0.005 · 0.25
0.032 ≈ 2189.

In this way, for the significance level α1 and the deviation e selected, it is concluded that l must be chosen such
that l > l0 = 2189.

Example 2. Convergence of p̂ and deviation ê. Table 2 shows the behavior of the deviation ê observed for
several l, l > l0 = 2189, with n = 64 and m = 32. It can be seen how, for most of the estimated e, the imposed
condition is met |ê| ≤ 0.03.

Table 2. Values of the deviation |ê| for several l, l > l0 = 2189 with n = 64 and m = 32.

l Mean Value p̂ |ê|

4096 0.5 0.05

8192 0.5 0.03

16,384 0.5 0.03

32,768 0.5 0.02

Selection of n, m under the null hypothesis H0. The number n of inputs and the number m of outputs
influence the sample size for the calculation of the number T of rejections of H0. In general, we will
have d = n · Cm

2 pairs of columns to check and it is expected, with probability α1, that λ = α1 · d pairs
of columns will be rejected.

Let λ0 = α1 · d0 be some default value of λ from which the distribution of T can be approximated
to N(0, 1). It is necessary to select n and m such that d > d0 is satisfied and a value of λ such that
λ > λ0 is obtained. It is advisable to select a high value of λ0 that avoids the use of corrections and
provides a good fit.

It is known that increasing λ0 provides better precision in the Poisson approximation to the
Normal distribution. To obtain d0, we can use the confidence interval for proportions [47], this time in
an approximation to the Normal distribution with one tail. So, we have

P

 p̂− p√
pq
d

< Zα2

 = 1− α2. (16)
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Solving for d we get to

d > d0 =
Z2

α2
pq

e2 . (17)

Example 3. Calculation of the lower bound d0 for d. Substituting, p = 0.01, q = 0.99, with a significance
level α2 = 0.001 and a deviation |e| of 0.003, we obtain

d0 =
Z2

0.001 · 0.25
0.0032 ≈ 10503.

Then, λ0 = α1 · d0 ≈ 0.01 · (10503) ≈ 105, therefore, for the values of α1 and e chosen, it is enough to select
values of n and m such that λ > λ0 ≈ 105. In Table 3, for α1 = 0.01, some values of n and m are highlighted in
italics from which λ > λ0 = 105.

Table 3. λ values for multiple values of n and m with α1 = 0.01. Values of n and m are highlighted in
italics from which λ > λ0 = 105.

n m

8 16 32 64

8 2.24 9.6 39.68 161.28

16 4.48 19.2 79.36 322.56

32 8.96 38.4 158.72 645.12

64 17.92 76.8 317.44 1290.24

128 35.84 153.6 634.88 2580.48

256 71.68 307.2 1269.76 5160.96

512 143.36 614.4 2539.52 10,321.92

To select n, m and l, the trade-off between reducing computational cost and maximizing
effectiveness can be taken into account. However, it is very important to be careful when selecting
which values to use, since minimizing computational cost could limit the effectiveness of the BIC
method and overestimate the quality of the stream cipher. It is advised to prioritize
increasing effectiveness.

4. Experiments and Discussion of the Results

In this section, experiments are carried out in two different scenarios. In the first scenario,
the behavior of the ZT test statistic is investigated under the hypothesis H0 of compliance with the BIC
test, evaluating the test on random Hi matrices. The second scenario shows the behavior of the ZT test
statistic when evaluating it in a stream cipher that does not meet this criterion.

4.1. Scenario 1 (BIC in Random SAC Matrices)

It is expected that under H0, we obtain E(ZT |H0) = 0, σ2(T|H0) = 1 and ZT ∼ N(0, 1).
The experiments in this scenario were carried out under uniform and independent randomly
generated SAC matrices, to evaluate compliance, under H0, of the N(0, 1) distribution of ZT .

Taking into account Table 3, four sets of parameters were selected, two for n = m and two
for n 6= m:

• n = m:( n = m = 32) and (n = m = 64)
• n 6= m: (n = 64, m = 32) and (n = 8, m = 64).
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The values l ∈ {4096, 8192, 16,384, 32,678} will be varied, in order to verify the influence of the
variation of the parameters n, m and l in the adjustment of ZT . The values of n and m with the lowest
computational cost were selected, that is, the values of n and m that provide the lowest values of λ

such that λ > λ0 = 105.
The values n and m will be used as a power of two, since current ciphers work with inputs

and outputs whose size has these characteristics and also l to speed up, in terms of execution time,
the computation of the BIC method. However, it is important to note that the BIC method can be used
for any value of n, m and l, as long as the requirements outlined in the previous section are met.

Normality of ZT in Hi random matrices. Figure 1 corresponds to the observed distribution of 1000
values of ZT , for each pair of parameters n and m, and each value of l.

(a) n = m = 32 (b) n = m = 64

(c) n = 8 and m = 64 (d) n = 64 and m = 32

Figure 1. Observed distribution of 1000 values of ZT in random Hi matrices for various values of n, m,
and l.

Tables 4 and 5 show the values Ê(ZT |H0) and σ̂2(ZT |H0) respectively observed in each sample,
for each value of n, m and l.

Table 4. Observed Ê(ZT |H0) values for each selected n, m, l value.

(n, m)
l

4096 8192 16,384 32,768

(32, 32) −0.150216 0.044674 0.214355 −0.210047

(64, 64) −0.268244 0.110717 0.137298 −0.383549

(8, 64) −0.154163 −0.0239 0.173869 −0.164926

(64, 32) −0.118008 0.05765 0.236807 −0.175659

The analysis of Figure 1 and Tables 4 and 5, suggests the fulfillment of the hypothesis H0 about
the distribution of ZT ∼ N(0, 1), for all the values of the parameters l, n, m selected. As can be seen in
Tables 4 and 5, by varying l, n, m, the values Ê(ZT |H0) and σ̂2(ZT |H0) of the observed distribution of
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ZT maintain the fit to the parameters µ = 0 and σ2 = 1 expected in a distribution N(0, 1). Figure 1
shows the bell shape and approximate symmetry of the obtained distributions.

Table 5. Observed σ̂2(ZT |H0) values for each selected n, m, l value.

(n, m)
l

4096 8192 16,384 32,768

(32, 32) 0.906793 0.938818 1.06287 0.930434

(64, 64) 1.04064 1.02569 0.97230 1.04773

(8, 64) 0.972279 0.939652 1.05472 0.923853

(64, 32) 0.994157 0.997373 1.06138 0.983795

Normality Test. The Shapiro–Wilks [48] test for normality was applied to all selected parameter
sets. The results are shown in Figure 2 and Table 6.

(a) n = m = 32 (b) n = m = 64

(c) n = 8 and m = 64 (d) n = 64 and m = 32

Figure 2. Adjustment of the observed distribution from ZT to N(0, 1) in Hi random matrices,
which satisfy the BIC.

In Figure 2 we can see how the observed distribution of Zt for all the values of l, n, m, fit the
distribution N(0, 1). Table 6 shows the p-values corresponding to the Shapiro-Wilk normality test for
each of the chosen parameter sets.

Table 6. p-values of the Shapiro-Wilk test of normality for samples of Zt, in random Hi matrices,
that satisfy the BIC.

l n = m = 32 n = m = 64 n = 8 and m = 64 n = 64 and m = 32

4096 0.252382 0.724504 0.262997 0.482318

8192 0.127693 0.573267 0.161048 0.326505

16,384 0.296125 0.653315 0.141577 0.524475

32,768 0.309173 0.37739 0.210961 0.237133
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It is observed that in all cases, the p-values are greater than the usual values assumed for α,
such as 0.01 or 0.05 and are consistent with the assumed normality hypothesis. The higher the value of
n = m, the higher the p-value, which corresponds to the influence of these parameters on the value of
λ (see Table 3).

BIC test application on Hi random matrices. To evaluate the behavior of the BIC test in random
matrices, each Zt was compared with the critical value Z1−α2 , and the number of rejections of H0

was counted. Tables 7 and 8 show the results for various levels of significance α2 and l = 16,384.
The observed number of rejections is expected to correspond to that expected according to the selected
α2 level, which would allow choosing α2, to obtain zero rejections in this scenario.

Table 7. Expected E(# [ZT > Z1−α2 |H0] ) and observed # [ZT > Z1−α2 |H0] number of rejections in
samples of 1000 values of Zt for n = m, in Hi random matrices.

α2 E(# [ZT > Z1−α2 |H0])
# [ZT > Z1−α2 |H0]

n = m = 32 n = m = 64

0.05 50 31 43

0.01 10 8 9

0.001 1 1 1

0.0001 0 0 0

Table 8. Expected E(# [ZT > Z1−α2 |H0]) and observed # [ZT > Z1−α2 |H0] number of rejections in
samples of 1000 values of Zt for n 6= m, in Hi random matrices.

α2 E(# [ZT > Z1−α2 |H0])
# [ZT > Z1−α2 |H0]

n = 8 and m = 64 n = 64 and m = 32

0.05 50 36 42

0.01 10 7 5

0.001 1 0 1

0.0001 0 0 0

For the value of α2 = 0.0001 located in the last row of both tables, no statistical dependence is
detected as expected in random matrices, confirming the effectiveness of the criterion and illustrating
the importance of the proper selection of α2 , according to the number d = n · Cm

2 of pairs of columns
whose independence is evaluated. For the values of l, n, m, α1, α2 used, such that no Type I error is
made, the probability of making a Type II error must be calculated and the values that minimize it
must be chosen. In this sense, experiments will be carried out in the second scenario on a stream cipher.

4.2. Scenario 2 (BIC in Stream Cipher)

For this scenario, it is convenient to apply the test to a stream cipher that violates the BIC. RC4 was
chosen because there are reports of the existence of dependencies between the inputs and outputs in this
cipher [22–25]. Experiments were performed setting the parameters n = m ∈ {32, 64, 128, 160, 256} and
1000 sets D of l = 16,384 entries each were built. In each set, ZT was calculated and compared with the
critical value Z1−α2 , varying α2. Figure 3 shows the distribution of the 1000 values of ZT obtained. Table 9
show the values Ê(ZT) and σ̂2(ZT) observed in each sample, for each value of n, m, and l.
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Figure 3. Distribution of the sample of 1000 values of ZT for SAC matrices generated with RC4 with
n = m ∈ {32, 64, 128, 160, 256}.

Table 9. Expected value Ê(ZT) and variance σ̂2(ZT) of ZT for SAC matrices generated with the RC4.

(n, m) Ê(ZT) σ̂2(ZT)

(32, 32) 0.149419 1.06442

(64, 64) 0.661726 0.967951

(128, 128) 1.62968 1.15061

(160, 160) 2.24493 1.07417

(256, 256) 4.79748 1.06715

To verify the normality of the data, the Shapiro–Wilks [48] normality test was applied to all the
selected parameter sets. The results are shown in Figure 4 and Table 10.

Figure 4. Normality test of the sample of 1000 values of ZT for SAC matrices generated with the RC4
with n = m ∈ {32, 64, 128, 160, 256}.

Table 10. p-values of the Shapiro-Wilk test of normality on samples of Zt for SAC matrices generated
with the RC4 with n = m ∈ {32, 64, 128, 160, 256}.

(n, m) p-Values

(32, 32) 0.103538

(64, 64) 0.582878

(128, 128) 0.382171

(160, 160) 0.943337

(256, 256) 0.673625
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In Figure 4 we can see how by increasing the values of m = n the Normal distribution N(µ, 1) of
the statistician Zt is maintained, however, the value of µ increases (see Figure 3 and Table 9).

It is observed that in all cases the p-values are greater than the usual values assumed for α, such as
0.01 or 0.05 and the samples maintain normality.

In Table 11 it is noted how in RC4 the effectiveness of the criterion increases as the values of n
and m increase. That is, increasing the values m = n increases the number of correct decisions to reject
H0. As mentioned, it is known that by increasing the value of n in RC4 the probability of finding very
similar outputs, or even the same, increases for inputs that differ by a few bits [22,24–26].

Table 11. Expected E(# [ZT > Z1−α2 | H0]) and observed # [ZT > Z1−α2 ] number of rejections in 1000
repetitions of the BIC test in SAC matrices generated with the RC4. All cases in which the observed
number of rejections exceeds the expected value are indicated in italics.

α2 E(# [ZT > Z1−α2 | H0])

# [ZT > Z1−α2 ]

n = m

32 64 128 160 256

0.05 50 77 155 497 731 1000

0.01 10 22 44 272 462 993

0.001 1 2 11 91 215 953

0.0001 0 0 0 19 74 843

This experiment confirms the effectiveness of the BIC test by detecting dependence between the
inputs-outputs of RC4 and allows us to conclude that in RC4, the effectiveness is an increasing function
of the value of the parameters n = m. All cases in which the observed number of rejections exceeds
the expected value are indicated in italics.

An important feature in statistical tests is the determination of type I and type II errors [2].
Under H0, we have that vi

·j and vi
·k are independent, then the type I error consists in rejecting

independence when they are and therefore deciding that the cipher has a weakness when it does not
have it. Meanwhile, not rejecting H0 when there is a dependency means that it would be decided that
the cipher passes the BIC, when in fact it does not pass it, and a type II error would be committed.
Table 12 shows the proportion of Type I and II errors, committed by the BIC test, for some
parameter sets.

Table 12. Proportion of type I and II errors made by the BIC test.

α2
Estimation Type I Error Estimation Type II Error

n = 32, m = 32 n = 64, m = 64 n = 32, m = 32 n = 64, m = 64

0.05 0.031 0.043 0.077 0.155

0.01 0.008 0.009 0.022 0.044

0.001 0.001 0.001 0.002 0.011

0.0001 0 0 0 0

It can be seen that for α2 = 0.0001 type I and II errors are not made.
The outputs of RC4 [23] are known to pass numerous statistical tests [49], however they do not

satisfy the BIC statistical test proposed in this work. This shows that the BIC statistical test complements
the classic randomness tests, therefore it constitutes a tool to consider to evaluate stream ciphers.
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5. Conclusions

An algorithm was proposed to extend the application of the Bit Independence Criterion (BIC)
to stream ciphers. This algorithm detects the existence of statistical dependence between the inputs
and outputs of a stream cipher. The effectiveness of the BIC test was experimentally confirmed
when applied on random matrices, in which it does not detect dependence, and on the RC4 cipher,
detecting statistical dependencies between the inputs and outputs of this cipher that are related with
previously reported.

The algorithm depends on the number n of bits of the inputs, the number m of bits of the outputs,
and the number l of inputs used. These parameters determine its complexity. The results achieved
confirm the importance of varying the n and m parameters to apply the BIC criteria in the evaluation
of stream ciphers. For RC4 the effectiveness of the criterion is a growing function of the n and
m parameters.

It is recommended to guarantee the effectiveness of the proposed BIC test by selecting the values
of the parameters greater than the minimum value estimated in the article. From that minimum,
increase the values depending on the available computing power, estimating the time using the
complexity expressions that were presented from the algorithm.

The BIC statistical test complements the classical statistical tests of randomness as it allows
expanding the evaluation of the stream ciphers, by measuring the degree of independence present
between the input of the cipher and its outputs, thus measuring other statistical characteristics that are
not only the evaluation of randomness of their output sequences.

In future work, it is planned to apply this test to other stream ciphers, investigate the optimal
choice of the m and n parameters and compare the effectiveness of the criterion taking into account
the mutual information, the Pearson’s coefficient, with the transformation mentioned, and the criteria
applied in this work. The behavior of the proposal will be experimentally verified when the sample
size increases. It will be investigated in an implementation variant using parallelism for Algorithm 3.
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Appendix A

Table A1. Notation table.

f : Fn
2 −→ Fm

2 Describe the function that transforms n input bits into m output bits

X = (x1, . . . , xn) n-bit input binary vector

Y = f (X) = (y1, . . . , ym) m-bit output binary vector

ei Unit vector with 1 in the i-th component with 1 ≤ i ≤ n

Xi Vector resulting from the operation Xi = X⊕ ei for input X

Yi m-bit output binary vector corresponding to input Xi, Yi = f (Xi)

Vi = Y⊕Yi = (vi
1, vi

2, . . . , vi
m) Avalanche vector associated with vector ei and input X

vi
j ∈ F2 Avalanche variable associated to vector ei and input X with 1 ≤ j ≤ m

D = {X1, . . . , Xl} Set of l inputs Xr, with 1 ≤ r ≤ l

Xi
r Vector resulting from the operation Xi

r = Xr ⊕ ei for the input Xr
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Table A1. Cont.

Yi
r Binary output vector of m bits corresponding to input Xi

r, Yi = f (Xi
r)

Vi
r = Yr ⊕Yi

r = (vi
r1, vi

r2, . . . , vi
rm) Avalanche vector associated with vector ei and input Xr

vi
rj ∈ F2 Avalanche variable associated to vector ei and input Xr with 1 ≤ j ≤ m
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