
applied
sciences

Article

Sparse Representation Graph for Hyperspectral
Image Classification Assisted by Class Adjusted
Spatial Distance

Wanghao Xu 1, Siqi Luo 1, Yunfei Wang 1, Youqiang Zhang 2 and Guo Cao 1,*
1 School of Computer Science and Engineering, Nanjing University of Science and Technology,

Nanjing 210094, China; xu.wanghao@njust.edu.cn (W.X.); siqiluo@njust.edu.cn (S.L.);
woilf@njust.edu.cn (Y.W.)

2 School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
yq_zhang@njust.edu.cn

* Correspondence: caoguo@njust.edu.cn

Received: 14 September 2020; Accepted: 30 October 2020; Published: 1 November 2020
����������
�������

Abstract: In the past few years, the sparse representation (SR) graph-based semi-supervised learning
(SSL) has drawn a lot of attention for its impressive performance in hyperspectral image classification
with small numbers of training samples. Among these methods, the probabilistic class structure
regularized sparse representation (PCSSR) approach, which introduces the probabilistic relationship
between samples into the SR process, has shown its superiority over state-of-the-art approaches.
However, this category of classification methods only apply another SR process to generate the
probabilistic relationship, which focuses only on the spectral information but fails to utilize the
spatial information. In this paper, we propose using the class adjusted spatial distance (CASD) to
measure the distance between each two samples. We incorporate the proposed a CASD-based distance
information into PCSSR mode to further increase the discriminability of original PCSSR approach.
The proposed method considers not only the spectral information but also the spatial information of
the hyperspectral data, consequently leading to significant performance improvement. Experimental
results on different datasets demonstrate that compared with state-of-the-start classification models,
the proposed method achieves the highest overall accuracies of 99.71%, 97.13%, and 97.07% on
Botswana (BOT), Kennedy Space Center (KSC) and the truncated Indian Pines (PINE) datasets,
respectively, with a small number of training samples selected from each class.

Keywords: hyperspectral image classification; semi-supervised learning; sparse representation;
spatial distance information; regularizer

1. Introduction

A hyperspectral image (HSI) records a wide range of electromagnetic wave data reflected by the
earth’s surface. HSI has been widely used in agricultural mapping [1] and mineral identification [2],
and due to its high-resolution spectral record of the land covers, HSI data is suitable for the classification
of different objects on land [3–5]. However, among all HSI data acquired, the labeled one is very
limited. In this situation, semi-supervised learning (SSL) provides a promising way to deal with both
the limited labeled data and the rich unlabeled data [6,7].

In recent years, many groups have applied SSL methods to the HSI classification area. The typical
SSL methods include the self-training method [8], the collaborative training method [9], the generative
model method [10] and the graph-based method [11]. The self-training method [8] adds pseudo-labels
to high-confidence unlabeled samples in each iteration until all the unlabeled samples are labeled.
The collaborative learning [9] is proposed to make the HSI classification performances more reasonable

Appl. Sci. 2020, 10, 7740; doi:10.3390/app10217740 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-4761-4726
https://orcid.org/0000-0002-2689-0932
http://www.mdpi.com/2076-3417/10/21/7740?type=check_update&version=1
http://dx.doi.org/10.3390/app10217740
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 7740 2 of 18

and promising within limited labeled data samples which combines activate learning (AL) with SSL.
The generative models such as expectation-maximization algorithms with finite-mixture models [10]
have been applied for HSI classification. It is worth mentioning a self-training method based on
convolutional neural networks (CNN) proposed by Wu et al. [12]. In their work, authors propose a
CNN-based classification framework which uses self-training to gradually assign pseudo labels to
unlabeled samples by clustering and employs spatial constraints to regulate self-training process. It is
an attractive work that combines the spectral neighborhood information with the spectral information
and achieves high performance on several datasets. However, the CNN-based method could be
time-consuming at the training stage, and the performance of a self-training model is highly dependent
on the initial samples it chooses.

Among all SSL methods, the graph-based method [13] has attracted attention from many
researchers because it is easy to analyze the mathematical formulation and can obtain a close-form
solution. On the other hand, sparse representation (SR) provides us a reliable way, due to its solid
foundation in mathematics, to describe the linkage between samples, which could help the graph
building. The SR method was first introduced by Yan et al. [13] and Cheng et al. [14] to generate
the L1-graph. Afterwards, the SR-based graph method was applied in the HSI classification [13–17].
For example, Gu et al. [15] proposed the L1-graph semi-supervised learning model for hyperspectral
image classification, and Shao et al. [17] presented the probabilistic class structure regularized sparse
representation (PCSSR) approach which outperforms state-of-the-art algorithms in graph construction
in most cases [18,19]. Different from normal SR methods, the PCSSR approach introduces a probabilistic
class structure regularizer into the SR model, where probabilistic class structure reflects the probabilistic
relationship between each sample and each class, and further, calculates the distance between each two
samples based on their probabilistic relationship. With the distance information provided, the process
of the SR algorithm will be guided by it. Therefore, the key point of the PCSSR algorithm is the
distance information and how to generate it properly. In the previous study, however, researchers only
apply another SR process to compute out the distance information, which only focuses on the spectral
information but fails to utilize the spatial information.

Despite the highly discriminative capability to achieve high classification accuracy, PCSSR suffers
from the limitation for neglecting the spatial information of HSI. Since sample pixels have the
characteristics of spatial continuality, failing to consider spatial information would miss such important
characteristics that are beneficial for enhancing classification capability. Referring to the classification
results in PCSSR paper, within a wide range of land covers for a certain class, we may observe mislabeled
pixels that have been classified into a wrong class. Therefore, we conclude that the classification results
by using only spectral information would lack spatial continuality and smoothness.

In order to address the above-mentioned limitation, this work aims to incorporate the spatial
distance information into PCSSR to improve the discriminative capability of PCSSR. In addition,
for better estimating the spatial distance, we propose a new measurement method for spatial distance
called class adjusted spatial distance (CASD). This new method takes into account both the spatial
distance and class difference between each two pixels. By such means, we can obtain appropriate
discriminative information for pixels belonging to the same class but with long spatial distance,
by assigning a relatively small CASD value. The effectiveness of employing CASD for the regularization
process in PCSSR was thoroughly verified by the experimental results. Experimental results on different
datasets demonstrate that the proposed method can significantly improve the classification accuracy
by incorporating the spatial information in the CASD metrics. Compared with state-of-the-start
classification models, the proposed method achieves the highest overall accuracies of 99.71%, 97.13%,
and 97.07% on BOT, KSC, and truncated IND PINE datasets, respectively, with a small number of
training samples selected from each class. Specifically, the main contributions of this paper include the
following two aspects.

Appl. Sci. 2020, 10, 7740 3 of 18

1. We propose the concept of the CASD. The calculation of the CASD based mainly on the planar Euclidean
distance and the shortest path algorithm. The CASD takes the class similarity between samples into
consideration, which can make the measurement of distance more accurate and reasonable.

2. We apply the CASD to estimate the distance information needed in the PCSSR algorithm.
The results show that, this approach can enhance the performance of the PCSSR algorithm when
enough training samples are provided. We achieve the highest improvement of classification
accuracy of 8.65% and 3.85% on the KSC and the BOT dataset when the number of labeled samples
selected from each class reaches 20, and achieve 15.97% on the truncated IND PINE dataset when
the number of labeled samples selected from each class reaches 15.

2. Related Works

This section provides a brief discussion of existing graph construction methods for HSI classification.
During the process of graph-based SSL method, label propagation (LP) is a crucial step for transferring
labels from a limited number of labeled samples to abundant unlabeled samples [6] with a given graph
which denotes the connection among all samples. The basic idea of the LP algorithm is to assume that
similar samples should have similar labels, so the mathematical way of achieving this purpose is to
define an energy function (see Equation (8)) for the given graph that is used to judge the “smoothness”
of the classification results—if the results meet the assumption of LP (i.e., similar samples should have
similar labels), the value of the energy function will be small and vice versa.

To implement the above-mentioned procedure, we need to first obtain a well-constructed graph
and provide an accurate adjacent matrix. The adjacency matrix of the graph reflects the relationship
between samples, and a well-constructed graph should denote the similarity between samples honestly.
Therefore, we need to find a good and proper method to generate an accurate similarity matrix, i.e.,
the adjacency matrix of the graph. Different from traditional graph construction methods, SR-based
methods have the capabilities of learning the local relationship from samples and computing the
well-discriminated edge weights of the graph, and therefore are robust to noises and parameter
variations. We discuss below some representative methods in these two categories.

2.1. Traditional Graph Construction Methods

The process of graph construction is momentous in graph-based SSL which mainly involves two
steps: building the graph adjacency structure and calculating the graph edge weight. For building
graph adjacency structure, k-nearest neighbors (KNN) and ε-ball neighborhood are the two most
popular approaches [20]. As for graph weighting methods, Zhou et al. [21] use the Gaussian kernel
(GK) function to calculate the edge weight, however if only a few labeled samples are provided, it will
be hard to determine the hyper-parameters in the function [22]. Wang et al. [22] propose a non-negative
local linear reconstruction (LLR) to use the neighborhood information of each data point to construct a
graph in order to derive a more reliable and stable way to construct the graph. First, they approximate
the entire graph as a series of overlapping linear neighborhood patches, then they find the edge weight
of each linear neighborhood patch, and then they aggregate all the edge weights together to form the
edge weight matrix of the entire graph; Ma et al. [23] consider that sparsity is essential for improving
the efficiency of SSL algorithms. Therefore, they propose local linear embedding (LLE)-based weight
which can capture the local geometric properties of hyperspectral data and is good for weighting the
graph edge in a low-level computational cost. Zhuang et al. [24] proposed nonnegative low-rank and
sparse (NNLRS) approach to use both low-rankness of high dimensional data samples and the sparsity
to construct a good graph. The obtained graph can capture the local low-dimensional linear structures
of the data samples and the global cluster or subspace structures of the data samples.

However, these traditional methods share the same disadvantages that they all have fixed manually
tuning parameters. As a result, this category of graph construction methods are very sensitive to the
data noise and parameter variations.

Appl. Sci. 2020, 10, 7740 4 of 18

2.2. SR-Based Graph Construction Methods

Unlike the traditional graph generation approaches, the SR-based methods can learn the local
relationship from samples and compute the well-discriminated edge weights of the graph. By encoding
a certain sample as a sparse linear combination of all the other samples, the sparse coefficients of
the linear combination can be viewed as the edge weights from the certain sample to all the other
samples [13,14]. By doing so, the graph that LP algorithm demanded could be generated.

In addition to the most SR based methods, Shao et al. proposed the probabilistic class structure
regularized sparse representation (PCSSR) approach. In their work, the authors manage to incorporate
the SR model with a probabilistic class structure that reflects the probabilistic relationship between each
sample and each class. Further, with the probabilistic class structure provided, the distance between
each two samples can be acquired according to the difference between their probabilistic class labels.
Finally, a class structure regularization is developed using the distance between each two samples.
The authors claim that, with the class structure regularizer, PCSSR can learn a more discriminative
graph from the data, and as shown in the experimental results, the PCSSR method outperforms state
of the art on Hyperion and airborne visible infrared imaging spectrometer (AVIRIS) hyperspectral
data. The class structure regularizer and the full model of PCSSR are shown in Equations (1) and
(2), respectively, where W is the adjacency matrix we need to obtain for the LP algorithm, M is the
distance matrix and each entry Mi j represents the distance between two samples based on the difference
between their probabilistic class label, and X denotes all samples in training set and testing set.

R(W) =
∑
i, j

∣∣∣Wi j ·Mi j
∣∣∣ (1)

min
W

1
2
‖X −XW‖2F + λ1‖W‖1 + λ2R(W) s.t. diag(W) = 0, W ≥ 0, (2)

However, the probabilistic class structure used in the PCSSR paper in obtained only through
another SR process, which fails to take into account the abundant spatial information in the HSI dataset.
Despite the highly discriminative capability to achieve high classification accuracy, PCSSR suffers from
the limitation for neglecting the spatial information of HSI. Since sample pixels have the characteristics
of spatial continuality, failing to consider spatial information would miss such important characteristics
that are beneficial for enhancing classification capability. Therefore, we conclude that the classification
results by using only spectral information would lack spatial continuality and smoothness. In order to
address the above-mentioned limitation, our work aims to incorporate the spatial distance information
into PCSSR to improve the discriminative capability of PCSSR, which will be introduced and tested in
the following sections.

3. Modeling and Algorithms

This section details the proposed HSI classification approach that introduces CASD in a SR
graph-based method, in order to take advantage of spatial information for improving the classification
accuracy. The fundamental idea is to use our proposed CASD instead of the distance matrix M
acquired by SR process in the original PCSSR method to measure the distance between any two
samples. The CASD-assisted PCSSR can achieve a more accurate and reasonable measurement of
sample distances. We further employ the LP algorithm to predict the probability of each unlabeled pixel
belonging to a certain class. Figure 1 illustrates the general flow of the proposed CASD-assisted HSI
classification method. In what follows, we describe in detail the main steps in this classification flow.

Appl. Sci. 2020, 10, 7740 5 of 18

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 20

Figure 1. The general flow of the proposed class adjusted spatial distance (CASD)-assisted
hyperspectral image (HSI)_classification method.

3.1. Class Adjusted Spatial Distance

For the purpose of incorporating spatial information into PCSSR, we propose using CASD to
replace distance matrix ܯ required by SR process in the original PCSSR. We first provide a brief
introduction to th planar Euclidean distance (PED). Consider two points (ܽଵ, ܾଵ), (ܽଶ, ܾଶ) in a plane.
The PED between these two points is defined as: ݀ = ඥ(ܽଵ − ܽଶ)ଶ + (ܾଵ − ܾଶ)ଶ (3)

As we have discussed, to improve the performance of the PCSSR algorithm, a proper distance
measurement between each two samples is needed. The distance matrix should reflect the similarity
or difference among samples. Since each sample is just an area on the ground, the simplest way to
measure the distance between each two samples is by calculating the spatial distance, i.e., the PED
between them. The distribution of land covers is usually in a continuous way, so if a sample belongs
to some class ܿ ∈ ሼܿଵ, ܿଶ, ܿଷ, . . . ሽ, the samples in its spatial neighborhood are likely to belong to the
same class as it. Thus, we can use the PED between two samples to represent their similarity.

However, PED has its limitation for measuring the distance information that PCSSR needs. It is
possible that two samples distant from each other belong to the same class, which is not unusual in
the land cover classification. In this case, PCSSR using PED would fail to classify such samples. To
overcome this limitation, we introduce the class adjusted spatial distance (CASD) to replace the naïve
planar Euclidean distance. Generally speaking, the CASD is a distance measurement which considers
not only the Euclidean distance between two samples but also their class difference. We mainly use
the Euclidean distance algorithm and the shortest path algorithm to solve the CASD.

We first generate a complete undirected graph ܩ(ܸ, where ܸ represents all the ݊ samples (ܧ
and ܧ is valued with the Euclidean distances between every two samples. The distance from a
sample point to itself is defined as 0. Then, we check all the labeled samples (vertices) in the complete
graph ܩ. If two labeled samples belong to the same class, we change the edge weight between them
to 0. In this way, we make the samples with the same class “closer” to each other. At the last step,
we apply the shortest path algorithm (for example Dijkstra algorithm [25]) between every two
vertices in the graph ܩ and revalue the edge weight between them with the length of the computed
shortest path. We define this new edge weight as “the class adjusted spatial distance”. The above
process is illustrated in Figure 2, and the Algorithm 1 is described below.

Figure 1. The general flow of the proposed class adjusted spatial distance (CASD)-assisted hyperspectral
image (HSI)_classification method.

3.1. Class Adjusted Spatial Distance

For the purpose of incorporating spatial information into PCSSR, we propose using CASD to
replace distance matrix M required by SR process in the original PCSSR. We first provide a brief
introduction to th planar Euclidean distance (PED). Consider two points (a1, b1), (a2, b2) in a plane.
The PED between these two points is defined as:

d =

√
(a1 − a2)

2 + (b1 − b2)
2 (3)

As we have discussed, to improve the performance of the PCSSR algorithm, a proper distance
measurement between each two samples is needed. The distance matrix should reflect the similarity
or difference among samples. Since each sample is just an area on the ground, the simplest way to
measure the distance between each two samples is by calculating the spatial distance, i.e., the PED
between them. The distribution of land covers is usually in a continuous way, so if a sample belongs to
some class ci ∈ {c1, c2, c3, . . .}, the samples in its spatial neighborhood are likely to belong to the same
class as it. Thus, we can use the PED between two samples to represent their similarity.

However, PED has its limitation for measuring the distance information that PCSSR needs. It is
possible that two samples distant from each other belong to the same class, which is not unusual
in the land cover classification. In this case, PCSSR using PED would fail to classify such samples.
To overcome this limitation, we introduce the class adjusted spatial distance (CASD) to replace the naïve
planar Euclidean distance. Generally speaking, the CASD is a distance measurement which considers
not only the Euclidean distance between two samples but also their class difference. We mainly use the
Euclidean distance algorithm and the shortest path algorithm to solve the CASD.

We first generate a complete undirected graph G(V, E) where V represents all the n samples and E
is valued with the Euclidean distances between every two samples. The distance from a sample point
to itself is defined as 0. Then, we check all the labeled samples (vertices) in the complete graph G. If two
labeled samples belong to the same class, we change the edge weight between them to 0. In this way,
we make the samples with the same class “closer” to each other. At the last step, we apply the shortest
path algorithm (for example Dijkstra algorithm [25]) between every two vertices in the graph G and
revalue the edge weight between them with the length of the computed shortest path. We define this
new edge weight as “the class adjusted spatial distance”. The above process is illustrated in Figure 2,
and the Algorithm 1 is described below.

Appl. Sci. 2020, 10, 7740 6 of 18

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 20

Figure 2. A graphical illustration of the CASD algorithm. (a) The raw dataset with A~F six samples,
where A, F are the labeled samples with the same class and the rest are unlabeled samples to be
predicted. The subscript below each sample shows its pixel location in the hyperspectral data. (b)
Construct a complete undirected graph where each vertex represents a sample and the edge between
every two samples is weighted by their Euclidean distance. (c) A and F are the labeled samples with
the same class, so reweight the edge between them by zero. (d) For every two vertices, compute the
shortest path between them (the shortest path between A and C is marked in magenta). (e) Update
the weight between every two vertices with the length of the shortest path between them. The new
edge weight is called “the class adjusted spatial distance”.

Algorithm 1 Compute CASD for each two samples
Input: Array with the spatial coordinates of ݈ labeled samples ݀ݎܥ = ሾ(ܽଵ, ܾଵ), (ܽଶ, ܾଶ), … , (ܽ, ܾ)ሿ
and the coordinates of ݑ unlabeled samples ݀ݎܥ௨ = ሾ(ܽାଵ, ܾାଵ), (ܽାଶ, ܾାଶ), … , (ܽା௨, ܾା௨)ሿ, the
label vector that notes the class of every labeled sample ݈ܾ݁ܽܮ = ሾܿଵ, ܿଶ, … , ܿሿ
Output: The adjacency matrix ܯ ∈ ℝ×, ݊ = ݈ + ݑ

1. Weight the edges in the graph by: ܯ(݅, ݆) =)݁ܿ݊ܽݐݏ݅ܦ݈݊ܽ݁݀݅ܿݑܧ ,(݅)݀ݎܥ ((݆)݀ݎܥ
2. Update the edge weight ܯ(݈ଵ, ݈ଶ) between every two labeled samples ݈ଵ,݈ଶ according to the

following equation: ܯ(݈ଵ, ݈ଶ) = ൜ 0 , (ଵ݈)݈ܾ݁ܽܮ = ,ଵ݈)ܯ(ଶ݈)݈ܾ݁ܽܮ ݈ଶ) ,otherwise

3. Calculate the shortest path between every two vertices ݒଵ,ݒଶ in the graph: ܲܽݒ)݄ݐଵ, (ଶݒ =)݈݃ܣ݄ݐܽܲݐݏ݁ݐݎ݄ܵ ,ଵݒ (ଶݒ
4. Update the edge weight ݒ)ܯଵ, (ଶݒ =)݄ݐ݈݃݊݁ ,ଵݒ)݄ݐܽܲ ((ଶݒ

The element value ܯ in the output adjacency matrix ܯ represents the calculated CASD
between the i-th sample and j-th sample.

3.2. CASD-Assisted PCSSR

Based upon the CASD metric defined in Section 3.1, we now describe how to generate the graph
for the LP algorithm by using the PCSSR flow. To start with, the PCSSR-based graph generation
method is derived from the typical SR-based method. For every sample, the SR based method aims

Figure 2. A graphical illustration of the CASD algorithm. (a) The raw dataset with A~F six samples,
where A, F are the labeled samples with the same class and the rest are unlabeled samples to be predicted.
The subscript below each sample shows its pixel location in the hyperspectral data. (b) Construct a
complete undirected graph where each vertex represents a sample and the edge between every two
samples is weighted by their Euclidean distance. (c) A and F are the labeled samples with the same
class, so reweight the edge between them by zero. (d) For every two vertices, compute the shortest
path between them (the shortest path between A and C is marked in magenta). (e) Update the weight
between every two vertices with the length of the shortest path between them. The new edge weight is
called “the class adjusted spatial distance”.

Algorithm 1: Compute CASD for each two samples

Input: Array with the spatial coordinates of l labeled samples Cordl = [(a1, b1), (a2, b2), . . . , (al, bl)] and the
coordinates of u unlabeled samples Cordu = [(al+1, bl+1), (al+2, bl+2), . . . , (al+u, bl+u)], the label vector that
notes the class of every labeled sample Label = [c1, c2, . . . , cl]

Output: The adjacency matrix M ∈ Rn×n, n = l + u

1. Weight the edges in the graph by:
M(i, j) = EuclideanDistance(Cord(i), Cord(j))

2. Update the edge weight M(l1, l2) between every two labeled samples l1,l2 according to the
following equation:

M(l1, l2) =

0 , Label(l1) = Label(l2)

M(l1, l2) , otherwise

3. Calculate the shortest path between every two vertices v1,v2 in the graph:
Path(v1, v2) = ShortestPathAlgo(v1, v2)

4. Update the edge weight M(v1, v2) = length(Path(v1, v2))

The element value Mi j in the output adjacency matrix M represents the calculated CASD between
the i-th sample and j-th sample.

3.2. CASD-Assisted PCSSR

Based upon the CASD metric defined in Section 3.1, we now describe how to generate the graph
for the LP algorithm by using the PCSSR flow. To start with, the PCSSR-based graph generation method
is derived from the typical SR-based method. For every sample, the SR based method aims to encode

Appl. Sci. 2020, 10, 7740 7 of 18

it as a sparse linear combination of the other samples [13,14]. The typical SR model is formulated as
follows:

W = argmin‖W‖1 s.t. X = XW, diag(W) = 0, W ≥ 0, (4)

where X denotes all the samples in training set and testing set; ‖·‖ represents the L-1 norm. By solving
this regularization model, we can obtain the graph weight matrix W demanded in the following
LP process.

Furthermore, due to the complex working environment and contamination during the data
transmission, many hyperspectral images are corrupted by different types and amounts of noises,
two common types of which are stripping noise and salt-and-pepper noise. Therefore, considering the
corrupted data and the noise during collection, the method can be rewritten as follow to enhance the
robustness against noises:

W = argmin
1
2
‖X −XW‖2F + λ‖W‖1 s.t. diag(W) = 0, W ≥ 0, (5)

where X denotes all the samples in training set and testing set and λ is a tradeoff parameter that
controls the sparsity of W.

In the next step, we come to a point of divergence from the original paper—the original PCSSR
paper next introduces a probabilistic class structure term P = [Pl; Pu] ∈ Rn×c where Pi j represents the
possibility that a sample i belongs to the class j, and then calculates the distance matrix M based on
the probabilistic class structure P, where Mi j =

1
2‖Pi − P j‖

2. It is necessary to state that, in the original
PCSSR paper, the probabilistic class structure P is generated through a standard SR process, and one of
the aims of our work is to introduce the spatial information into the PCSSR.

Therefore, instead of computing the probabilistic class structure, we run Algorithm 1, as proposed
in Section 3.1, to get the CASD information between each two samples and apply the CASD information
as the new distance matrix M, where Mi j measures the distance between the i-th and j-th sample. If the
two samples are close to each other (by category or in spatial), Mi j will be a small number, which means
they are similar to each other. The additional regularizer for graph edge matrix W is as follows:

R(W) =
∑
i, j

∣∣∣Wi j ·Mi j
∣∣∣ (6)

Obviously, to acquire a smaller R(W), Wi j needs to be small when Mi j is a large number. By this
regularizer, the linkage between two far-away samples will be regularized into a weak linkage.
Once we obtain the similarity (or the distance) matrix M by calculating CASD, the final formula of our
CASD-assisted PCSSR approach is formulated as:

min
W

1
2
‖X −XW‖2F + λ1‖W‖1 + λ2R(W) s.t. diag(W) = 0, W ≥ 0, (7)

where λ1 controls the sparsity of W, λ2 controls the effect of class structure regularizer. The model
formulated in (7) is a constrained optimization problem and can be relaxed and solved by Lagrange
multipliers methods, for example the alternating direction methods of multipliers (ADM) [26]. However,
ADM has the disadvantage of introducing extra variables and requiring parameter tuning. In this work,
following the original PCSSR method [17], we employ the ADM with adaptive penalty (ADMAP) [27],
which can overcome the above-mentioned limitations, to solve problem (7).

3.3. Label Propagation

After getting the sparse graph and its adjacency matrix W, we can obtain the final prediction
result by using the LP algorithm on the obtained graph. As mentioned in Section 2, the main purpose
of the LP algorithm is to transfer labels from the labeled samples to unlabeled samples, and during
this process, a prediction matrix will be generated. Furthermore, the generated prediction results

Appl. Sci. 2020, 10, 7740 8 of 18

should meet the basic assumption of LP algorithm that similar samples should have similar labels.
The mathematical way of achieving the purpose of the LP algorithm is to define an energy function
E(f) with a given graph and to minimize the function E(f).

E(f) =
1
2

∑
i, j

Wi j‖ fi − f j‖
2 (8)

where fi, f j are respectively the predicted label vectors of the i-th and j-th data samples. f is composed
of all the predicted label vectors. The matrix W is the adjacency matrix of the graph needed for the
LP process.

In order to maintain the experimental consistency with the original PCSSR paper, we follow the
formula of LP algorithm used in the original PCSSR paper. The full explanation and the adapted
formula are detailed as follows.

The labeled samples are expressed as Xl = [x1, x2, . . . , xl], and a large number of unlabeled samples
Xu = [xl+1, xl+2, . . . , xl+u]. There are total C classes denoted as C = {1, 2, . . . , c}. Let n = l + u be the
total number of data samples, and usually, the value l is much smaller than u. The matrix W ∈ Rn×n,
the adjacency matrix of graph G which can be obtained from the PCSSR process, implies the similarity
or the connection between each two samples. Next, we define a label matrix Yl with l rows, where each
row Yli ∈ R1×c is a one-hot vector representing the class that the corresponding labeled sample xi
belongs to. F ∈ Rn×c is the prediction matrix, of which each element Fi j represents the probability of
the i-th sample belonging to the j-th class; Fl ∈ Rl×c is the upper l rows of F, while Fu ∈ Ru×c is the
lower u rows of F.

min
F∈Rn×c

1
2

∑N

i, j=1
Wi j‖ fi − f j‖

2 = Tr
(
FTLWF

)
s.t. Fl = Yl, (9)

where the expression after min can be viewed as the energy function; fi ∈ R1×c, f j ∈ R1×c are the
predicted label vector of the data sample xi, x j. Lw = D −W is the Laplacian matrix where D is a
diagonal matrix, and Dii =

∑
j

Wi j.

Then we split LW into 4 blocks by the number of labeled and unlabeled samples:(
LWll LWlu

LWul LWuu

)
Finally, we get the prediction matrix that records the possibility of each unlabeled sample belonging

to each class:
Fu = −L−1

Wuu
LWulYl, (10)

The final prediction result for every unlabeled sample is given by:

yi = arg max
j=1,2,...,c

Fu(i, j), i = 1, 2, . . . , u (11)

where yi denotes the class that the unlabeled sample i is most likely to belong to.

4. Experimental Results and Analysis

In this section, we will test the CASD assisted PCSSR algorithm on six different hyperspectral
datasets. The algorithm is implemented with MATLAB 2019b and runs on a laptop with i5-7300HQ
and GTX 1050TI. We use traditional graph-based algorithms in comparison. The codes and datasets
used to generate the results and figures are available in Code Ocean [28].

4.1. Experimental Datasets

Two groups of datasets are used to evaluate our model. The first group includes the whole
Botswana (BOT) dataset, the whole Kennedy Space Center (KSC) dataset, and the truncated Indian

Appl. Sci. 2020, 10, 7740 9 of 18

Pines (truncated IND PINE) dataset where the labeled ground blocks are relatively discrete and distant
from each other. Different from the first group, the labeled samples in the second group are less discrete
and always appear in bulk. The whole Indian Pines (IND PINE) dataset, the whole Salinas (SAL)
dataset, and the whole Pavia University (PAV) dataset are included.

The BOT dataset was collected by the Hyperion sensor on EO-1 satellite over the Okavango Delta,
Botswana in May 2001. The 242 spectral bands of the Hyperion image are ranging from 357 to 2576 nm
with a spatial resolution of 30 m. Total number of 145 bands in BOT are left after removing some
un-calibrated and noisy bands. The KSC, IND PINE and SAL dataset were separately gathered by
the AVIRIS sensor over the Kennedy Space Center on March 23, 1996, over the Indian Pines test site
in North-western Indian in 1992 and over the Salinas Valley, California, with 224 spectral reflectance
bands in the wavelength ranging from 400 to 2500 nm. The un-calibrated bands and noisy bands
covering the water absorption feature are removed and only 200 bands remain. The PAV dataset was
acquired by the reflective optics system imaging spectrometer (ROSIS) sensor over Pavia University
with 103 spectral bands and a spatial resolution of 1.3 m. Before analysis, some of the samples which
contain no information are discarded.

More information of these six datasets can be found in [29], and all datasets can be downloaded
from [28]. The ground truth of every dataset is shown in Figures 3 and 4. The sample size of each class
in each dataset is shown in Tables 1 and 2.

Table 1. Sample size (number of pixels) of each class in datasets from Group I.

Class
No.

Botswana
(BOT)

Kennedy Space Center
(KSC)

Truncated Indiana Pine
(Truncated IND PINE)

Class Name Sample Size Class Name Sample Size Class Name Sample Size

1 Water 158 Scrub 761 Alfalfa 46

2 Primary
Floodplain 228 Willow

swamp 243 Corn-notill 100

3 Riparian 237 CP
hammock 256 Corn-mintill 270

4 Firescar 178 CP/Oak 252 Corn 237

5 Island
interior 183 Slash pine 161 Grass-pasture 59

6 Woodlands 199 Oak/Broadleaf 229 Grass-trees 93

7 Savanna 162 Hardwood
swamp 105 Grass-pasture-mowed 28

8 Short
mopane 124 Graminoid

marsh 431 Hay-windrowed 478

9 Exposed
soils 111 Spartina

marsh 520 Oats 20

10 Cattail
marsh 404 Soybean-notill 66

11 Salt marsh 419 Soybean-mintill 123
12 Mud flats 503 Soybean-clean 256
13 Water 927 Wheat 205
14 Woods 120
15 Buildings-grass-trees-drives 297
16 Stone-steel-towers 93

Table 2. Sample size (number of pixels) of each class in datasets from Group II.

Class
No.

Indiana Pine
(IND PINE)

Salinas Scene
(SAL)

Pavia University
(PAV)

Class Name Sample Size Class Name Sample Size Class Name Sample Size

1 Alfalfa 46 Brocoli_green_weeds_1 2009 Water 824
2 Corn-notill 1428 Brocoli_green_weeds_2 3726 Trees 820
3 Corn-mintill 830 Fallow 1976 Asphalt 816

4 Corn 237 Fallow_rough_plow 1394 Self-Blocking
Bricks 808

Appl. Sci. 2020, 10, 7740 10 of 18

Table 2. Cont.

Class
No.

Indiana Pine
(IND PINE)

Salinas Scene
(SAL)

Pavia University
(PAV)

Class Name Sample Size Class Name Sample Size Class Name Sample Size

5 Grass-pasture 483 Fallow_smooth 2678 Bitumen 808
6 Grass-trees 730 Stubble 3959 Tiles 1260
7 Grass-pasture-mowed 28 Celery 3579 Shadows 476
8 Hay-windrowed 478 Grapes_untrained 11271 Meadows 824
9 Oats 20 Soil_vinyard_develop 6203

10 Soybean-notill 972 Corn_senesced_green_weeds 3278
11 Soybean-mintill 2455 Lettuce_romaine_4wk 1068
12 Soybean-clean 593 Lettuce_romaine_5wk 1927
13 Wheat 205 Lettuce_romaine_6wk 916
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 20

Table 2. Sample size (number of pixels) of each class in datasets from Group II.

Class
No.

Indiana Pine
(IND PINE)

Salinas scene
(SAL)

Pavia University
(PAV)

Class Name
Sample

Size
Class Name

Sample
Size

Class Name
Sample

Size
1 Alfalfa 46 Brocoli_green_weeds_1 2009 Water 824
2 Corn-notill 1428 Brocoli_green_weeds_2 3726 Trees 820
3 Corn-mintill 830 Fallow 1976 Asphalt 816
4 Corn 237 Fallow_rough_plow 1394 Self-Blocking Bricks 808
5 Grass-pasture 483 Fallow_smooth 2678 Bitumen 808
6 Grass-trees 730 Stubble 3959 Tiles 1260
7 Grass-pasture-mowed 28 Celery 3579 Shadows 476
8 Hay-windrowed 478 Grapes_untrained 11271 Meadows 824
9 Oats 20 Soil_vinyard_develop 6203
10 Soybean-notill 972 Corn_senesced_green_weeds 3278
11 Soybean-mintill 2455 Lettuce_romaine_4wk 1068
12 Soybean-clean 593 Lettuce_romaine_5wk 1927
13 Wheat 205 Lettuce_romaine_6wk 916
14 Woods 1265

15
Buildings-Grass-Trees-

Drives
386

16 Stone-Steel-Towers 93

Figure 3. Ground truth of datasets in Group I. (a) Ground truth of the truncated Indian Pines (IND
PINE) image. (b) Ground truth of the Kennedy Space Center (KSC) image. (c) Ground truth of the
Botswana (BOT) image.

Figure 3. Ground truth of datasets in Group I. (a) Ground truth of the truncated Indian Pines (IND
PINE) image. (b) Ground truth of the Kennedy Space Center (KSC) image. (c) Ground truth of the
Botswana (BOT) image.Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 20

Figure 4. Ground truth of datasets in Group II. (a) Ground truth of the truncated Salinas (SAL) image.
(b) Ground truth of the IND PINE image. (c) Ground truth of the Pavia University (PAV) image.

4.2. Experimental Setup

In this part, we evaluate the performance of our CASD assisted PCSSR algorithm on all datasets,
and its performance on group I datasets will be compared to other traditional graph-based
classification methods stated in [17], including the original PCSSR graph method, the Gaussian kernel
(GK) graph method, the nonnegative local linear reconstruction (LLR) graph method, the local linear
embedding (LLE) graph method, the nonnegative low-rank and sparse (NNLRS) graph method, and
the SR graph method. Our CASD assisted PCSSR approach is implemented under the same label
propagation framework as other models, and the hyperparameters from other models stay the same
as [17]. The process of hyper-parameter determination during our model development will be stated
in Section 4.4.

We separate every dataset into two parts, i.e., the training set and the testing set. In our case, the
latter is much larger than the former. For each dataset, we randomly pick out 3/5/10/15/20 samples
per class as the training set (the labeled samples), and the rest as the testing set (the unlabeled
samples). An example of dividing IND PINE dataset is illustrated by Figure 5. To accord with [17],
we run our algorithm 20 times for each dataset. The mean of overall accuracy (OA), average accuracy
(AA), and the Kappa coefficient are utilized to evaluate the classification results.

Figure 5. An example of dividing IND PINE dataset into training set and testing set. (a) The complete
IND PINE dataset. (b) Training set generated by randomly picking out 10 samples per class from the
complete IND PINE dataset. (c) Testing set.

Figure 4. Ground truth of datasets in Group II. (a) Ground truth of the truncated Salinas (SAL) image.
(b) Ground truth of the IND PINE image. (c) Ground truth of the Pavia University (PAV) image.

Appl. Sci. 2020, 10, 7740 11 of 18

4.2. Experimental Setup

In this part, we evaluate the performance of our CASD assisted PCSSR algorithm on all datasets,
and its performance on group I datasets will be compared to other traditional graph-based classification
methods stated in [17], including the original PCSSR graph method, the Gaussian kernel (GK) graph
method, the nonnegative local linear reconstruction (LLR) graph method, the local linear embedding
(LLE) graph method, the nonnegative low-rank and sparse (NNLRS) graph method, and the SR graph
method. Our CASD assisted PCSSR approach is implemented under the same label propagation
framework as other models, and the hyperparameters from other models stay the same as [17].
The process of hyper-parameter determination during our model development will be stated in
Section 4.4.

We separate every dataset into two parts, i.e., the training set and the testing set. In our case,
the latter is much larger than the former. For each dataset, we randomly pick out 3/5/10/15/20 samples
per class as the training set (the labeled samples), and the rest as the testing set (the unlabeled samples).
An example of dividing IND PINE dataset is illustrated by Figure 5. To accord with [17], we run
our algorithm 20 times for each dataset. The mean of overall accuracy (OA), average accuracy (AA),
and the Kappa coefficient are utilized to evaluate the classification results.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 20

Figure 4. Ground truth of datasets in Group II. (a) Ground truth of the truncated Salinas (SAL) image.
(b) Ground truth of the IND PINE image. (c) Ground truth of the Pavia University (PAV) image.

4.2. Experimental Setup

In this part, we evaluate the performance of our CASD assisted PCSSR algorithm on all datasets,
and its performance on group I datasets will be compared to other traditional graph-based
classification methods stated in [17], including the original PCSSR graph method, the Gaussian kernel
(GK) graph method, the nonnegative local linear reconstruction (LLR) graph method, the local linear
embedding (LLE) graph method, the nonnegative low-rank and sparse (NNLRS) graph method, and
the SR graph method. Our CASD assisted PCSSR approach is implemented under the same label
propagation framework as other models, and the hyperparameters from other models stay the same
as [17]. The process of hyper-parameter determination during our model development will be stated
in Section 4.4.

We separate every dataset into two parts, i.e., the training set and the testing set. In our case, the
latter is much larger than the former. For each dataset, we randomly pick out 3/5/10/15/20 samples
per class as the training set (the labeled samples), and the rest as the testing set (the unlabeled
samples). An example of dividing IND PINE dataset is illustrated by Figure 5. To accord with [17],
we run our algorithm 20 times for each dataset. The mean of overall accuracy (OA), average accuracy
(AA), and the Kappa coefficient are utilized to evaluate the classification results.

Figure 5. An example of dividing IND PINE dataset into training set and testing set. (a) The complete
IND PINE dataset. (b) Training set generated by randomly picking out 10 samples per class from the
complete IND PINE dataset. (c) Testing set.

Figure 5. An example of dividing IND PINE dataset into training set and testing set. (a) The complete
IND PINE dataset. (b) Training set generated by randomly picking out 10 samples per class from the
complete IND PINE dataset. (c) Testing set.

4.3. Results and Discussion

Figure 6 shows how the classification overall accuracy (OA) changes with the number of labeled
samples on six different datasets, and Figure 7 demonstrates the visualized classification results. For the
classification result on the KSC dataset, as illustrated in Figure 6a, the CASD assisted PCSSR-graph
method performs better than other methods when the number of labeled samples is more than 5 per class,
finally achieving an accuracy about 97% and about 10% higher than other methods. For the result on the
BOT dataset, as illustrated in Figure 6b, the CASD assisted PCSSR-graph method performs better than
other methods when the number of labeled samples is more than 5 per class, finally achieving an accuracy
about 99% and about 5% higher than other methods. For the result on the truncated IND PINE dataset
presented in Figure 6c, the performance of our method surpasses other methods all along, and obtains an
accuracy about 96% and about 16% higher than other methods when the number of labeled samples is
15 per class.

Appl. Sci. 2020, 10, 7740 12 of 18

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 20

4.3. Results and Discussion

Figure 6 shows how the classification overall accuracy (OA) changes with the number of labeled
samples on six different datasets, and Figure 7 demonstrates the visualized classification results. For
the classification result on the KSC dataset, as illustrated in Figure 6a, the CASD assisted PCSSR-
graph method performs better than other methods when the number of labeled samples is more than
5 per class, finally achieving an accuracy about 97% and about 10% higher than other methods. For
the result on the BOT dataset, as illustrated in Figure 6b, the CASD assisted PCSSR-graph method
performs better than other methods when the number of labeled samples is more than 5 per class,
finally achieving an accuracy about 99% and about 5% higher than other methods. For the result on
the truncated IND PINE dataset presented in Figure 6c, the performance of our method surpasses
other methods all along, and obtains an accuracy about 96% and about 16% higher than other
methods when the number of labeled samples is 15 per class.

Figure 6. Overall accuracy with different number of labeled samples on all datasets. (a) KSC data with
13 classes (ߣଵ = 1 × 10ିସ, ଶߣ = 2 × 10ିହ). (b) BOT data with 9 classes (ߣଵ = 1 × 10ିସ, ଶߣ = 2 × 10ି).
(c) Truncated IND PINE data with 16 classes (ߣଵ = 1 × 10ିସ, ଶߣ = 2 × 10ିହ). (d) IND PINE data with
16 classes (ߣଵ = 1 × 10ିସ, ଶߣ = 4 × 10ିହ). (e) SAL data with 16 classes (ߣଵ = 1 × 10ିସ, ଶߣ = 6 × 10ି).
(f) Pavia University (PAV) data with 9 classes (ߣଵ = 1 × 10ିସ, ଶߣ = 4 × 10ି).

Figure 6. Overall accuracy with different number of labeled samples on all datasets. (a) KSC data with
13 classes (λ1 = 1× 10−4,λ2 = 2× 10−5). (b) BOT data with 9 classes (λ1 = 1× 10−4,λ2 = 2× 10−6).
(c) Truncated IND PINE data with 16 classes (λ1 = 1× 10−4,λ2 = 2× 10−5). (d) IND PINE data with
16 classes (λ1 = 1× 10−4,λ2 = 4× 10−5). (e) SAL data with 16 classes (λ1 = 1× 10−4,λ2 = 6× 10−6).
(f) Pavia University (PAV) data with 9 classes (λ1 = 1× 10−4,λ2 = 4× 10−6).Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 20

Figure 7. A demonstration of the typical classification results on six datasets. (a) KSC data with 20
labeled samples selected per class; overall accuracy (OA) = 96.16% (ߣଵ = 1 × 10ିସ, ଶߣ = 2 × 10ିହ). (b)
BOT data with 20 labeled samples selected per class; OA = 99.93% (ߣଵ = 1 × 10ିସ, ଶߣ = 2 × 10ି). (c)
Truncated IND PINE data with 15 labeled samples selected per class; OA = 98.36% (ଵߣ = 1 ×10ିସ, ଶߣ = 7 × 10ିହ). (d) IND PINE data with 20 labeled samples selected per class; OA = 86.68% (ߣଵ =1 × 10ିସ, ଶߣ = 4 × 10ିହ). (e) SAL data with 20 labeled samples selected per class; OA = 98.72% (ߣଵ =1 × 10ିସ, ଶߣ = 6 × 10ି). (f) PAV data with 20 labeled samples selected per class; OA = 92.68% (ߣଵ =1 × 10ିସ, ଶߣ = 4 × 10ି).

Furthermore, the classification accuracy of each class, the overall accuracy (OA), the average
accuracy (AA), and the Kappa coefficient for the different graph-based methods on three datasets are
shown in Tables 3–5, where the highest value of each row is shown in bold. For the BOT dataset,
Table 3 exhibits that our method outperforms all the other algorithms with the best class-specific
accuracies on almost all indices on all classes. The only exception is that on Class Two, our method
achieves an accuracy 99.93% whereas the highest accuracy is 100.00%. For the KSC dataset, Table 4
presents that our method achieves better performance than all the other algorithms on almost all
indices. The only exception is that on Class 11 our method achieves an accuracy 99.64% whereas the
highest accuracy is 99.70%. For the truncated IND PINE dataset, Table 5 shows that our method
outperforms all the other algorithms once again with the best class-specific accuracies on almost all
indices. The only exception is that on Class Eight our method achieves an accuracy 99.64% whereas
the highest accuracy is 100.00%.

All the above figures and tables clarify that the classification accuracies of our model are more
satisfactory than other traditional graph-based methods. Based on the above experiment results, we
can come to the following conclusions:

1. For datasets in Group I, the CASD assisted PCSSR algorithm doesn’t perform so well when a
small number of labeled samples are provided. However, as more labeled samples are given,
our method gradually surpasses other graph-based methods, finally by more than 5% in overall
accuracy. The experiment result indicates the introduction of the spatial information can
effectively improve the classification accuracy of those traditional spectral-focusing algorithms
when given a relatively larger training set.

Figure 7. A demonstration of the typical classification results on six datasets. (a) KSC data with 20 labeled
samples selected per class; overall accuracy (OA) = 96.16% (λ1 = 1× 10−4,λ2 = 2× 10−5). (b) BOT data
with 20 labeled samples selected per class; OA = 99.93% (λ1 = 1× 10−4,λ2 = 2× 10−6). (c) Truncated
IND PINE data with 15 labeled samples selected per class; OA = 98.36% (λ1 = 1× 10−4,λ2 = 7× 10−5).
(d) IND PINE data with 20 labeled samples selected per class; OA = 86.68% (λ1 = 1×10−4,λ2 = 4×10−5).
(e) SAL data with 20 labeled samples selected per class; OA = 98.72% (λ1 = 1× 10−4,λ2 = 6× 10−6).
(f) PAV data with 20 labeled samples selected per class; OA = 92.68% (λ1 = 1× 10−4,λ2 = 4× 10−6).

Appl. Sci. 2020, 10, 7740 13 of 18

Furthermore, the classification accuracy of each class, the overall accuracy (OA), the average
accuracy (AA), and the Kappa coefficient for the different graph-based methods on three datasets are
shown in Tables 3–5, where the highest value of each row is shown in bold. For the BOT dataset, Table 3
exhibits that our method outperforms all the other algorithms with the best class-specific accuracies
on almost all indices on all classes. The only exception is that on Class Two, our method achieves an
accuracy 99.93% whereas the highest accuracy is 100.00%. For the KSC dataset, Table 4 presents that
our method achieves better performance than all the other algorithms on almost all indices. The only
exception is that on Class 11 our method achieves an accuracy 99.64% whereas the highest accuracy is
99.70%. For the truncated IND PINE dataset, Table 5 shows that our method outperforms all the other
algorithms once again with the best class-specific accuracies on almost all indices. The only exception is
that on Class Eight our method achieves an accuracy 99.64% whereas the highest accuracy is 100.00%.

All the above figures and tables clarify that the classification accuracies of our model are more
satisfactory than other traditional graph-based methods. Based on the above experiment results,
we can come to the following conclusions:

1. For datasets in Group I, the CASD assisted PCSSR algorithm doesn’t perform so well when a
small number of labeled samples are provided. However, as more labeled samples are given,
our method gradually surpasses other graph-based methods, finally by more than 5% in overall
accuracy. The experiment result indicates the introduction of the spatial information can effectively
improve the classification accuracy of those traditional spectral-focusing algorithms when given
a relatively larger training set.

2. For datasets in Group II, our algorithm achieves super high accuracy on the SAL dataset. While for
the IND PINE dataset, compared to the truncated one in Group I, the algorithm gets poorer
performance on the whole IND PINE dataset than on the truncated one.

Table 3. Classification accuracy of each class, OA, average accuracy (AA) and Kappa coefficients for
BOT data with nine classes (20 training samples for each class). The highest value of each row is shown
in bold.

Class GK-Graph LLR-Graph LLE-Graph NNLRS-Graph SR-Graph PCSSR-Graph CASD Assisted PCSSR

1 99.30 99.30 100.00 98.60 100.00 100.00 100.00
2 99.00 99.00 97.60 100.00 99.00 99.50 99.93
3 95.60 96.60 96.40 97.50 94.10 98.00 99.93
4 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 93.00 96.10 99.30 95.37 95.50 98.70 100.00
6 78.90 78.30 86.90 91.70 80.80 87.00 100.00
7 97.90 97.90 94.50 95.20 97.20 95.90 99.79
8 91.80 90.90 86.70 80.60 91.00 86.00 100.00
9 84.70 84.50 86.50 92.60 87.10 95.70 99.79

OA 93.36 93.57 94.64 95.21 93.86 95.86 99.71
AA 93.36 93.62 94.21 94.62 93.86 95.64 99.94

Kappa 92.47 92.72 93.93 94.58 93.04 95.31 99.68

Table 4. Classification accuracy of each class, OA, AA and Kappa coefficients for KSC data with
13 classes (20 training samples for each class). The highest value of each row is shown in bold.

Class GK-Graph LLR-Graph LLE-Graph NNLRS-Graph SR-Graph PCSSR-Graph CASD Assisted PCSSR

1 87.90 89.60 96.10 91.10 91.10 97.20 99.27
2 88.60 88.60 90.00 64.20 87.20 92.20 100.00
3 75.30 76.80 64.40 53.40 76.50 74.00 99.96
4 51.30 54.50 42.90 39.50 53.70 51.10 100.00
5 56.20 61.40 40.80 63.50 54.40 57.10 100.00
6 35.10 39.20 41.10 58.00 47.70 54.70 99.27
7 55.70 56.10 63.20 54.80 58.50 69.40 100.00
8 84.10 83.60 81.00 95.40 82.10 84.10 99.96
9 89.20 90.40 91.30 85.60 91.50 91.50 100.00
10 100.00 100.00 99.50 94.30 100.00 100.00 100.00

Appl. Sci. 2020, 10, 7740 14 of 18

Table 4. Cont.

Class GK-Graph LLR-Graph LLE-Graph NNLRS-Graph SR-Graph PCSSR-Graph CASD Assisted PCSSR

11 99.10 99.20 97.00 75.50 99.70 99.70 99.64
12 89.70 91.00 94.80 89.90 90.00 90.70 99.64
13 100.00 100.00 100.00 99.60 100.00 100.00 100.00

OA 85.09 86.18 83.31 82.58 86.50 88.48 97.13
AA 77.86 79.26 77.08 74.22 79.42 81.67 99.83

Kappa 83.39 84.60 81.51 80.57 84.96 87.16 98.74

Table 5. Classification accuracy of each class, OA, AA and Kappa coefficients for truncated IND PINE
data with 16 classes (15 training samples for each class). The highest value of each row is shown in bold.

Class GK-Graph LLR-Graph LLE-Graph NNLRS-Graph SR-Graph PCSSR-Graph CASD Assisted PCSSR

1 37.40 33.30 24.30 41.30 36.10 73.30 100.00
2 52.10 51.70 47.50 36.90 53.50 79.80 99.69
3 97.20 97.10 98.40 83.90 98.10 99.10 99.11
4 82.90 84.60 90.60 98.60 84.20 95.70 100.00
5 57.90 59.00 55.00 96.00 64.30 60.80 99.87
6 61.70 59.20 72.40 51.50 61.80 86.00 100.00
7 5.40 6.20 3.20 40.00 6.40 10.60 99.87
8 99.60 99.60 100.00 98.60 100.00 99.50 99.64
9 10.20 9.40 6.80 10.60 10.00 11.40 100.00
10 21.60 24.50 33.30 39.50 25.00 37.00 99.51
11 38.70 41.80 44.70 36.50 43.50 64.40 99.47
12 76.90 79.10 83.20 88.60 84.10 94.30 99.47
13 95.70 95.10 98.90 90.00 97.80 98.50 99.11
14 48.70 46.20 54.00 39.80 46.50 51.60 100.00
15 81.70 83.00 84.20 95.20 84.70 90.00 100.00
16 94.10 95.20 94.00 39.70 95.20 93.00 99.47

OA 64.31 64.80 64.23 65.06 66.64 81.10 97.07
AA 60.11 60.31 61.91 61.67 61.95 71.56 99.70

Kappa 61.42 61.93 61.53 61.78 63.87 79.19 97.31

Conclusion 1 states that the performance of the CASD assisted PCSSR algorithm is highly related
to the number of labeled samples for each class. Lack of labeled samples leads to low accuracy and the
increment of labeled samples can improve the result effectively.

Since the result of the PCSSR algorithm is regularized by the probabilistic class structure which is
generated by our CASD algorithm, the distances (CASDs) between samples have a great effect on the
final performance of our algorithm. We can do the following operations to visualize the effect of the
distances: for every unlabeled sample, find out the labeled sample with the shortest CASD to it, then
mark that unlabeled sample. The classification results on BOT dataset (with three labeled samples per
class) are shown in Figure 8. Please notice that “the visualization of the CASD” is an independent
process, which is only for a better understanding of how well the CASD is measured. It is not an
intermediate result of CASD assisted PCSSR algorithm.

It is easy to see, if the labeled samples we select from different categories are very limited, they can’t
be sufficiently assigned to every ground block in testing set. During the classification of such a sample
block, if the samples of the same category are far away or the samples of the different classes are nearby,
misclassification is likely to happen. The flaws in the probabilistic class structure generated by spatial
algorithm can interfere the following sparse representation process, finally resulting in a decrease of
accuracy. With the number of labeled samples increasing, the probability that a block is assigned to
labeled samples will rise, the accuracy of the algorithm will be improved, and finally, the OA will
be improved.

Appl. Sci. 2020, 10, 7740 15 of 18

Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 20

Figure 8. Classification result of BOT with three training samples per class (OA = 87.1%). (a) The
classification result of BOT. (b) The ground truth of BOT. (c) The randomly selected training samples
(marked with red circles) in region S. (d) The visualization of CASD’s effect. The labels of test samples
are decided by the labeled samples nearby. Several ground blocks have been misclassified. (e) The
final classification result of the CASD assisted PCSSR algorithm. (f) The classification errors in (d,g).
The classification errors in (e).

It is easy to see, if the labeled samples we select from different categories are very limited, they
can’t be sufficiently assigned to every ground block in testing set. During the classification of such a
sample block, if the samples of the same category are far away or the samples of the different classes
are nearby, misclassification is likely to happen. The flaws in the probabilistic class structure
generated by spatial algorithm can interfere the following sparse representation process, finally
resulting in a decrease of accuracy. With the number of labeled samples increasing, the probability
that a block is assigned to labeled samples will rise, the accuracy of the algorithm will be improved,
and finally, the OA will be improved.

The spatial algorithm performs well only when the samples to predict are close to the labeled
samples. As the distance increases, the reliability of prediction will drop. Besides, the classification
boundary delineated by the spatial algorithm does not take into account the edge information of the
hyperspectral figure. Therefore, samples in the intersecting area between classes are more affected
by neighbor samples and more likely to be assigned to an incorrect category. If there are many
unlabeled samples near the intersecting area, the classification result based on CASD could be
unsatisfactory (Figure 9). To sum up, the classification effect will be relatively poor at the category
boundary away from the training samples. Conversely, if the ground blocks to be classified in the
dataset are broken and scattered, the classification boundary is more likely to fall in negligible areas
(the black background area), and the classification center is more likely to fall within the ground block
that needs to be classified. Therefore, with enough training samples given, the classification result on
the more scattered dataset are basically better.

Figure 8. Classification result of BOT with three training samples per class (OA = 87.1%). (a) The
classification result of BOT. (b) The ground truth of BOT. (c) The randomly selected training samples
(marked with red circles) in region S. (d) The visualization of CASD’s effect. The labels of test samples
are decided by the labeled samples nearby. Several ground blocks have been misclassified. (e) The
final classification result of the CASD assisted PCSSR algorithm. (f) The classification errors in (d,g).
The classification errors in (e).

The spatial algorithm performs well only when the samples to predict are close to the labeled
samples. As the distance increases, the reliability of prediction will drop. Besides, the classification
boundary delineated by the spatial algorithm does not take into account the edge information of the
hyperspectral figure. Therefore, samples in the intersecting area between classes are more affected by
neighbor samples and more likely to be assigned to an incorrect category. If there are many unlabeled
samples near the intersecting area, the classification result based on CASD could be unsatisfactory
(Figure 9). To sum up, the classification effect will be relatively poor at the category boundary away
from the training samples. Conversely, if the ground blocks to be classified in the dataset are broken
and scattered, the classification boundary is more likely to fall in negligible areas (the black background
area), and the classification center is more likely to fall within the ground block that needs to be
classified. Therefore, with enough training samples given, the classification result on the more scattered
dataset are basically better.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 20

Figure 9. Classification result of SAL with 10 training samples per class (OA = 96.4%). (a) The ground
truth of SAL. (b) The visualization of CASD’s effect. The intersecting lines between classes are badly
drawn. (c) The final classification results of CASD assisted PCSSR. Most of errors are corrected in the
SR process.

4.4. Parameters Sensitivity Analysis

In this subsection, we will discuss the parameter sensitivity of our model using the truncated
IND PINE dataset with 10 labeled samples selected from every class. There are two parameters in
PCSSR algorithm, ߣଵ and ߣଶ ଵߣ . controls the sparsity of ܹ while ߣଶ controls the effect of class
structure regularizer. We repeat 50 runs for each fixed parameter configuration and present the
average results. For example, in Figure 10a, we use a fixed ߣଵ value and varies ߣଶ value to observe
the classification results. For each ߣଶ value to be observed, we repeat 50 runs, calculate the
classification accuracy during each run, and finally obtain the average accuracy. During the
experiment, we first keep ߣଵ equal to 1 × 10ିସ and vary the value of ߣଶ from 1 × 10ିହ to 1 × 10ିସ
with the step of 1 × 10ିହ . As we can see from Figure 10a, the algorithm reaches the optimal
performance when ߣଶ equals 7 × 10ିହ. Then we fix ߣଶ and let ߣଵ change. As illustrated in Figure
10b,c, the OA basically keeps the same when ߣଵ is between 1 × 10ିହ to 1 × 10ିସ, and drops when ߣଵ is larger. The result shows that sparsity and probabilistic structure both matter in the classification
process, though the variety of performance isn’t so great when parameters change.

Figure 9. Classification result of SAL with 10 training samples per class (OA = 96.4%). (a) The ground
truth of SAL. (b) The visualization of CASD’s effect. The intersecting lines between classes are badly
drawn. (c) The final classification results of CASD assisted PCSSR. Most of errors are corrected in the
SR process.

Appl. Sci. 2020, 10, 7740 16 of 18

4.4. Parameters Sensitivity Analysis

In this subsection, we will discuss the parameter sensitivity of our model using the truncated
IND PINE dataset with 10 labeled samples selected from every class. There are two parameters in
PCSSR algorithm, λ1 and λ2. λ1 controls the sparsity of W while λ2 controls the effect of class structure
regularizer. We repeat 50 runs for each fixed parameter configuration and present the average results.
For example, in Figure 10a, we use a fixed λ1 value and varies λ2 value to observe the classification
results. For each λ2 value to be observed, we repeat 50 runs, calculate the classification accuracy during
each run, and finally obtain the average accuracy. During the experiment, we first keep λ1 equal to
1× 10−4 and vary the value of λ2 from 1× 10−5 to 1× 10−4 with the step of 1× 10−5. As we can see from
Figure 10a, the algorithm reaches the optimal performance when λ2 equals 7× 10−5. Then we fix λ2

and let λ1 change. As illustrated in Figure 10b,c, the OA basically keeps the same when λ1 is between
1 × 10−5 to 1 × 10−4, and drops when λ1 is larger. The result shows that sparsity and probabilistic
structure both matter in the classification process, though the variety of performance isn’t so great
when parameters change.Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 20

Figure 10. Parameter sensitivity analysis of the model. (a) Effect of parameter ߣଶ in truncated IND
PINE with 10 training samples per class (ߣଵ = 1 × 10−4). (b,c) Effect of parameter ߣଵ in truncated
IND PINE with 10 training samples per class (ߣଶ = 7 × 10ିହ).

5. Conclusions

This paper has developed a novel graph construction method called CASD assisted PCSSR
algorithm. The proposed method introduces the spatial information into the classification process on
the SR graph, so that the “distance” of two samples can be measures by both spatial distance and
class distance. It is shown by the experimental result that CASD assisted PCSSR algorithm is an
effective method for hyperspectral data classification and can achieve a relatively high performance
when enough training samples are provided.

The shortage of our method also exists: Firstly, the number of training samples should be
sufficient for the training process. If the training set is very limited while the ground blocks to predict
are in large numbers, the final performance might be not as good. However, due to the sparse
representation model used in this work, we only need a relatively small size of training set to
accomplish model training. Secondly, categorizing by CASD doesn’t assure a well-delineated
intersection line between classes, which means the samples close to that line might be badly classified.
Nevertheless, the final output of the model could be corrected by the following sparse representation
process since the CASD algorithm only provides a “suggestion” to the PCSSR algorithm. Our future
work is to extract the edge information from the hyperspectral data. Applying it to the CASD
algorithm may compensate for the lack of classification accuracy in the intersecting area between
classes.

Author Contributions: Conceptualization, W.X.; methodology, W.X.; software, W.X. and S.L.; validation, W.X.,
S.L. and Y.W.; formal analysis, W.X.; writing—original draft preparation, W.X. and S.L.; writing—review and
editing, W.X., S.L., Y.Z. and Y.W.; visualization, W.X.; supervision, Y.Z. and G.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the Scientific Research Training for Undergraduates of Nanjing
University of Science and Technology, and partially supported by the Natural Science Foundation of Jiangsu
Province under Grant BK20191284.

Acknowledgments: We acknowledge editors and reviewers for their valuable suggestions and corrections.

Conflicts of Interest: The authors declare no conflicts of interest.

Figure 10. Parameter sensitivity analysis of the model. (a) Effect of parameter λ2 in truncated IND
PINE with 10 training samples per class (λ1 = 1× 10−4). (b,c) Effect of parameter λ1 in truncated IND
PINE with 10 training samples per class (λ2 = 7× 10−5).

5. Conclusions

This paper has developed a novel graph construction method called CASD assisted PCSSR
algorithm. The proposed method introduces the spatial information into the classification process on
the SR graph, so that the “distance” of two samples can be measures by both spatial distance and class
distance. It is shown by the experimental result that CASD assisted PCSSR algorithm is an effective
method for hyperspectral data classification and can achieve a relatively high performance when
enough training samples are provided.

The shortage of our method also exists: Firstly, the number of training samples should be sufficient
for the training process. If the training set is very limited while the ground blocks to predict are in
large numbers, the final performance might be not as good. However, due to the sparse representation
model used in this work, we only need a relatively small size of training set to accomplish model
training. Secondly, categorizing by CASD doesn’t assure a well-delineated intersection line between

Appl. Sci. 2020, 10, 7740 17 of 18

classes, which means the samples close to that line might be badly classified. Nevertheless, the final
output of the model could be corrected by the following sparse representation process since the CASD
algorithm only provides a “suggestion” to the PCSSR algorithm. Our future work is to extract the edge
information from the hyperspectral data. Applying it to the CASD algorithm may compensate for the
lack of classification accuracy in the intersecting area between classes.

Author Contributions: Conceptualization, W.X.; methodology, W.X.; software, W.X. and S.L.; validation, W.X.,
S.L. and Y.W.; formal analysis, W.X.; writing—original draft preparation, W.X. and S.L.; writing—review and
editing, W.X., S.L., Y.Z. and Y.W.; visualization, W.X.; supervision, Y.Z. and G.C. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was supported by the Scientific Research Training for Undergraduates of Nanjing
University of Science and Technology, and partially supported by the Natural Science Foundation of Jiangsu
Province under Grant BK20191284.

Acknowledgments: We acknowledge editors and reviewers for their valuable suggestions and corrections.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chang, C.-I. Hyperspectral Imaging: Techniques for Spectral Detection and Classification; Kluwer Academic/Plenum
Publishers: New York, NY, USA, 2003; p. xvi, 370p. [CrossRef]

2. Chang, C.-I. Hyperspectral Data Exploitation: Theory and Applications; John Wiley & Sons: Hoboken, NJ, USA,
2007. [CrossRef]

3. Landgrebe, D. Hyperspectral image data analysis. IEEE Signal Process. Mag. 2002, 19, 17–28. [CrossRef]
4. Shaw, G.; Manolakis, D. Signal processing for hyperspectral image exploitation. IEEE Signal Process. Mag.

2002, 19, 12–16. [CrossRef]
5. Wang, Z.-Y.; Xia, Q.-M.; Yan, J.-W.; Xuan, S.-Q.; Su, J.-H.; Yang, C.-F. Hyperspectral image classification based

on spectral and spatial information using multi-scale ResNet. Appl. Sci. 2019, 9, 4890. [CrossRef]
6. Zhu, X.; Ghahramani, Z.; Lafferty, J.D. Semi-supervised learning using gaussian fields and harmonic functions.

In Proceedings of the 20th International Conference on Machine Learning (ICML-03), Washington, DC, USA,
21–24 August 2003; pp. 912–919.

7. Lan, W.; Li, Q.; Yu, N.; Wang, Q.; Jia, S.; Li, K. The Deep Belief and Self-Organizing Neural Network as a
Semi-Supervised Classification Method for Hyperspectral Data. Appl. Sci. 2017, 7, 1212. [CrossRef]

8. Li, F.; Clausi, D.A.; Xu, L.; Wong, A. ST-IRGS: A region-based self-training algorithm applied to hyperspectral
image classification and segmentation. IEEE Trans. Geosci. Remote Sens. 2017, 56, 3–16. [CrossRef]

9. Pan, C.; Li, J.; Wang, Y.; Gao, X. Collaborative learning for hyperspectral image classification. Neurocomputing
2018, 275, 2512–2524. [CrossRef]

10. Jackson, Q.; Landgrebe, D.A. An adaptive classifier design for high-dimensional data analysis with a limited
training data set. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2664–2679. [CrossRef]

11. Camps-Valls, G.; Bandos Marsheva, T.; Zhou, D. Semi-Supervised Graph-Based Hyperspectral Image
Classification. IEEE Trans. Geoence Remote Sens. 2007, 45, 3044–3054. [CrossRef]

12. Wu, Y.; Mu, G.; Qin, C.; Miao, Q.; Ma, W.; Zhang, X. Semi-Supervised Hyperspectral Image Classification via
Spatial-Regulated Self-Training. Remote Sens. 2020, 12, 159. [CrossRef]

13. Yan, S.; Wang, H. Semi-supervised learning by sparse representation. In Proceedings of the 2009 SIAM
International Conference on Data Mining, Sparks, NV, USA, 30 April–2 May 2009; pp. 792–801.

14. Cheng, H.; Liu, Z.; Yang, J. Sparsity induced similarity measure for label propagation. In Proceedings of the
2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009;
pp. 317–324.

15. Gu, Y.; Feng, K. L1-graph semisupervised learning for hyperspectral image classification. In Proceedings of
the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012;
pp. 1401–1404.

16. He, R.; Zheng, W.-S.; Hu, B.-G.; Kong, X.-W. Nonnegative sparse coding for discriminative semi-supervised
learning. In Proceedings of the CVPR 2011, Providence, RI, USA, 20–25 June 2011; pp. 2849–2856.

http://dx.doi.org/10.1007/978-1-4419-9170-6
http://dx.doi.org/10.1002/0470124628
http://dx.doi.org/10.1109/79.974718
http://dx.doi.org/10.1109/79.974715
http://dx.doi.org/10.3390/app9224890
http://dx.doi.org/10.3390/app7121212
http://dx.doi.org/10.1109/TGRS.2017.2713123
http://dx.doi.org/10.1016/j.neucom.2017.11.035
http://dx.doi.org/10.1109/36.975001
http://dx.doi.org/10.1109/TGRS.2007.895416
http://dx.doi.org/10.3390/rs12010159

Appl. Sci. 2020, 10, 7740 18 of 18

17. Shao, Y.; Sang, N.; Gao, C.; Ma, L. Probabilistic class structure regularized sparse representation graph for
semi-supervised hyperspectral image classification. Pattern Recognit. 2017, 63, 102–114. [CrossRef]

18. Ma, J.; Xiao, B.; Deng, C. Graph based semi-supervised classification with probabilistic nearest neighbors.
Pattern Recognit. Lett. 2020, 133, 94–101. [CrossRef]

19. Chong, Y.; Ding, Y.; Yan, Q.; Pan, S. Graph-Based Semi-supervised Learning: A Review. Neurocomputing
2020, 408, 216–230. [CrossRef]

20. Belkin, M.; Niyogi, P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput.
2003, 15, 1373–1396. [CrossRef]

21. Zhou, D.; Bousquet, O.; Lal, T.N.; Weston, J.; Schölkopf, B. Learning with local and global consistency. In Proceedings
of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–13 December 2003;
pp. 321–328.

22. Wang, F.; Zhang, C. Label propagation through linear neighborhoods. IEEE Trans. Knowl. Data Eng. 2007, 20,
55–67. [CrossRef]

23. Ma, L.; Crawford, M.M.; Yang, X.; Guo, Y. Local-manifold-learning-based graph construction for
semisupervised hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2014, 53, 2832–2844.
[CrossRef]

24. Zhuang, L.; Gao, S.; Tang, J.; Wang, J.; Lin, Z.; Ma, Y.; Yu, N. Constructing a nonnegative low-rank and sparse
graph with data-adaptive features. IEEE Trans. Image Process. 2015, 24, 3717–3728. [CrossRef] [PubMed]

25. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
26. Liu, G.; Lin, Z.; Yu, Y. Robust Subspace Segmentation by Low-Rank Representation. In Proceedings of the

27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010.
27. Lin, Z.; Liu, R.; Su, Z. Linearized alternating direction method with adaptive penalty for low-rank

representation. In Proceedings of the Advances in Neural Information Processing Systems, Granada, Spain,
12–14 December 2011; pp. 612–620.

28. Sparse Representation Graph for Hyperspectral Image Classification Assisted by Class Adjusted Spatial
Distance. Available online: https://codeocean.com/capsule/5512900/tree (accessed on 8 July 2020).

29. Hyperspectral Remote Sensing Scenes. Available online: http://www.ehu.eus/ccwintco/index.php/

Hyperspectral_Remote_Sensing_Scenes (accessed on 26 June 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.patcog.2016.09.011
http://dx.doi.org/10.1016/j.patrec.2020.01.021
http://dx.doi.org/10.1016/j.neucom.2019.12.130
http://dx.doi.org/10.1162/089976603321780317
http://dx.doi.org/10.1109/TKDE.2007.190672
http://dx.doi.org/10.1109/TGRS.2014.2365676
http://dx.doi.org/10.1109/TIP.2015.2441632
http://www.ncbi.nlm.nih.gov/pubmed/26057712
http://dx.doi.org/10.1007/BF01386390
https://codeocean.com/capsule/5512900/tree
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Traditional Graph Construction Methods
	SR-Based Graph Construction Methods

	Modeling and Algorithms
	Class Adjusted Spatial Distance
	CASD-Assisted PCSSR
	Label Propagation

	Experimental Results and Analysis
	Experimental Datasets
	Experimental Setup
	Results and Discussion
	Parameters Sensitivity Analysis

	Conclusions
	References

