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Abstract: Recommender systems are widely used to provide users with recommendations based on
their preferences. With the ever-growing volume of information online, recommender systems have
been a useful tool to overcome information overload. The utilization of recommender systems cannot
be overstated, given its potential influence to ameliorate many over-choice challenges. There are many
types of recommendation systems with different methodologies and concepts. Various applications
have adopted recommendation systems, including e-commerce, healthcare, transportation, agriculture,
and media. This paper provides the current landscape of recommender systems research and identifies
directions in the field in various applications. This article provides an overview of the current state
of the art in recommendation systems, their types, challenges, limitations, and business adoptions.
To assess the quality of a recommendation system, qualitative evaluation metrics are discussed in
the paper.
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1. Introduction

The internet and modern web services have been increasing within the last few decades; a surplus
of information is now accessible to everyone [1]. It can be challenging for users to filter through
all this information and take away essential aspects. Many online e-commerce firms recommend
products to their users, selling millions of products on one platform. For an everyday user, browsing
through all possibilities can be overwhelming; this can cause information overload. Recommender
systems aim to solve that information overload problem while personalizing the user experience
by delivering accurate, personalized recommendations of items/products to users according to their
preferences [2]. A recommendation system (RS) aims to predict if an item would be useful to a
user based on given information [3]. The use of these systems has been steadily growing within the
last few years, where they are used in retail and e-commerce firms like eBay and Amazon. These
companies acquire massive users’ data and tailor the RSs to meet the users’ and business needs [4,5].
RSs are widely utilized in e-commerce and retail; they are also used in many other industries such
as healthcare, transportation, and agriculture [6–8]. High-quality RSs positively impact the users’
experience and the overall enterprises’ revenue or decision. RSs have attracted many researchers
for the past years, and various literature reviews were conducted, addressing different RSs’ features,
algorithms, and challenges [1,9–14]. Yet, none of these reviews touched on all RSs’ aspects holistically.
In [9], authors have focused on categorizing RSs based on data they have used. A survey of RSs using
only social networks is provided in [10] and location-based RSs using social networks [11]. RSs are
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surveyed in [12] from their application point of view. A review in [13] has focused on algorithms of
RSs [13] while the characteristics of RSs are summarized [14].

In this paper, we present a comprehensive guide to RSs. We highlight different RSs categories
and analyze the issues associated with current RSs, including cold start, data-sparsity, scalability, and
diversity. Also, we demonstrate how to evaluate the RSs’ performance using different metrics such as
recall, precision, accuracy, ROC (Receiver operating characteristic) curve, and F-measures. Moreover,
we outline the adoption of RSs in many industries and domains. This paper is structured as follows:
Section 2 presents the recommendation categories, Section 3 highlights the main challenges in RSs,
Section 4 explains the different evaluation metrics, Section 5 introduces the business adoptions of RSs,
and Section 6 is for the conclusion and future directions.

2. Recommendation System Categories

RSs [15] are categorized into collaborative filtering, content-based, utility-based,
demographic-based, knowledge-based, and hybrid-based. The most commonly used filtering
approaches use content-based and collaborative filtering. In this section, a brief explanation of
these categories is provided.

2.1. Collaborative-Filtering Recommendation Systems

Collaborative Filtering evaluates products using users’ ratings (explicit or implicit) from historical
data [16]. It works by developing a database of the user’s preferences for items. Active users
will be mapped against this database to reveal the active user’s neighbors with similar purchase
preferences. Collaborative filtering techniques are classified into item-based filtering and user-based
filtering [17]. User-based techniques go through two main stages to forecast items’ ratings for a specific
user. The first stage locates similar users to the target user. The second stage obtains rates from
similar users to the active user, then using them to produce recommendations. There have been many
collaborative filtering algorithm measures that calculate the similarities among users. The commonly
used similarity measures in the literature include mean-squared difference, Pearson correlation, cosine
similarity, Spearman correlation, and adjusted cosine similarity [18,19]. Collaborative filtering is the
commonly used choice for RSs, and it does not require domain knowledge because the embeddings
are automatically learned. Embedding of items in a recommender system refers to mapping items to a
sequence of numbers. This way of representing items with learned vectors, is used to train algorithms
to find the relationship between items and extract their features. Next, an advantage of collaborative
filtering is that it generates models that help users discover new interests. Finally, collaborative
filtering is a great starting point for other RSs, as the RS only requires the rating matrix R to develop a
factorization model. The rating matrix R is a two-dimensional matrix of n users and m items; each
entry in this matrix, rij represents the rating provided of user i to item j. Although being favorable in
many aspects, collaborative filtering has several disadvantages, such as the cold-start problem, which
we will elaborate on in Section 3.1 of this paper.

2.2. Content-Based Recommendation Systems

Content-based approaches attempt to build a user profile to predict ratings on unseen items.
Successful content-based methods utilize tags and keywords. Measuring the utility of content-based
filtering is commonly calculated by using heuristic functions, such as the cosine similarity metric.
Content-based filtering can be employed in many cases, where the features’ values can easily be
extracted. Content-based filtering is not typically used in cases where features values must be manually
entered. This can be manageable for small datasets, but when thousands of new products are being
added daily, this task is impossible. Content-based filtering does not require other users’ data, as the
predicted recommendations are user-specific. Thus, these techniques scale up the system to handle
many users. Content-based filtering is user-independent since this system only requires analyzing the
items and user profile for recommendations. Opposite of collaborative filtering, content-based filtering
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does not experience cold-start issues. New items or products are suggested before a substantial list of
users assigns a rating. Content-based filtering has several drawbacks. Firstly, if no enough information
is provided in the content to differentiate products precisely, the recommendation will not be accurate.
These techniques require intensive domain knowledge. Secondly, content-based systems offer a limited
degree of novelty since they must match up the features of profiles and items [18,19].

2.3. Demographic-Based Recommendation Systems

As various quantitative research papers have displayed, collaborative filtering techniques can
be enhanced by demographic correlation [20]. Demographic RSs can generate recommendations
by categorizing users based on demographic attributes. Demographic RSs are especially useful
when the amount of product information is limited. Demographic RSs aim to tackle and solve the
scalability and cold-start problems. This system employs user attributes as demographic data to
obtain recommendations (i.e., recommend products based on age, gender, language, etc.) [21]. The key
advantage of demographic filtering RSs is that they are fast and straightforward in obtaining results
using a few observations. These approaches also do not acquire the user ratings that are essential in
content-based and collaborative-based filtering techniques. Demographic-based filtering techniques
have several disadvantages. For example, the entire information collection for users is impractical,
considering the security and privacy issues involved. Secondly, demographic filtering is mainly based
on user interests, which forces the system to recommend the same item to users of related demographic
profiles. Another challenge is the difficulty of modifying a customer profile when preferences change;
this is known as the stability vs. plasticity problem.

2.4. Utility-Based Recommendation Systems

Utility-based RS provides recommendations based on generating a utility model of each item for
the user. This system builds multi-attribute users’ utility functions and recommends the highest utility
item based on each item’s calculated user-utility explicitly [22]. Utility-based RSs are useful because
they can factor non-product attributes into utility functions, such as product availability and vendor
reliability. They generate utility computation, which allows them to check both real-time inventory
and features of an item. It enables the visualization of its status to the user. Utility-based systems do
not hold on to long-term generalizations about their users. Instead, they evaluate a recommendation
based on the user’s current needs and the available options. A disadvantage of the utility-based
system occurs when the products are not descriptive enough. They do not contain enough listed utility
features; that could hide a recommendation to a user even if it fits that particular user’s preferences [23].

2.5. Knowledge-Based Recommendation Systems

Knowledge-based RS uses explicit knowledge about products and users to create a
knowledge-based criterion to generate recommendations [23]. A knowledge-based RS does not require
an initial large amount of data, as its recommendations are independent of the user’s ratings [24].
It recommends items based on the user’s preferences by evaluating the products that meet the user’s
needs. Knowledge-based RSs are noted to be advantageous for several purposes. For example, they can
avoid the typical ramp-up problem associated with machine learning approaches to recommendations.
Typically, exemplary systems cannot learn until the user has rated many items. Knowledge-based
RSs avoid this issue since their recommendations are not dependent on a base of user ratings. They
also do not need to gather information about a particular user because the recommendations are
independent of the user’s tastes too. Due to these factors, knowledge-based systems are valuable as
stand-alone systems, and they are also considered complementary to other types of RSs. One major
disadvantage of knowledge-based RSs is the potential knowledge acquisition bottleneck caused by
explicitly defining recommendation knowledge. Knowledge acquisition is the process of constructing
the rules and requirements needed for a knowledge-based system, and it is done by gaining knowledge
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via rules, objects, and frame-based ontologies. Batesonian theories were used to guide the process of
further learning of knowledge acquisition [24].

2.6. Hybrid-Based Recommendation Systems

Hybrid systems are combining two or more techniques to obtain better performance. Their main
target is to eliminate the drawbacks of the individual ones. Some of the combination strategies are
discussed next. Figure 1 shows various hybrid strategies.
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2.6.1. Weighted

Weighted-hybrid recommender aggregates the results of all combined recommendation
approaches, then calculates the recommended item/value’s score. A linear combination of multiple
recommendation scores method is used. Systems initially give all recommenders an equal weight,
then progressively adjust the weighting as predictions of user ratings are verified or not. However,
this model implicitly assumes that individual techniques’ relative value is uniform among possible
items, which is not always true [15,23].

2.6.2. Switching

A switching method selects one recommender from the constituents. For a different user/profile,
another system may be chosen. For example, if the content-based technique cannot make an accurate
recommendation with high confidence, then another method like the collaborative procedure is
attempted. This method does not avert all drawbacks experienced by RSs (i.e., the ramp-up problem).
This hybridization method assumes that there is a reliable criterion for which to make the switching
decision. Once the switching decision is made, the other unchosen components do not have a role in
the left recommendation process [15,16,23].

2.6.3. Mixed

A mixed hybrid method is practical when many recommendations are needed simultaneously.
The mixed hybrid method shows recommendations of its components side-by-side in a consolidated list.
This hybridization method does not try to consolidate evidence between recommenders. Combining
several independent lists is a challenging process for this method. Standard techniques cover either
merging based on predicted rating or based on the recommender’s confidence [15,23].

2.6.4. Feature Combination

Feature combination allows the combination of one technique’s complementary features, for
example, a collaborative-based recommendation, into an algorithm planned to process data with
another method (for example, content-based recommendation). Content-collaborative merger is
achieved by dealing with collaborative informational as an additional feature data linked to each
model and utilize content-based techniques over this built up dataset. This technique lets the system
consider collective data without totally relying on it so that the system’s sensitivity to the number of
users who rated an item is reduced [16].
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2.6.5. Cascade

Cascade method is an organized process used to form a strictly hierarchical hybrid, such that a
weak technique with low priority cannot cancel the decisions made by a higher priority or stronger
one, but rather can improve them. The lower priority recommender is utilized in breaking ties in
the scoring of the stronger and higher priority ones. The lower priority technique is not used on the
already well-differentiated items by the first one. Also, it is not used on the poorly rated items, so they
will not be recommended. The cascading method is resilient to the noise in the low priority technique’s
operation, as ratings can only be improved, not reversed [15–17].

2.6.6. Feature Augmentation

This method is applied to generate an item’s rating, then integrate this information into the
processing of the next recommendation technique. A new feature for every item is generated by
feature augmentation, using the contributing domain’s recommendation logic. Feature augmentation
is used when there is a well-developed main recommendation component, and there is a need to add
additional knowledge features or sources. Unlike the cascade model, in the augmentation hybrid
method, the output features of the first recommender are included in the features used by the second
one [15,23].

2.6.7. Meta-Level

The meta-level hybrid uses an output model, which is learned by a recommender to be used as
another one’s input. This method is not similar to feature augmentation. Feature augmentation hybrid
uses a learned model’s general features as input for a second one, whereas in a metalevel hybrid, the
entire learned model is used as an input. The recommender is not functioning with raw profile data.
Deriving a meta-level hybrid from any provided pair of recommenders is not always an easy task.
Since the contributing recommender must generate a model used as input by the actual recommender;
however, not all recommendation techniques can achieve this. A benefit of this technique is that
the learned model indicates a compressed representation of the user’s preference. A collaborative
approach can operate on this compact representation easier than working on raw rating data [15–17].

3. Challenges in Recommendation Systems

It is challenging to measure RSs’ performance due to the organization’s changing demands
using and deploying it. Generally, the most indicative measure is user satisfaction. Even though it
is not possible to compute users’ satisfaction by using a heuristic formula, we can still measure the
performance of RSs based on how well they can handle common issues. In this section of the review
paper, we provide an understanding of the metrics used to measure the performance of RSs against
main challenges, including cold-start, accuracy, data sparsity, scalability, and diversity.

3.1. Cold-Start

The term ‘cold start’ stems from automobiles. When the engine is cold, they have difficulty
starting up, but they have no problems running once they reach their optimal temperature. The same
problem can be applied to RSs. When there is insufficient information or metadata available, a RS does
not perform optimally. Cold starts can be classified into two distinct subsets: product cold starts and
user cold starts [25]. Whenever a new product is displayed on an e-commerce site, it goes through the
product cold start, and this means that there are no reviews due to the lack of user interaction. If there
are not enough user interactions, the RS will not know when to display the ad related to that product.
The cold-start behavior occurs when a user creates an account for the first time and does not have any
product preferences or history available to base recommendations. The cold start problem always
exists for new or existing users. For example, Tom searches for new televisions on an e-commerce
site; within a week, he purchases one and is no longer interested in purchasing televisions; what
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should the RS display now? Users will always be interested in new and different things. Analyzing the
metrics and methods for cold-start recommendations, we find that the Bayes classifier is most used [26].
Bayesian models are graphical models used in probability and artificial intelligence. In model-based
RSs, a form of Bayesian reasoning is likely to be applied, whether it is content- or collaborative-based.
The most popular method of utilizing Bayesian models is the naive Bayes model [25]. Despite its
simplicity, it has proved to be the most accurate. In the naive Bayes classification, different attributes
are assumed to be mutually independent features of the items [26]. With this, one can estimate new
item’s characteristics with a set of attributes not found in the training data. The projection in WALS
(weighted alternating least squares) and heuristics are used to address the cold-start problem to a
certain degree. For the projection in the WALS method, if there is a new item not seen in training, yet
the system has a few interactions with users, the user’s embeddings for this item can be calculated
easily, without the need to retrain the entire model as shown in Equation (1).

minui0∈Rd ‖ Ai0 − ui0VT
‖ (1)

Equation (1) is equivalent to one iteration in the WALS method, where the user’s embeddings are
kept exact, and the system solves for the embedding of the new item, and the same process can be
performed for a new user to keep the model up to date. In the heuristics methods that generate fresh
items’ embeddings, the embeddings can be approximated if the system does not have interactions.
This is completed by taking the average of the item’s embeddings of the same category.

3.2. Data Sparsity

Data sparsity results from the fact that the users only intend to rank limited items. Most RSs group
the ratings of similar users; however, the reported user–item matrix has empty or unknown ratings
(up to 99%) because of the lack of incentives or user knowledge to rate items [27]. Therefore, RSs can
provide unreasonable recommendations to those who provide no feedback or ratings. For example,
suppose we assume that an online bookstore sells two million different books, with X number of users
(active or cold). In that case, each consumer is exemplified by an integer feature matrix, with 2 million
elements, and the value of each component corresponds to the rating given by the consumer to a
specific book. This matrix is called the consumer-product interaction matrix [28]. In most large-scale
applications, both the numbers of consumers and products are enormous. Therefore, the majority
(up to 99%, on average) of these matrix elements are 0. Comparing any two users for a specific item,
it is very probable that both elements are 0, resulting in a sparse matrix [29]. Many techniques aim
to mitigate the data sparsity issue by modeling users’ preferences from their behaviors and trusted
social connections. Trust has been extensively used to achieve significant benefits to the robustness of
RSs [30]. Trust is described as the belief towards others’ ability to provide accurate ratings (explicit and
implicit). Many argue that it is possible to calculate trustworthiness based on the trust chart encoded
by Epinions.com (a website where users can review items). The trust value can be calculated by
measuring users’ distance in the number of arcs connecting those users [31]. This offers a trust-aware
RS that depends on a web of trust for defining how a user can trust another user. A trust network
is constructed by aggregating every trust statement. A trust network consists of users and trust
statements, represented by nodes and directed edges, respectively. These methods have significantly
lowered the mean error of predictive accuracy. Many trust-based approaches have been introduced
with significance given to the merge approach [32]. The merge incorporates the active users’ trusted
neighbors, seeking to enhance the overall predictive accuracy of RSs. Specifically, the ratings of a
trusted neighbor of an active user are merged by averaging on frequently rated items as per the
similarity between the active user and trusted neighbor.
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3.3. Scalability

Scalability problems have been significantly raised due to the fast growth of e-commerce sites.
Modern RS methodologies are required to generate quick results for large scale applications. RSs can
search for many potential neighbors in real-time, but the demands of modern e-commerce sites require
them to search for a larger number of neighbors. Algorithms also experience performance issues
for consumers with large amounts of information [32]. For example, if a site has tens of thousands
of data points for one user, it can be difficult and tedious to find a relevant neighbor for a given
neighbor. Filtering algorithms that utilize nearest-neighbor techniques need an increase in computation
power due to the massive increase in products or users. For a platform that has millions of users and
products, scalability is a serious issue. A common technique to reduce scalability issues is by using
one-dimensionality reduction [33,34]. Clustering techniques can be utilized to mitigate scalability
issues. Their primary function is to segment the users using a clustering algorithm and use each
segment as a neighborhood. Next, for any active user, its neighborhood is selected by looking into the
partition, and the partition is used as the user’s neighborhood. Upon completing the neighborhood
selection, classical filtering algorithms can be implemented to generate a prediction [35]. There are
two significant benefits of implementing clustering techniques. Firstly, it alleviates the sparsity of the
data set. Secondly, it divides the data into smaller partitions, which significantly reduces prediction
generation speeds. Singular value decomposition (SVD) has also been used to reduce the scalability
issue [34]. SVD is used for dimensionality reduction. SVD produces a set of uncorrelated eigenvectors.
Customers and products are each represented by a unique eigenvector. This process allows customers
who have rated similar (but not the same) products to be mapped by the same eigenvectors. Once the
n ×m rating matrix is decomposed into SVD component matrices, predictions can be generated by
calculating the cosine similarities (dot product) between n-pseudo customers and n-pseudo products.

3.4. Diversity

In various situations, recommendation systems may provide suggestions of either similar items
or more diverse ones. Simultaneously, the most accurate results are obtained by recommending
items/objects based on user or objects’ similarity. This is known as the diversity issue, where
recommendations are based on overlapping instead of differences. This exposes the user to a
narrower selection of objects, while highly related niche items may be overlooked. The diversity of
recommendations allows users to discover objects which they would not readily find for themselves.
One apparent concern is that if an algorithm focuses strictly on enhancing diversity, accuracy would be
lost [36]. The diversity of a RS can be evaluated by two measures; surprisal and personalization [36].
Self-information or ‘surprisal’ measures are used to gauge the RS’s ability to generate unpredictable
results, which measures the unexpectedness of an item/object proportional to its global popularity.
Personalization is the uniqueness of different user’s recommendation lists, known as inter-user diversity,
and the inter-list distance can easily calculate this. The accuracy threshold must be preserved to
address diversity issues while maintaining item recommendations [37]. Cases in which the RS is overly
focused on accuracy is known as overconcentration. The LCM (linear time closed itemset miner) can
increase diversity by finding efficient frequent item-sets [37].

3.5. Habituation Effect

Recommendation interfaces are considered as a critical element of marketing strategies and it can
be considered as a means of distributing the marketing content. In order to optimize the performance
of the interface, a number of elements can be explored, such as the number of recommendations,
images of the recommended item, item descriptions, and layouts [38,39]. As customers are immersed
with massive information, especially marketing content, the habituation effect usually appears, which
ends in the banner blindness phenomenon. Thus, even recommendations that are optimal from the
algorithmic perspective, they may provide inaccurate results unless they are visualized to the user in a
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better way. To avoid the banner blindness phenomenon, marketers usually use techniques based on
increasing visual intensity [40] of presented objects with the use of animations and flickering effects [41].
The habituation effect can best be reduced with multi-criteria decision analysis (MCDA) of features of
recommending interfaces taking into account their visual intensity, attention represented by fixations
measured with eye-tracking and time required to attract attention after a website is loaded.

4. Evaluation Metrics

Evaluating a RS requires identifying the characteristics that make an excellent RS and identifying
how they should be quantified. The typical metrics for assessing a RS’s performance are recall, precision,
accuracy, ROC curves, and F-measure.

4.1. Recall and Precision

Information retrieval (IR) is focused on retrieving relevant documents from a pool similar to
RSs’ function of recommending interesting and applicable items from a pool of resources. The IR
field is considered an adequate provider of tools for RSs, such as measurement metrics. Two key
metrics are ‘precision and recall’. Precision indicates the fraction of relevant items among all the
recommended items to a user, and recall represents the number of relevant recommended items to
the total number of items that should be recommended. A relevant item is the one that the user finds
appealing. Precision and recall metrics are calculated by computing a confusion matrix, similar to the
one in Table 1. The confusion matrix represents the four possible outcomes of any recommendation,
and if the recommended item is relevant to a user, it will be considered successful, otherwise it is
not successful.

Table 1. Confusion matrix for a recommender system.

Successful Recommendation Not a Successful Recommendation

Recommended a b

Not Recommended c d

Where “a” represents the number of true positive items that are originally recommended and
successfully retrieved for recommendations by the RS. The value of “b” indicates the number of items
not successfully suggested by the RS, although they are labeled as recommended. The value “c”
represents the number of disqualified items that are recommended by the RS. The true negative values,
“d”, refers the number of items that are labelled and retrieved as ‘not recommended’.

A good RS tries to optimize both metrics simultaneously. For instance, it can recommend many
products/items to the user, obtaining maximum coverage. The Precision would still be as low as the
ratio of useful products/items in the pool.

Precision =
a

a + b
(2)

Recall =
a

a + c
(3)

4.2. Accuracy

The decision to select a RS based on an evaluation metric is complex and depends on the
organization’s needs. Generally, predicted ratings are used as an evaluation metric for a system.
Deciding the accuracy of RS is not straight forward due to the lack of an explicit method in determining
whether a recommendation is precise or not [42]. To assess an RS’s accuracy, one must search for low
prediction errors by using split-validation of data for offline comparisons. For example, suppose we
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submit 80% of a user purchase history dataset to a RS and ask to predict the rest. In that case, we can
calculate the system’s accuracy based on true recommendations, as shown in Equation (4).

Accuracy =
Number o f success f ul recomendations

Total number o f recommendations
(4)

Particularizing the metric to RS, accuracy is used for evaluation in many cases; for example, in
scoring an algorithm, the root of the mean square error (RMSE) is used [43]. Other alternatives of the
RMSE are the mean average error, the normalized mean average error, and mean square error. RMSE
is most appropriate since it measures all ratings’ inaccuracies, whether they are positive or negative.
RMSE is recommended to be used in cases where the errors cannot be differentiated. For example,
predicting a rating difference between 1 to 2 stars may not be as important as a rating difference
between 2 to 3 stars.

4.3. ROC Curve

Receiver operating characteristic (ROC) analysis is substitutional to precision/recall. A precision
versus recall curve is shown in Figure 2. The higher the precision is, the lower the recall values

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 20 

is most appropriate since it measures all ratings’ inaccuracies, whether they are positive or negative. 
RMSE is recommended to be used in cases where the errors cannot be differentiated. For example, 
predicting a rating difference between 1 to 2 stars may not be as important as a rating difference 
between 2 to 3 stars. 

4.3. ROC Curve 

Receiver operating characteristic (ROC) analysis is substitutional to precision/recall. A precision 
versus recall curve is shown in Figure 2. The higher the precision is, the lower the recall values 

 
Figure 2. Precision–recall curve. 

A ROC curve indicates fallout versus recall, as shown in Figure 3. ROC analysis is aimed to 
retrieve the relevant items without retrieving the irrelevant ones [44]. This is obtained by having the 
recall maximized, which is also called the (true positive rate) while having the fallout minimum, 
which is called (false positive rate). ROC curves are utilized to visually describe the trade-off among 
recall and precision when the threshold is changed, which helps us classify an item as “to be 
recommended” and “not to be recommended” [45]. The optimization of the ROC, precision, and 
recall curves are similar. In Figure 4, optimizing the recall and precision values can be achieved by 
pushing the curves’ peak towards the point Precision = 1 and Recall = 1. An ideal predictive system 
produces a ROC curve that ultimately reaches all of the relevant items encountered and then headed 
for the remaining items. ROC curves assume binary relevance, same as precision and recall measures. 
Items are either classified to be a successful recommendation or an unsuccessful recommendation. 
However, by considering this, the order among relevant items does not impact the ROC metric. If all 
relevant items show before the non-relevant items, an ideal ROC curve is obtained [16]. To utilize the 
ROC curve as a measurement of performance, we can analyze the area underneath the curve [46]. 
The area under the ROC curve is the probability of the system’s ability to correctly select between 
two items, such that one item is randomly picked from the set of acceptable items, and the second 
item is chosen from the set of unsatisfactory items. 

Figure 2. Precision–recall curve.

A ROC curve indicates fallout versus recall, as shown in Figure 3. ROC analysis is aimed to
retrieve the relevant items without retrieving the irrelevant ones [44]. This is obtained by having the
recall maximized, which is also called the (true positive rate) while having the fallout minimum, which
is called (false positive rate). ROC curves are utilized to visually describe the trade-off among recall
and precision when the threshold is changed, which helps us classify an item as “to be recommended”
and “not to be recommended” [45]. The optimization of the ROC, precision, and recall curves are
similar. In Figure 4, optimizing the recall and precision values can be achieved by pushing the curves’
peak towards the point Precision = 1 and Recall = 1. An ideal predictive system produces a ROC curve
that ultimately reaches all of the relevant items encountered and then headed for the remaining items.
ROC curves assume binary relevance, same as precision and recall measures. Items are either classified
to be a successful recommendation or an unsuccessful recommendation. However, by considering this,
the order among relevant items does not impact the ROC metric. If all relevant items show before the
non-relevant items, an ideal ROC curve is obtained [16]. To utilize the ROC curve as a measurement
of performance, we can analyze the area underneath the curve [46]. The area under the ROC curve
is the probability of the system’s ability to correctly select between two items, such that one item
is randomly picked from the set of acceptable items, and the second item is chosen from the set of
unsatisfactory items.
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5. Business Adoption and Applications

RSs were once a novelty technique used by very few e-commerce sites. Now, they have transformed
into a serious tool that is drastically shaping the e-commerce world. Many of the largest e-commerce
businesses utilize RSs to help users determine what they want, alleviating the information-overload
problem. However, RSs are not limited to marketing products; they have been widely developed
in the service industry. They can provide recommendations in many different areas ranging from
location-based information to movies, music, images, books, etc. Location-based data helps users
find their path or predict their next location to save time and cost [49]. Moreover, various parties
can benefit from recommendations in their decision-making process, such as farmers [50], healthcare
workers [51], or tourists [52]. For instance, farmers who seek optimal production plans to avoid loss
can benefit from the agricultural-items predictions of RSs designed to recommend the best agricultural
items (crops) cultivation options to farmers [50]. In the healthcare industry, RSs play a remarkable role
in the decision-making process. The studies showed that health RSs (HRS) had been used for dietary,
activity assistance, and educational purposes [51]. Therefore, in this section, we classify RSs based
on their business adoption into five categories of e-commerce, transportation, agriculture, healthcare,
and media.

5.1. Recommendation Systems in e-Commerce

RSs are aimed at providing customized recommendations of products to customers of websites.
They learn from the customer and recommend relevant products to the user. These systems personalize
the experience while attaining user interest. Simply, there are three ways a product is recommended
based on (i) top overall sellers on a site, (ii) the demographics of the customer, or (iii) the previous
purchase history of the customer. Implementing a RS personalizes a site as they adapt and are unique
to each customer. On the other hand, RSs can enhance sales of e-commerce sites in three ways.

• Browsers into buyers: Visitors to an e-commerce site often look over products without buying
anything, but if a site displays relevant recommendations to a user, they are more likely to purchase.

• Cross-sell: Recommendation techniques suggest additional products to the users, apart from the
one they are already buying. With this, the average order size should increase over time

• Loyalty: In an era where a competitor’s site can be visited by a mere click or two, loyalty is
essential. RSs personalize the site for each user, which builds the user-site relationship. The more a
customer uses a system, the more they are training the system, the more loyal a customer becomes,
which also improves the quality of recommendations, over time.

RSs are also used as a technology to enable businesses to target customers and make offers to
them. For instance, search engines and advertising companies rely on showing effective suggestions to
users based on their behavior. Different recommendation methods have been used to achieve these
goals, such as statistical methods, raw retrieval, attribute-based methods, user-to-user, or item-to-item
correlation techniques. Each process may require different input types such as customer purchase
history or information from users’ communities, such as their ratings to items [4]. These methods
usually result in providing prediction, suggestion, or ratings of items. Some applications of RSs in
e-commerce businesses based on [4] are on Amazon.com, Drugstore.com, CDNOW (Compact Discs
Now), eBay, Reel.com, and MovieFinder.com. Amazon.com has been noticed by more researchers [5]
because of its highly personalized website and its launch of item-based collaborative filtering, which is
one of the commonly used types of RSs. YouTube and Netflix have used collaborative filtering for video
and movie recommendations. There are also some criticisms of the collaborative filtering method as it
can be poorly be justified because it solely depends on rating data and disregarding the content data [53].
With the increasing number of RSs in e-commerce, companies need to select the best recommendation
algorithm; therefore, Geuens et al. [54] has proposed a framework to choose an optimal collaborative
filtering algorithm. They have used K-nearest Neighbour (KNN) as a classification method for this
purpose and tested the result on two real datasets of women’s clothing and furniture. A recent
study [55] provides a user interface for an e-commerce website based on users’ behavior using a deep
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neural network method. Their analysis revealed the effect of a website layout to recommended items
based on the user’s behavior. Customers reviews are used widely in RSs; in [56], A recent survey
focuses on sentiment analysis on text reviews. They have illustrated that, generally, there are three
types of RSs using text reviews based on words, topics, and opinions. Even though RSs have been
utilized in e-commerce for a long time, there are still challenges in this area. For example, there is the
issue of scalability and data latency. A RS on a website with a large number of users should respond in
real-time. Also, there is a data sparsity issue of rating datasets as not all the customers will rate all
the products.

5.2. Recommendation Systems in Transportation

RSs can assist in diverse ways with the increasing use of Global Positioning System (GPS)-enabled
devices, especially mobile devices. Because information overload problems become worse when using
mobile devices. The development of wireless communication services and position detection techniques
such as RFID or GPS have promoted location-based information systems. RSs play a significant role in
path recommendation, smart transport application of goods [8,57], tourism industry [58–60], or venue
recommendation [61]. To predict users’ location and suggest the best pathways, RS can use users’
location data and integrate it with public transportation system data. An algorithm is proposed in [49]
to predict users’ path and recommend the best bus line. A prototype of their proposed algorithm
is also developed for Android cell phones. Inputs of this system are the users’ route and bus lines’
data. RSs are used in smart transport applications with different methods, such as optimization [57]
or clustering [8]. For instance, a clustering-based RS is developed in [8] for the transportation of
goods. They reduced data dimensionality using principal component analysis (PCA) and applied a
K-means method for clustering transporters based on their distance to users. This system generates a
recommendation of the best available transporters for a user based on their location and transporters’
profile. Some RSs aim to help users, mainly tourists, to find places such as the best restaurants.
The proposed RS in [59] takes users’ personal information and restaurants’ attributes as input and
applies a Bayesian network to calculate recommendation score and show recommended restaurants.
Another restaurant RS is proposed in [62]. Collaborative filtering recommendation is used in [60] to
help users explore the attractions of a city. They used histories of user’s activities and visitors log
to recommend locations. The proposed system enables users to collaboratively share their photos
and experiences and provide more recommendations of places. The advantages of using a RS in
transportation are to provide recommendations to users regardless of their location and time due
to mobile devices. Mobiles have provided the possibility to access valuable information about a
user’s physical location. Even though mobile devices are becoming the main platform for information
access, users may have difficulty finding recommendations using small-screen devices. The more users
have to scroll pages, the lower the chance for an item to be found. Another challenge of applying
RSs in transportation is data sparsity, as most of these systems rely on locations where a user has
visited. The number of physical locations that users visit is limited, resulting in a sparse user–item
matrix. Also, users may visit locations where they have never been before, making it challenging to
apply collaborative filtering methods based on the user’s history. Social networks are widely used in
recommending locations. Reference [11] describes location-based social network RSs (LBSN) based
on the relationship between user, activities, and locations. Historical information of users’ location
differentiates LBSN recommenders from traditional ones. Also, social networks have facilitated the
use of LBSN recommenders. They are used to provide location, activity, or friend recommendations to
people. Activity is considered to give a location’s suggestions to satisfy a user’s demand for activities
such as sports, museums, restaurants, etc. For location RSs, some researchers have considered users’
temporal attributes [63], and some others relied on both temporal and spatial attributes [64]. We have
categorized applications of RSs in transportation into:

1. Recommending trip
2. Recommending path
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3. Recommending popular activities in a location
4. Recommending popular locations (restaurants)
5. Recommending transporters (goods transporter, bus lines, drivers)

Future directions in transportation provide recommendations to a group, which is called group
discovery. Users’ location data can be used in clustering algorithms for this purpose.

5.3. Recommendation Systems in the e-Health Domain

E-health and medical decisions are considered for RSs’ research, aiming to help medical
professionals take fast and proper medical decisions. In [6], researchers proposed a RS to recommend
medical advice for cardiovascular disease patients. They tackled the problems in traditional
collaborative RSs such as scalability and sparsity, and they developed a new technique by applying
clustering and sub-clustering methods. The authors used k-means for clustering, and they evaluated
their model using precision, recall, and MAE (Mean Absolute Error). In [65] Weighted hybrid
recommendation filtering approach was adopted along with an autonomic evaluation of patients’ needs
to propose personalized services tackling the patients’ mental health. They used the self-questionnaires
method to form users’ profiles. In [66], an order RS for clinics was proposed. The system predicts
the order of contents for each appointment and provides recommendations for providers who like to
place the order. The authors used data from five outpatient clinics, and they aimed to enhance order
effectiveness. The researchers also used medical heterogeneous records and data sources in [67] to
develop a RS that recommends standard treatment plans for given symptoms. In [68], the authors
considered the increase in personal data acquisition and mobile health systems. They developed a fuzzy
optimization model to enhance a mobile wellness recommender by incorporating various imprecision
levels such as fuzzy, crisp, interval-valued fuzzy parameters. They evaluated their proposed model
using accuracy, specificity, and sensitivity (i.e., true negative rate). The authors in [69] developed
an e-health collaborative-based RS using deep learning. They applied CNN (convolutional neural
network) algorithm, and they evaluated their recommender using precision, recall, MAE, and RMSE
values. The authors used sentiment analysis to obtain patients’ opinions, and they kept the patients’
privacy preserved. The authors in [70] developed a tailored hybrid RS incorporating demographic,
utility-based, and content-based filtering techniques. They aimed to help smokers quit smoking by
sending them motivational messages seeking to change their behavior. They evaluated their model
using the F-measure, MAE, and the hit rate. The authors in [71] tackled the patients’ dietary needs
by proposing a novel method to recommend food, based on the patients’ medical history. They also
included other features such as age, weight, gender, calories, protein, and fat. They combined deep
learning and machine learning methods—such as naïve Bayes, recurrent neural network, and Long
Short Term-Memory (LSTM)—and applied them on a 30 patients’ collected dataset. The emotional
health-related RS is also proposed in [72]. The authors used a knowledge-based filtering recommender
to suggest remedies for the patients, such as music therapy, art therapy, naturopathy, etc. that can
enhance their given state of health. In [73], the authors used a hybrid filtering approach, combining
context-based with collaborative filtering techniques to discover a cohort of rare diseases. They applied
the model to an Alzheimer’s disease dataset.

5.4. Recommendation Systems in Agriculture

In Agriculture, RSs have a significant impact on managing and using the resources efficiently,
such as fertilizers, agrochemicals, irrigation. In [7], a fertilizer RS was developed to enrich the soil
and increase its productivity. The authors used an ensemble classifier to suggest crops and evaluated
their system using response time and accuracy measures. The issue of pests in crops was addressed
and tackled in [74], where the researchers developed a RS that identifies the pests and recommends
suitable treatments. In [75], the authors developed a web collaborative-based RS to answer the farmers’
inquiries and update them with recent agriculture trends. They used a dataset from a call center that
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answers the farmers’ queries by phone calls. In [76], the authors used the Apriori model and hybrid
filtering model to build a web-based RS. They used Apriori in analyzing the data based on frequent
items, and they recommended items to the users based on both the historical purchases and bestselling
Agri-products. In [50], a collaborative based RS was proposed, where it suggests to the farmers the
suitable crop according to the farmers’ locations and the weather conditions. The authors used cosine
similarity, and their dataset was based on four hundred farmers’ information. In [77], the authors
utilized an ensemble model with majority voting as they incorporated K-nearest and Naïve Bayes
to develop a crop RS. The authors in [78] took the weather conditions as an input in their RS model.
They proposed a hybrid filtering based RS that recommends the best crop produced for specific weather
conditions. The authors applied fuzzy c means, Support Vector Machines (SVM), and Artificial Neural
Networks (ANN) for weather prediction and evaluated their model using accuracy measures. In [79],
the authors aimed to improve crop productivity by proposing a RS based on ensemble technique
where they incorporated different models such as (naïve Bayes, random forest, and Linear SVM). Their
proposed model recommends crop types based on the input soil dataset. They evaluated their model
using the overall average accuracy measure.

5.5. Recommendation Systems in Media and Beyond

The technological developments and changes in media and the increasing number of people
visiting cultural places have led to an increase in various cultural items and offers. Therefore, visitors
are bombarded with the information, making it difficult for them to find their interests. Thus,
recommendation systems have become a vital tool to provide suggestions that ease the information
overload in this area. In [80], social information as artwork attributes (e.g., type, date of creation,
artist, and technical material) and user experience in a real art event is used to find the relation
between users. It was shown that combining three recommender systems, including content-based,
social-based, and context-based performs well in the cultural heritage domain. Museums, as one of the
most important types of cultural heritages, in [81], a survey on intelligent recommender systems for
museums and showed the use of users’ location information and social interactions. Mobile apps have
also contributed a lot in using RS systems in the cultural heritage domain. A smart search museum
mobile application is used in [82] with context-aware and hybrid RSs. They have introduced a big data
architecture which catches users’ information—such as tastes, preferences, behaviors, needs, position,
etc.—from social networks to provide recommendations.

In addition to the adoption of RSs in the cultural heritage domain, RSs are expanded to multimedia
content in text, image, video, audio, etc. to help users find their favorite multimedia content. Users’
multimedia data in social media are used in [83], where users’ preferences, opinions, behaviors, and
feedback are incorporated using metadata, textual comments, activity logs of users on a site, and
ratings. They also introduced a new RS for big data application. Video RSs are widely used, especially
on Netflix and YouTube. RSs rely on metadata to provide a personalized recommendation of movies;
in [84] a RS based on users’ preferences using machine learning is introduced. Another multimedia
RS model is presented in [85], which uses social relationship mining methods and movies’ metadata,
users’ comments, and conversation content. The recommendation results have been enhanced by
applying sentiment analysis, the SVM model, and Word2Vec-based social relationships. Open social
networks (OSN) play a critical role in providing personalized recommendations to users by exploiting
the data and feedback retrieved from social relationships and consumer profiles on the network.
In [86], the authors used the lexical analysis of Twitter’s data and generated ranking scores to identify
similar users. In [87], a novel music recommendation system based on the users’ behaviors and
their personality traits extracted from OSN is introduced. They embedded their findings with a
content-based filtering approach to increase the recommender accuracy. In [88], the authors developed
a diffusion interference method based on the OSN recommendation system. In [89], a collaborative
and user-centered technique that exploits the users’ relationships and interactions with the generated
multimedia content is presented. The model consists of three stages—including data prefiltering,



Appl. Sci. 2020, 10, 7748 15 of 20

ranking, and similarity calculation—where they used a subset of the Yahoo Flicker 100 Million
multimedia dataset. In [90], a new trust-based privacy-preserving framework for decentralized friend
recommendation in OSNs (ARMOR), which utilizes OSN users’ social trust relationships to generate a
friend recommendation in a privacy persevering fashion, is presented. They adopted a real dataset
that contains Facebook networks for 100 universities.

Table 2 shows a summary of business adoption of various recommendation systems in the four
categories and their references.

Table 2. Business adoption of Recommendation Systems (RSs) in five application areas.

Area Application Reference

e-commerce
Items recommendations to buyers [4,5]

Movie or video recommendations [43]

Transportation

Path Recommendation for transporting goodOr passengers [8,39,49]

Recommendations to Tourists [50–52]

Venue recommendation [53–55]

e-health

Medical advice or treatment plan recommendation [6,46,63,64]

Recommending Personalized services to patients [44]

Appointments recommendation to clinicians [45]

Health recommendations in mobile systems [59]

Healthy behavioral recommendations [61]

Diet recommendation [62]

Agriculture

Fertilizer recommendation to farmers [7]

Crops issue recommendation [47]

Assisting farmers inquiries [48]

Agricultural products recommendation [65]

Crop cultivation suggestion [40,66–68]

Media

Event recommendations [80]

Museum recommendations [81,82]

Multimedia recommendations [83–85]

Open Social Networks recommendations [86–90]

6. Conclusions and Future Directions

In this paper, we presented a detailed survey of RS that introduces different types of RSs
as collaborative filtering, content-based, demographic-based, utility-based, knowledge-based, and
hybrid-based. Different combination strategies of hybrid-based systems are also presented and
categorized into weighted, mixed, switching, feature combination, feature augmentation, cascade,
and meta-level. We presented four main challenges that affect the performance of a recommendation
system, including cold-start, data sparsity, scalability and diversity, and metrics used to evaluate its
performance. Furthermore, we show how recommendation systems have been adopted in e-commerce
and various domains such as transportation, E-health, agriculture, and media. We rely on a substantial
body of research to describe multiple applications in each field. We can conclude that: (1) The
emergence need of more robust recommendation algorithms has led to wider applications of RSs. For
instance, highly accurate deep learning methods are resulted in applying RSs in the health industry.
(2) Technology advancements and smartphones have facilitated the use of RSs in daily life. For example,
RSs recommend a path to drivers and passengers or the ones assisting farmers’ tasks. Therefore, the
effectiveness of RSs is verified in numerous areas, and they are increasingly popular. Future research
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includes incorporating technological opportunities such as blockchain, IoT, and RSs. With the growing
number of deep learning-based RSs and the number of users and items in online platforms, new
approaches that scale well with massive datasets are a future direction to add.
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