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Featured Application: Explicit biomechanical multibody model for the inverse dynamics of upper
limb musculoskeletal systems considering muscle wrapping.

Abstract: The aim of this paper is to present an explicit analytical biomechanical multibody procedure
able to be implemented in the solution of the musculoskeletal systems inverse dynamics problems.
The model is proposed in formal multibody analysis and implemented in the Matlab numerical
environment. It is based on the constraint kinematical behaviour analysis and considers both linear
muscle actuators and curved ones, by calculating the geodesic muscle path over wrapping surfaces
fixed to the bodies. The model includes the Hill muscle approach in order to evaluate both the
contractile elements’ actions and the passive ones. With the aim to have a first validation, the model
was applied to the dynamical analysis of the “arm26” OpenSim model, an upper limb subjected to
external forces of gravity and to known kinematics. The comparison of results shows interesting
matching in terms of kinematical analysis, driving forces, muscles’ activations and joint reactions,
proving the reliability of the proposed approach in all cases in which it is necessary to achieve in-silico
explicit determinations of the upper limb dynamics and joint reactions (i.e., in joint tribological
optimization).

Keywords: biomechanics; multibody; musculoskeletal systems; upper limb; dynamics; joint reactions;
muscles wrapping

1. Introduction

In the framework of biomechanics, the dynamics of the human body plays an important role: it is
necessary to apply knowledge of the joint contact forces during certain human kinematics motion to
analyse the joint loading, and to define the synovial joints (hip, knee, ankle, etc.) tribological behaviour
and mechanical performances. It is necessary to estimate the friction and the wear of the articulated
surfaces [1–3], to predict some articular diseases such as the osteoarthritis [4,5] and to design prostheses
able to replace the worn natural joint [6–8] or to investigate the influence of some properties on the
prosthesis performance [9–11], etc.

The in vitro or in vivo approaches to study biomechanical phenomena, are characterised by a wide
deviation of the measurement results. Since they are dependent on many parameters and vary from
subject to subject [12–14], many experiments are required to define an average behaviour of a certain
physical system. For these reasons, the in silico approach is becoming a very suitable way to overcome
the described issues, and many software, able to solve numerically dynamical musculoskeletal systems,
have been developed by researchers, such as OpenSim, AnyBody, etc.

Appl. Sci. 2020, 10, 7760; doi:10.3390/app10217760 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-5111-2331
http://dx.doi.org/10.3390/app10217760
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/21/7760?type=check_update&version=2


Appl. Sci. 2020, 10, 7760 2 of 26

Each software is built with algorithms used to approach mathematical problems; despite them
being computationally optimized to solve problems, they are not fully controllable and they are not
easy to use as a subroutine in more complex models.

A musculoskeletal system can be seen as a set of bodies; the bones, linked by joints which,
simultaneously, allow and constrain the relative motions between them. It is moved by a complex
actuation system composed by “deformable actuators” attached to the bodies, the muscles, governed
by neural excitation signals [15]. In order to analyse the joint contact forces of an articulated system
subjected to a known motion, one of the best ways to achieve the goal is to solve the inverse dynamics
problem with a multibody approach, after performing the scaling and the inverse kinematics [16] to
adapt the musculoskeletal system to the particular subject and motion.

With reference to the above issues, an analysis of scientific literature furnishes interesting findings.
In [6] the authors analysed the differences between two multibody musculoskeletal models of the

upper limb, an anatomical one and one provided with a reverse shoulder prosthesis. They focused
on the comparison between the muscles’ lengths, forces and joint reactions by varying the shoulder
replacement location and geometry.

In [9] the authors validated the quality of a multibody simulation in the framework of above-knee
amputees subjects based on a socket. They compared the calculated loads acting on the socket interface
with the ones acquired by measurement devices applied on six subjects during level walking captured
in gait laboratories, obtaining good agreements.

In [11] the authors discussed the theoretical multibody approaches and contact simulations in the
framework of mechanical hands so as to adapt them to prosthetic hands. They studied the dynamical
behaviour of the finger and the phalanx in order to analyse the grasping ability of the artificial hand.

In [17] the authors proposed to associate a fatigue model to the muscle one, in a general
multibody simulation, considering the muscular force history, to evaluate its fitness level. The authors,
with reference to a simple upper extremity system subjected to gravity and a concentrated load,
obtained interesting results in terms of the increase of the muscles activation and/or of the number of
recruited muscles after a loss of force production capacity.

In [18] the authors furnished a detailed description of the main techniques used to solve the inverse
dynamics of musculoskeletal systems, showing the joint modelling, the muscular tissue dynamics and
the physiological criteria. They applied the model in the case of the gait analysis of a geometrically
reliable whole body.

In [19] the authors showed the multibody analysis potential to solve problems in the framework
of the craniofacial biomechanics of both human and non-human applications.

In [20] the authors performed an overview on the multibody kinematic optimization, focusing on
the reliability of the kinematical analysis associated to the upper limb modelling with respect to the
motion of the soft tissue artefacts, the skin, which in general provides errors.

In [21] the authors developed an interesting multibody model of the human spine by discretising
the linked intervertebral discs by a series of rotational joints, obtaining reliable results and pointing
out on the model utility in the framework of the seating systems comfort investigation and of the
surgical field.

In the above scientific framework, the aim of this paper is to develop, step by step, an explicit
analytical multibody model representing the “core model” of a novel algorithm written by the authors
in the Matlab environment, able to solve the inverse dynamics of upper limb musculoskeletal systems,
allowing the explicit control of the involved variables. The reliability of the model is evaluated
by performing a comparison with the results of an inverse dynamics analysis obtained from the
open-source software OpenSim on the upper limb system subjected to a known kinematics example.
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2. Materials and Methods

2.1. Musculoskeletal System

From a general point of view, a multibody model firstly needs the topology of the system, namely
the set of nB bodies and nJ joints together with the information about which joint links the parent body
to the child bodies. The parent body of a joint is the body in which the joint is defined in terms of
reference frame, while the child bodies of a joint are the bodies subjected to the relative motion, linked
through the joint to the parent body.

We assumed as reference model the OpenSim “arm26” [22] (Figure 1) together with the reference
frames of the ground and the joints: it is composed of 3 bodies: the ground, the humerus and the
forearm; these are denoted by the complex of the ulna-radius-hand and by 2 joints, the shoulder,
which connects the humerus to the ground, and the elbow, which links the forearm to the humerus.
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Figure 1. OpenSim arm26 model topology.

Each body i in the space is described by Lagrangian coordinates qi, (1), which is a vector of
7 elements composed of its mass centre Gi translation with respect to the ground ti and its orientation
with respect to the ground reference frame denoted by the unit quaternion θi.

qi =

[
ti
θi

]
(1)
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According to the quaternion theory [23], a unit quaternion θ is a unit vector composed of a scalar
real part and a vector imaginary part, describing the orientation of a floating reference frame rotated
with respect to a fixed one by the knowledge of the rotation angle and the axis around which it is
performed. The information about the quaternion and its time derivatives allows calculating a body’s
angular velocity ω together with the rotation matrix R with respect to the ground reference frame.
A kinematical analysis is necessary to elaborate the position rP, the velocity vP or the acceleration aP of
any point P in the space (joint, muscle attachment point, external force application point, etc.) fixed to
a body i, through its local position with respect to the body i, uP,i, the body’s Lagrangian coordinates qi
and their derivatives

.
qi and

..
qi [23], as described in (2).

rP = ti + RiuP,i

vP =
.
ti −RiũP,iGi

.
θi

aP =
..
ti − ω̃iRiũP,iGi

.
θi −RiũP,iGi

..
θi

(2)

2.2. Kinematical Analysis Based on the Constraints

Since the time evolutions of the ndo f system’s degrees of freedom are known, a kinematical analysis
can be immediately performed. The analysis is based on the idea that the system has to satisfy during
the time t the set of constraint equations coming from the joints’ kinematical behaviour, through the
right set of the bodies’ Lagrangian coordinates q [24,25], obtained by concatenating the individual ones
qi along the column direction.

A multibody system made of nB bodies (including the ground) which move in a known way,
is subjected to the constraint equations composed by:

- ndo f rheonomic constraints which drive the degrees of freedom to move with the known
trajectories (Cr);

- nc scleronomic constraints due to the relative motions blocked by the joints kinematical
behaviour (Cs);

- (nB − 1) constraints which guarantee that the bodies’ quaternions keep the unitary norm (Cb).

From the mobility Equation (3),

ndo f = 6(nB − 1) − nc, (3)

the 7(nB − 1) constraint equations needed to find the same number of unknown q are included in the
constraint vector C in (4).

C(q, t) =


Cr(q, t)
Cs(q)
Cb(q)

 = 0 (4)

The kinematical analysis, in (5), can be performed by solving the closed non-linear system of
equations C through the Newton iterative method for the position problem and by differentiating the
constraints with respect to time t, obtaining two linear systems to solve the velocity and acceleration,
which provide the Lagrangian velocities

.
q and accelerations

..
q.

q(k+1) = q(k) −C−1
q

(
q(k), t

)
C
(
q(k), t

)
Cq

.
q = −Ct

Cq
..
q = −

( .
Ct +

.
Cq

.
q
) (5)



Appl. Sci. 2020, 10, 7760 5 of 26

The constraint Jacobian Cq and the other matrices and vectors involved in the kinematical analysis

in (5) (C, Ct,
.
Cq,

.
Ct), are obtained by analysing the joints kinematical behaviour. In this application the

shoulder and the elbow are modelled as revolute joints, so only this joint type is discussed. A revolute
joint J allows only a relative rotation θ between the linked bodies i and j around an axis defined by the
unit vector v̂ fixed to the parent body i, as showed in the Figure 2.
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The rheonomic constraint Cr,J associated to the revolute joint J is generally modelled considering
that the scalar product between two particular vectors fixed to the related bodies has to be equal to the
cosine of the relative rotation θ [18,25]: the periodicity of the trigonometric functions does not allow
to reaching a unique solution numerically solving the position analysis. In this work this particular
constraint is modelled considering that the difference between the bodies’ absolute angular coordinates
ϕ projected on the rotation axis v̂ has to be equal to the relative rotation θ, as written in (6).

Cr,J(q, t) = v̂TRT
i

(
ϕ j −ϕi

)
− θ(t) = 0 (6)

The related scleronomic constraints Cs,J are composed of a translational part and a rotational
one [25], in (7):

- the joint position calculated starting from the body i, rJ,i, has to be equal to the one seen by the
body j, rJ, j;

- a vector fixed to body j, s j, parallel to the rotation axis v̂, has to be orthogonal with respect to
others two vectors fixed to the body i, si1 and si2, both orthogonal to the rotation axis v̂ and to
each other.



rJ,i = ti + RiuJ,i
rJ, j = t j + R juJ, j

s j = R js j
si1 = Risi1
si2 = Risi2

→ Cs,J(q) =


rJ,i − rJ, j

sT
i1s j

sT
i2s j

 = 0 (7)
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While the joint local positions uJ,i and uJ, j are provided by the geometry of the system, the vectors
s j, si1 and si2 can be calculated considering the spherical transformation that rotates the reference frame
of the body i or j leading the x axis to be parallel with respect to the rotation axis v̂.

The time derivatives of the rheonomic constraint are then performed in (8) (considering that from
the quaternion theory results

.
G

.
θ = 0).

.
Cr,J

(
q,

.
q, t

)
= −v̂TGi

.
θi + v̂TRT

i R jG j
.
θ j −

.
θ(t) = 0

..
Cr,J

(
q,

.
q,

..
q, t

)
= −v̂TGi

..
θi + v̂TRT

i R jG j
..
θ j + v̂TRT

i ω̃
T
i R jG j

.
θ j + v̂TRT

i ω̃ jR jG j
.
θ j −

..
θ(t) = 0

(8)

Collecting the terms in order to build the matrices needed for the kinematical analysis, Equation (9)
is obtained.

.
Cr,J =

[
0 −v̂TGi

] .
ti.
θi

+ [
0 v̂TRT

i R jG j

] .
t j.
θ j

− .
θ(t) = 0

..
Cr,J =

[
0 −v̂TGi

] ..
ti..
θi

+ [
0 v̂TRT

i R jG j

] ..
t j..
θ j

+ 0

 .
ti.
θi

+ [
0 v̂TRT

i

(
ω̃T

i + ω̃ j
)
R jG j

] .
t j.
θ j

− ..
θ(t) = 0

(9)

The same logic is adopted in order to find the time derivatives of the scleronomic constraints
in (10).

.
Cs,J(q,

.
q) =


.
ti −RiũJ,iGi

.
θi −

.
t j + R jũJ, jG j

.
θ j

−sT
j RT

j Rĩsi1Gi
.
θi − sT

i1RT
i R j̃s jG j

.
θ j

−sT
j RT

j Rĩsi2Gi
.
θi − sT

i2RT
i R j̃s jG j

.
θ j

 = 0

..
Cs,J(q,

.
q,

..
q) =


..
ti−RiũJ,iGi

..
θi −Riω̃iũJ,iGi

.
θi −

..
t j + R jũJ, jG j

..
θ j + R jω̃ jũJ, jG j

.
θ j

−sT
j RT

j Rĩsi1Gi
..
θi − sT

j RT
j

(
ω̃T

j + ω̃i

)
Rĩsi1Gi

.
θi − sT

i1RT
i R j̃s jG j

..
θ j − sT

i1RT
i

(
ω̃T

i + ω̃ j
)
R j̃s jG j

.
θ j

−sT
j RT

j Rĩsi2Gi
..
θi − sT

j RT
j

(
ω̃T

j + ω̃i

)
Rĩsi2Gi

.
θi − sT

i2RT
i R j̃s jG j

..
θ j − sT

i2RT
i

(
ω̃T

i + ω̃ j
)
R j̃s jG j

.
θ j

 = 0

(10)

Collecting the terms again, Equation (11) is obtained.

.
Cs,J =


I −RiũJ,iGi

0 −sT
j RT

j Rĩsi1Gi

0 −sT
j RT

j Rĩsi2Gi




.
ti
.
θi

+

−I R jũJ, jG j

0 −sT
i1RT

i R j̃s jG j

0 −sT
i2RT

i R j̃s jG j




.
t j
.
θ j

 = 0

..
Cs,J =


I −RiũJ,iGi

0 −sT
j RT

j Rĩsi1Gi

0 −sT
j RT

j Rĩsi2Gi




..
ti
..
θi

+

−I R jũJ, jG j

0 −sT
i1RT

i R j̃s jG j

0 −sT
i2RT

i R j̃s jG j




..
t j
..
θ j

+

0 −Riω̃iũJ,iGi

0 −sT
j RT

j

(
ω̃T

j + ω̃i

)
Rĩsi1Gi

0 −sT
j RT

j

(
ω̃T

j + ω̃i

)
Rĩsi2Gi




.
ti
.
θi

+

0 R jω̃ jũJ, jG j

0 −sT
i1RT

i

(
ω̃T

i + ω̃ j

)
R j̃s jG j

0 −sT
i2RT

i

(
ω̃T

i + ω̃ j

)
R j̃s jG j




.
t j
.
θ j

 = 0

(11)

Once the rheonomic and scleronomic constraints are evaluated, the ones related to the quaternions’
unitary norm are written for each body i in (12).

Cb.i(q) = θT
i θi − 1 = 0 (12)

The time derivatives of Cb,i are evaluated in (13).

.
Cb,i

(
q,

.
q
)
= 2θT

i

.
θi = 0

..
Cb,i

(
q,

.
q,

..
q
)
= 2θT

i

..
θi + 2

.
θ

T
i

.
θi = 0

(13)
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Collecting the terms for the last time, Equation (14) is written.

.
Cb,i =

[
0 2θT

i

] .
ti.
θi

 = 0

..
Cb,i =

[
0 2θT

i

] ..
ti..
θi

+ [
0 2

.
θ

T
i

] .
ti.
θi

 = 0
(14)

Every constraint k is written in the form of (15) in order to extrapolate the needed submatrices
that have to be associated to the related i and j bodies’ Lagrangian coordinates, so that the kinematical
analysis can be solved. With reference to Equation (6), it is worth noting that the rheonomic constraint
equations Cr are written in such a way as to separate the functional dependence on the Lagrangian
coordinates q, through the vector a, and the one on the time t, through the set of degrees of freedom qdo f .


Cr(q, t) = a(q) − qdo f (t)

Cr,t = −
.
qdo f

Cr,tt = −
..
qdo f

→


Ck(q, t) = 0

.
Ck

(
q,

.
q, t

)
= Cq,i

.
qi + Cq, j

.
q j + Ct,k = 0

..
Ck

(
q,

.
q,

..
q, t

)
= Cq,i

..
qi + Cq, j

..
q j +

.
Cq,i

.
qi +

.
Cq, j

.
q j +

.
Ct,k = 0

(15)

2.3. Inverse Dynamics

The solution over time of the kinematical problem provides all the quantities needed for the
inverse dynamics. In particular, with reference to the chosen generalised coordinates qi, the equation
of motion includes the mass matrix M, the vector of the centrifugal and Coriolis generalised force Qv
and the external generalised force Qe [23] and it is written in the form of virtual work for a virtual
displacement δq by including the work of the internal forces through the constraint Jacobian Cq and
the Lagrange multipliers λ in (16).

δqT
(
M

..
q−Qv −Qe + CT

qλ
)
= 0 (16)

Since the work of the internal forces is considered, the equation of motion (22) is satisfied for
any virtual displacement δq: in order to refer the bodies’ orientations to the local cartesian angular
coordinates ϕi, instead of the quaternion θi, a coordinate change is performed through the matrix
Jq [23], in (17).

δqi =

[
δti
δθi

]
=

 I 0

0 1
4 G

T
i

[ δti
δϕi

]
= Jq,iδqi → δqTJT

q

(
M

..
q−Qv −Qe + CT

qλ
)
= 0 (17)

The generalised force vector Qc and the new constraint Jacobian Cq are defined in (18), leading to
the final form of the multibody equation of motion. Qc = JT

q

(
M

..
q−Qv −Qe

)
Cq = CqJq

→ CT
qλ+ Qc = 0 (18)

The coordinate transformation in (17) allows neglecting the part of the Jacobian associated with
the constraints needed to keep the quaternions’ unitary norm: then Equation (18) becomes a closed
linear system in which the unknowns are the Lagrange multipliers associated with the rheonomic
constraints λr, representing the driving forces associated to each degree of freedom, and the ones
related to the scleronomic constraints λs [25], as showed in (19).

Cq =

[
Cq,r
Cq,s

]
λ =

[
λr

λs

] →

[
CT

q,r CT
q,s

][ λr

λs

]
= −Qc (19)
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The scleronomic multipliers λs are not equal to the joint reaction forces, because the actuation of
the musculoskeletal system doesn’t associate a single actuator to each degree of freedom: there are
more muscles than degrees of freedom (redundancy) and, moreover, the muscular action is composed
of a passive part which has to be considered as a known external force. In order to evaluate muscle
forces and joint reactions, a muscle model is needed.

2.4. Hill Muscle Model

The Hill muscle model considers the muscle–tendon unit as a linear actuator between two
attachment points A and B on the linked bodies (Figure 3) composed by the series of the tendon SE
with length lt and the muscle, that is modelled as a parallel between the contractile element CE and
the passive element PE, with length lm and inclined with respect to the action line by the pennation
angle αp [26–28].
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The force Fm generated by the muscle–tendon series is shared by the tendon and the muscle, so it
can be evaluated as the sum of the ones generated by the contractile element FCE, representing the active
action due to the sarcomeres’ contractions, and the passive element FPE, due to the muscular fibre tissue
stiffness, projected on the action line through the pennation angle αp. The active part FCE depends
on the activation level a, a scalar number between 0 and 1 determined by the muscular recruitment
criterion, the muscle fibre length lm and deformation velocity vm through the force–length–velocity
relationships, while the passive force FPE depends only on the muscle fibre length lm [28–30], as written
in (20) and depicted in the Figure 4:

- according to the force–length relation fl, increasing the muscle fibre length, the active force
increases until it reaches a peak (the maximum isometric force F0) in correspondence with the
optimal fibre length l0, then it decreases;

- the muscle generates a greater force than the maximum isometric one (in correspondence of zero
deformation velocity) when it lengthens, with an asymptotic behaviour, and a lower force until it
reaches the maximum contraction velocity vmax, beyond which it is not able to produce actuation,
following the force–velocity relation fv;
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- the passive element opposes a growing resistance only if the muscle length is greater than the
optimal fibre length l0, until it reaches a maximum value following the relation fPE.

 l̃ = lm
l0

ṽ = vm
vmax

→

 FCE = a fl
(̃
l
)

fv(ṽ)F0

FPE = fPE
(̃
l
)
F0

→ Fm = (FCE + FPE) cosαp (20)
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Generally it is assumed that the tendon dynamics is negligible, so that the tendon length lt can be
considered as a constant, and that the muscle width wm keeps constant values, even in correspondence
of the muscle optimal fibre length l0, when the muscle is inclined by the known optimal pennation
angle α0. Then, with reference to Figure 3, Equation (21) is used to calculate the muscle length lm,
the muscle deformation velocity vm and the pennation angle αp, starting from the length lmt and the
deformation velocity vmt of the muscle–tendon unit, which are known from kinematical analysis [25].

{
lmt = lt + lm cosαp

wm = lm sinαp = l0 sinα0
→

 lm =

√
(l0 sinα0)

2 + (lmt − lt)
2

αp = arctan
( l0 sinα0

lmt−lt

)
vm =

.
lm = vmt cosαp

(21)

2.5. Wrapping Muscles

While some muscles’ attachment points are fixed to the bodies, others depend on the particular
pose of the musculoskeletal system, because the related muscles can wrap around bony surfaces fixed
to the bodies [31–33]. In order to locate the intermediate attachment points due to the muscle wrapping,
the curve that the muscle follows around the wrapping surface is modelled with a geodesic [34,35],
since this approach models the wrapping muscle by constraining its associated curve to follow the
smooth shortest path around the related surfaces; this approach also achieves a low computation
cost. The surface’s spatial representation can be described with two parameters, u and v, through the
parametric equations x(u, v) which satisfy the implicit surface equation f (x) = 0. The geodetic curve
c(s), along the curvilinear coordinate s, is evaluated as the constrained motion of a particle with mass m
on the surface x(u, v) in absence of external actions: then the particle’s equation of motion is assembled
in (22) and it is solved according to its forward dynamics. The particle is characterised by three degrees
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of freedom in space; for the translation q, its mass m is arbitrary because its value affects only the
Lagrange multiplier λ associated to the unique surface constraint C.

q′ = dq
ds

M = mI
C = f (q)

→

{
Mq′′ + CT

qλ = 0
C(q) = 0

(22)

Differentiating the constraint C with respect to the curvilinear coordinate s, the constraint Jacobian
Cq and its derivative C′q are obtained. The geodesic forward dynamics problem written in (23) is a
closed non-linear differential algebraic equation and it is solved numerically by marching techniques.
Coupling it with the initial conditions r0, the attachment point position, and t̂0, the tangent unit vector
parallel to the surface, calculated from the straight-line muscle line action projected on the surface
tangent plane, gives the initial direction: the solution q(s) is equal to the geodesic c(s).{

C′ = ∇ f (q)q′ = Cqq′ = 0
C′′ = ∇ f ′(q)q′ +∇ f (q)q′′ = C′qq′ + Cqq′′ = 0

{
Mq′′ + CT

qλ = 0
Cqq′′ = −C′qq′

→


[

M CT
q

Cq 0

][
q′′

λ

]
=

[
0

−C′qq′

]
q(0) = r0

q′(0) = t̂0

(23)

With reference to Figure 5, in correspondence with each time instant, the model detects the
contact between the straight-line muscles AB. and the associated surfaces x(u, v); then it calculates
the geodesics starting from the two intersections P and Q on the surface, cP and cQ, varying the
attachment points location until the original muscle AB is split in two straight-line muscle units AP
and QB tangent to the surface while the related geodesics are collinear to each other in correspondence
with the geodesics’ closest points P∗ and Q∗ [34].
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𝑇
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From the differential geometry, the tangent, normal and binormal unit vectors, t̂, n̂ and b̂,
respectively, are given in (24).

t̂ = c′ =
[

xu xv
][ u′

v′

]
n̂ =

∇ f
|∇ f |

b̂ = t̂× n̂

(24)

The objective is to find the unknown geodesics initial positions, the attachment points locations
described by the surface parameters (u0P, v0P) and

(
u0Q, v0Q

)
, that set to zero the function f in (25),

in which the first two components impose the surface’s tangency of the split muscles, while the last
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two components guarantee the geodesics’ collinearity. The non-linear closed problem can be solved
using the Newton iterative method, numerically calculating numerically the Jacobian function Jf.

ε =


u0P

v0P

u0Q
v0Q

 →
 rP = x(u0P, v0P)

rQ = x
(
u0Q, v0Q

) →  t̂P = rP−rA
|rP−rA |

t̂Q =
rQ−rB

|rQ−rB|

f(ε) =


t̂T

Pn̂P

t̂T
Qn̂Q

b̂
T
P∗
(
rP∗ − rQ∗

)
b̂

T
P∗ t̂Q∗

 = 0 → ε(k+1) = ε(k) − J−1
f

(
ε(k)

)
f(ε(k))

(25)

Once the Newton cycle has reached convergence, the two geodesics cP and cQ are joined in
correspondence of the collinearity point, resulting in the definitive muscle path cPQ.

The surface types analysed in this work are the cylinder xc, with radius r and height h, and the
ellipsoid xe, with semiaxes sx, sy and sz, given in (26).

xc(u, v) =


r cos u
r sin u

v

 0 ≤ u ≤ 2π
−

h
2 ≤ v ≤ h

2
xe(u, v) =


sx cos v cos u
sy cos v sin u

sz sin v

 0 ≤ u ≤ 2π
−
π
2 ≤ v ≤ π2

fc(x) = x2 + y2
− r2 = 0 fe(x) =

(
x
sx

)2
+

(
y
sy

)2
+

(
z
sz

)2
− 1 = 0

(26)

2.6. Static Optimization

Once the muscle path is defined, the muscle forces have to be turned into generalised forces
through the muscle Jacobian Φq by the principle of virtual work in order to include them in the
equation of motion [17,18,25]. In general, each muscle is modelled as a series of straight-line and
curved musculotendon actuators (Figure 6), so the muscle’s virtual work δWm is calculated with the
sum of the individual units work considering that the muscle force Fm is constant along the muscle
path and that there is no friction between the muscle path and the wrapping surfaces [35].Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 24 
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With reference to Figure 6, the three bodies i, j and k are linked by the same muscle, together with
an intermediate wrapping surface fixed to another body w: locating the musculotendon units action
lines by the unit vectors l̂ and the position r of the attachment points, the aim is to relate the virtual
work to the bodies’ generalised coordinates δq in order to build the muscle Jacobian Φq in (27).

rA = ti + RiuA
rB = t j + R juB

rP = tw + RwuP

rQ = tw + RwuQ
rC = tk + RkuC

→


l̂AB = rB−rA

|rB−rA |

l̂BP = rP−rB
|rP−rB |

l̂QC =
rC−rQ

|rC−rQ|

→


δWAB = −Fm l̂

T
AB(δrB − δrA)

δWBP = −Fm l̂
T
BP(δrP − δrB)

δWPQ = 0

δWQC = −Fm l̂
T
QC

(
δrC − δrQ

)

δWAB = Fm

(
l̂
T
AB

[
I − RiũAGi

][ δti
δθi

]
− l̂

T
AB

[
I − R jũBG j

][ δt j
δθ j

])
δWBP = Fm

(
l̂
T
BP

[
I − R jũBG j

][ δt j
δθ j

]
− l̂

T
BP

[
I − RwũPGw

][ δtw

δθw

])
δWQC = Fm

(
l̂
T
QC

[
I − RwũQGw

][ δtw

δθw

]
− l̂

T
QC

[
I − RkũCGk

][ δtk
δθk

])
δWm = δWAB + δWBP + δWPQ + δWQC = Fm

(
Φq,iδqi + Φq, jδq j + Φq,wδqw + Φq,kδqk

)

(27)

Then, once the muscle Jacobian Φq and the muscle force vector Fm have been assembled, the
generalised muscle force Qm can be included as an external force in the equation of motion (16) instead
of the constraint Jacobian part related to the rheonomic constraints, as written in (28).

QT
mδq = FT

mΦqδq → δqT
(
M

..
q−Qv −Qe −ΦT

q Fm + CT
q,sλs + CT

q,bλb

)
= 0 (28)

Changing the orientation coordinates through the matrix Jq, so as to neglect the constraint Jacobian
part related to the unitary norm of the quaternions, Equation (29) is obtained.

Φq = ΦqJq → ΦT
q Fm −CT

q,sλs = Qc (29)

Each muscle force Fm,i depends on the muscle length lm,i, the muscle deformation velocity vm,i
and the pennation angle αp,i through the Hill model: these quantities can be calculated through
Equation (21), evaluating the musculotendon length lmt,i and deformation velocity vmt,i. Analysing
each muscle series i, in general it can be composed by ns straight-line units (from A j to B j) and nw

wrapped units (from Pk to Qk), so the musculotendon length lmt,i and deformation velocity vmt,i can be
calculated as the sum of the individual contributions in (30).

lmt,i =
ns∑

j=1

∣∣∣rB, j − rA, j
∣∣∣+ nw∑

k=1

∣∣∣∣c′PQ,k

∣∣∣∣ds

vmt,i =
ns∑

j=1

(
vB, j − vA, j

)T
l̂AB, j +

nw∑
k=1

(
vT

Q,kt̂Q,k − vT
P,kt̂P,k

) (30)

From Equation (20), each muscle force Fm,i is written in Equation (31) as the sum of an active
part FCE,i multiplied by the activation level ai and a passive part FPE,i, in order to relate the muscle
force vector Fm to the activation vector a, through the maximum active muscle force FCE, and the
passive muscle force vector FPE (which take into account the muscles’ length, velocity, pennation and
maximum isometric force).

Fm,i = aiFCE,i + FPE,i → DCE = diag
(
FCE

)
→ Fm = DCEa + FPE (31)

Substituting in (29), the unknowns in the equation of motion (32) are the activation vector a and
the Lagrange multipliers related to the scleronomic constraints λs, which definitely represent the joint
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reactions, by including the muscle activation Jacobian Φq,CE and the generalised passive muscle force
vector QPE.  Φq,CE = DCEΦq

QPE = ΦT
q FPE

→

[
ΦT

q,CE −CT
q,s

][ a
λs

]
= Qc −QPE (32)

Since the linear equation system (32) has more unknowns than equations, due to the muscle
redundancy, it is used as an equality constraint in the static optimization problem which minimizes
the global muscle activation level (physiological criterion). If the muscle topology modelling is not
accurate, the static optimization could fail, so the Lagrange multipliers associated with the rheonomic
constraints λr are reintroduced in (32) with the role of residual actuators, whose action has to be
minimized together with the muscle activations (bounded between 0 and 1), in order to ensure the
optimization convergence while satisfying the equation of motion, as written in (33).

[
ΦT

q,CE −CT
q,s −CT

q,r

]
a
λs

λr

 = Qc −QPE

A =
[
ΦT

q,CE −CT
q,s −CT

q,r

]
x =


a
λs

λr


b = Qc −QPE

→

min
x

J(x) = aTa + λT
r λr

Ax = b
0 ≤ a ≤ 1

(33)

3. Results and Discussion

In this section, the results regarding the simulation of the upper limb subjected to gravity during
a simple kinematics are discussed. The input data are taken from the OpenSim model “arm26” [22].
As already mentioned, the analysed upper limb is composed of three bodies: ground, humerus and
forearm; these are linked by two revolute joints, the shoulder and elbow, whose main data (inertial
properties, relative locations and rotation axes) are listed in Tables 1–4.

Table 1. Bodies’ inertial properties.

Body Mass m [kg]
Inertia Tensor Entries

Ixx [g m2] Iyy [g m2] Izz [g m2] Ixy [g m2] Iyz [g m2] Ixz [g m2]

Humerus 1.86 14.81 4.55 13.19 0 0 0
Forearm 1.53 19.28 1.57 20.06 0 0 0

Table 2. Bodies’ mass center position with respect to the reference joints.

Body
Local Position Vector

uGx [m] uGy [m] uGz [m]

Humerus 0 −0.180 0
Forearm 0 −0.181 0

Table 3. Joints’ positions with respect to the reference joints.

Joint
Local Position Vector

uJx [m] uJy [m] uJz [m]

Shoulder −0.0175 −0.0070 0.1700
Elbow 0.0061 −0.2904 −0.0123
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Table 4. Joints’ rotation axed with respect to the parent bodies.

Joint
Unit Vector Axis

v̂x v̂y v̂z

Shoulder −0.0589 0.0023 0.9983
Elbow 0.0494 0.0366 0.9981

The musculoskeletal system is moved by six muscles (long triceps, lateral triceps, medial triceps,
long biceps, short biceps and brachialis), characterised by parameters included in the Table 5.

Table 5. Muscles’ properties.

Muscle

Maximum
Isometric

Force
F0 [N]

Optimal
Muscle Fibre

Length
l0 [m]

Slack
Tendon
Length
lt [m]

Optimal
Pennation

Angle
α0 [rad]

Maximum
Contraction

Velocity
vmax [l0/s]

Long triceps 798.52 0.1340 0.1430 0.209 10
Lateral triceps 624.30 0.1138 0.0980 0.157 10
Medial triceps 624.30 0.1138 0.0908 0.157 10
Long biceps 624.30 0.1157 0.2723 0 10
Short biceps 435.56 0.1321 0.1923 0 10

Brachialis 987.26 0.0858 0.0535 0 10

The wrapping surfaces included are a cylinder fixed to the ground interacting with the long
triceps, a first ellipsoid interacting with the long biceps, a second ellipsoid interacting with the long
triceps (both the ellipsoids are fixed to the humerus) and a cylinder fixed to the humerus interacting
with all the triceps on the back and with the brachialis on the front. The wrapping surfaces have
locations uw and orientations θw with respect to the reference joints, these are reported in Table 6,
along with the surface geometries.

Table 6. Wrapping surfaces location and orientation with respect to the reference joints and geometry.

Wrapping Surface
Local Position Vector Local Orientation Geometry

uw,x [m] uw,y [m] uw,z [m] θw,x [rad] θw,y [rad] θw,z [rad] [mm]

Ground cylinder −0.0439 −0.0039 0.1478 1.3753 −0.2946 2.4360 r = 3
h = 30

Shoulder ellipsoid 1 −0.0078 −0.0041 −0.0014 3.0016 −0.8535 2.5742
sx = 35
sy = 20
sz = 20

Shoulder ellipsoid 2 0.0033 0.0073 0.0003 −2.0043 −1.0016 0.9755
sx = 25
sy = 20
sz = 20

Elbow cylinder 0.0028 −0.2919 −0.0069 −0.1402 −0.0063 0.1550 r = 16
h = 50

The degrees of freedom are the shoulder and the elbow rotations and the analysed kinematics,
as reported in Figure 7, which shows the movement of the elbow from 0◦ to 90◦ during 1 s while the
shoulder does not move.
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In order to prove the reliability of the kinematical analysis, Figure 8; Figure 9 show the comparison
between the system configuration (the position of the bodies with their mass centre, the muscles and the
wrapping surfaces) in the OpenSim model and in the Matlab model, in correspondence of the first and
the last time instants. The kinematical analysis can be viewed in Supplementary Materials—Video S1.
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The wrapping muscles on the cylinder close to the elbow are viewed in Figure 11 at the start and
at the end of the analysis time period, in order to show the brachialis wrapping on the cylinder front
and the triceps wrapping on the cylinder back. The complete time evolution of the muscles’ wrapping
on the cylinder is available in Supplementary Materials—Video S2.
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A first quantitative comparison in the framework of the kinematical analysis is shown in Figure 12
on the muscles’ fibre length lm, which also accounts for the muscle wrapping.
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Given that the comparison is satisfactory, the unique noticeable difference is related to the long
biceps fibre length, probably due to a different wrapping algorithm used by the OpenSim software.
After the kinematical analysis, the results of the inverse dynamics are shown in the Figure 13, in which
the comparison between OpenSim and Matlab is made on the driving forces (rheonomic Lagrange
multipliers λr). The inverse dynamics outputs result in a very satisfactory match between the Matlab
model and the OpenSim software.Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 24 
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Figure 13. Inverse dynamics comparison: (a) Matlab and (b) OpenSim.

The tool “Static Optimization” in OpenSim does not take into account the muscle passive force
and allows choosing between the physiological criterion by using the muscle’s force–length–velocity
relationships or not. In the latter option the muscular activation a is intended as the ratio between the
muscle force Fm and the maximum isometric force F0, bounded between 0 and 1. In the configuration
of non-physiological criterion, the comparison on the muscles’ activation is shown, respectively,
in Figure 14. The comparison of the muscle forces is not shown because in this case the forces are
proportional to the activations. The evaluated activations a calculated with the Matlab model are
slightly underestimated with respect to the ones evaluated by OpenSim, which, moreover, show
some discontinuities.

The results obtained with the physiological criterion but not taking into account the passive
muscle forces are shown in Figure 15, in terms of muscle activations a, and in Figure 16, in terms
of muscle forces Fm. In this configuration there are small underestimations and overestimations in
different parts of the time period and the OpenSim software returns some discontinuities, regarding
both the activations and the muscle forces.
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Figure 16. Muscles’ forces with physiological criterion and no passive forces: (a) Matlab and
(b) OpenSim.

The “Computed Muscle Control” tool in OpenSim [36] allows evaluating the muscle activations,
also considering the passive muscle forces, by calculating through PID controllers the muscle actions
necessary to obtain the minimum difference between the trajectories of the degrees of freedom
simulated with the forward dynamics and the ones known by inverse kinematics. The comparison
results regarding the muscle activation a and the muscle forces Fm are shown respectively in Figure 17
and in Figure 18. In this last configuration, which includes all the analysed phenomena, despite the good
qualitative match between the Matlab model and the OpenSim software, there are some discrepancies,
probably due to the different approaches with respect to static optimization. While the muscle
activations are underestimated, the muscle forces seems to be more similar to each other, except for the
first instants of the time period discussed.
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Another interesting result is obtained regarding the residual actuatorsλres (which are the rheonomic
Lagrange multipliers λr of Equation (33)), also provided in the OpenSim tools, in this configuration.
With reference to Figure 19, the residual actuators show a similar behaviour, both quantitively and
qualitatively. The quantitative response of the residual actuators shows that the particular muscles’
topology, together with their characteristic parameters listed in Table 5, does not fully satisfy the
equation of motion, since they result from the minimization, but their role is marginal if compared
to the rheonomic Lagrange multipliers coming from the inverse dynamics (Figure 13) and, in fact,
the residual action is needed just to reach the minimization convergence and to complete the calculus,
not for substituting the real actuators represented by the muscles.
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Once the inverse dynamics problem of the musculoskeletal system is solved, the Matlab model
provides the joint reactions. In Figure 20, the joint reactions λ jr (which are the scleronomic Lagrange
multipliers λs of Equation (33)) which act on the upper limb joints during the analysed kinematics
are shown.
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4. Conclusions

The objective of this work was to propose and to describe step by step the procedure to achieve a
general multibody approach able to solve the inverse dynamics problem of a musculoskeletal system,
the upper limb, implemented in a novel code developed in the Matlab environment. By knowledge of
the musculoskeletal system degrees of freedom together with the system’s topology, the model allows
a kinematical analysis based on the evaluation of the constraints’ kinematical behaviour. Subsequently,
associating an actuator for each degree of freedom and including the external forces, the inverse
dynamics is solved by calculating the rheonomic Lagrange multipliers, related to the driving actions
that lead the system to move following the known kinematics. The knowledge of the muscles’ topology
leads the kinematical analysis to evaluate the muscle paths between the bodies and around the
wrapping surfaces fixed to the bodies: in the case of wrapped muscle, an algorithm based on the
calculus of geodesic curves is used. The muscle paths are involved in the elaboration of the muscles’
lengths, deformation velocities and pennation angles, in order to include in the equation of motion,
through the Hill muscle model, the muscles’ passive forces and the muscles’ activations. The last step
of the model is to analyse the muscular recruitment through static optimization: the evaluation of the
set of muscles’ activation levels and joint reaction forces, able to minimize the global activation and to
satisfy the equation of motion.
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The effectiveness of the model was examined by its application on an upper limb model subjected
to a simple kinematics and to gravity forces. All the inputs data were taken from the OpenSim software
and the simulation results were compared with the ones provided by the software, obtaining a general
satisfactory qualitative and quantitative matching:

- despite the kinematical analysis, exactness is noticeable, the only difference found was a small
overestimation of the long biceps muscle fibre length, probably due to the different wrapping
algorithm used by OpenSim;

- the inverse dynamics in terms of driving force results were almost completely matched;
- the static optimization was characterised by a general underestimation of the muscles’ activations

in all the cases considered (both physiological and non-physiological criterion in absence of passive
muscles’ forces and physiological criterion considering the passive muscle actions compared
with the Computed Muscle Control tool of OpenSim). The underestimation was regained by
comparing the muscle forces, the differences were probably due to the different approaches in the
minimization techniques and, certainly, to the different approach to the inverse dynamics of the
Computed Muscle Control;

- the good outcome of the comparison was also confirmed by the matching of the residual actuators.

In summary, with the limitation of its validation with only one imposed upper limb kinematics,
the model resulted as a suitable, open and fully controllable tool in the framework of the multibody
musculoskeletal dynamics of the human upper limb. However, despite the model being characterised
by the accurate analytical description of important muscular phenomena (muscle dynamics, recruitment
and wrapping), it has to process more complex kinematics in order to perform a more accurate validation
and to design a fully in silico optimization model of the artificial human joints. The deepening of the
involved phenomena is always a stimulating necessity, in order to understand more clearly the human
body mechanical behaviour, so future research perspectives will be devoted to:

- a full validation with more upper limb kinematics;
- the application of the model in the framework of the lower limb musculoskeletal system, in order

to compare the simulated joint reactions with the in vivo measurements during the gait analysis;
- the coupling of the model with a lubrication one, in order to estimate the wear of an artificial

joint or to evaluate the joints friction forces or torques to include in the equation of motion as
non-conservative actions;

- the upgrade of the model by including the forward dynamics, in order to make a detailed
comparison with the Computed Muscle Control tool of the OpenSim software;

- the deepening of the Hill muscle model, in order to include the tendon dynamics;
- the possible applications of the model in the framework of the biomechatronics and robotics fields.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/21/7760/s1,
Video S1: Inverse kinematics, Video S2: Elbow wrapping.
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Abbreviations

q Lagrangian coordinates
t Translation vector
θ Unit quaternion vector
R Rotation matrix
u Local position vector
r, v, a Position, velocity and acceleration vector in the ground reference frame
nB, ndo f , nc Number of bodies, degrees of freedom and constraints
C Constraint equations
Cq Constraint (Jacobian)
v̂ Rotation axis unit vector
qdo f Degrees of freedom vector
M Mass matrix
Q Generalised force vector
λ Lagrange multipliers
Jq Coordinate change matrix
lt Tendon length
lm Muscle fibre length
vm Muscle fibre deformation velocity
wm Muscle width
αp Muscle fibre pennation angle
FCE Muscle contractile element force
FPE Muscle passive element force
Fm Muscle force
l0, α0 Optimal muscle fibre length and the related pennation angle
F0 Maximum isometric force
lmt, vmt Musculotendon length and deformation velocity
x(u, v), f (x) Surfaces’ parametric and implicit equations
s Curvilinear coordinate
c Curve
t̂, n̂, b̂ Tangent, normal and binormal unit vectors
Φq Muscle (Jacobian)
a Muscle activation vector
λr, λs Lagrange multipliers related to the rheonomic constraints (or residual

actuators) and to the scleronomic constraints (or joint reactions)
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