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Abstract: In this study, we performed skeleton-based body mass index (BMI) classification by
developing a unique ensemble learning method for human healthcare. Traditionally, anthropometric
features, including the average length of each body part and average height, have been utilized
for this kind of classification. Average values are generally calculated for all frames because the
length of body parts and the subject height vary over time, as a result of the inaccuracy in pose
estimation. Thus, traditionally, anthropometric features are measured over a long period. In contrast,
we controlled the window used to measure anthropometric features over short/mid/long-term
periods. This approach enables our proposed ensemble model to obtain robust and accurate BMI
classification results. To produce final results, the proposed ensemble model utilizes multiple k-nearest
neighbor classifiers trained using anthropometric features measured over several different time
periods. To verify the effectiveness of the proposed model, we evaluated it using a public dataset.
The simulation results demonstrate that the proposed model achieves state-of-the-art performance
when compared with benchmark methods.

Keywords: anthropometric features; body mass index; class imbalance; ensemble learning;
human skeleton

1. Introduction

Over the past several decades, the percentage of the population that is obese has steadily
increased. Since obesity can cause various diseases, its prevalence among people has become a major
social issue. To identify its adverse effects, many studies have investigated the relationship between
obesity and various diseases. According to the results presented in the literature, obesity is related
to several diseases such as diabetes [1], high blood pressure [2], hyperlipidemia [3], cholelithiasis [4],
hypopnea [5], arthritis [6] and mental disorders [7], meaning that the death rate for the obese is
relatively high.

The World Health Organization (WHO) defines obesity as excessive fat accumulation that may
threaten life. Additionally, the WHO uses the body mass index (BMI) to identify obesity in people.
The BMI is one of the factors used to estimate obesity levels and is defined as the ratio of a person’s
body weight in kilograms to the square of their height in meters (i.e., the unit of the BMI is kg/m2).
In general, a person is classified as “overweight” when their BMI is greater than 25.

Traditionally, if a person wants to know their BMI, they must first measure their body weight
and height using a weight scale and extensometer, respectively. After this, their BMI can be calculated
according to the definition of the BMI above. If no device is used to measure body weight or height,
it is impossible to calculate the BMI. To make the acquisition of BMIs simpler, i.e., possible without
using such devices, many researchers in the field of computer vision have explored various methods of
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BMI prediction/classification. Most have focused on calculating the BMI of an individual from a facial
image [8–10]. In the literature, face image databases built under a controlled environment, such as frontal
view, clean background, alignment according to interpupillary distance, etc., have been used. However,
in a real-world situation, facial images are generally captured in uncontrolled conditions. For example,
the facial image of a person can be taken from the side view as well as the frontal view and can have
complex backgrounds. In addition, in some cases, a person can wear a mask which conceals parts of
their face. In particular, since most of the features used in [8–10] can be extracted from only front-view
face images without any occlusions, the feasibility and effectiveness of these methods for real-world
application still need to be demonstrated.

Some studies on BMI classification have been conducted using human full-body images [11–13].
In these studies, each individual was asked to stand up straight while their full-body image was taken.
In addition, the image was captured from a frontal view. Most of the features proposed in [11–13] can
be obtained from only frontal full-body images. Therefore, in a real-world situation, if the methods
proposed in [11–13] are used for BMI classification, it is necessary to have the cooperation of an
individual to enable the extraction of features from their frontal full-body images.

Recently, based on advancements in human pose estimation techniques, the acquisition of
three-dimensional (3D) human motion data has become quicker, simpler and more precise [14–17].
Therefore, many studies have exploited human motion data for various applications. Human action
recognition [18–21], animation generation [22–25] and gait recognition [26,27] are prime examples
of such research. Compared with conventional facial and full-body image-based BMI classifications,
skeleton-based BMI classification has the advantage of being performed without the user’s cooperation,
with the user only being asked to walk in a usual way. Because the user’s gait data can be obtained
from the video filmed from various viewpoints as well as a frontal view, the BMI classification process
is performed in such a way that the user is unaware of it and does not feel uncomfortable. However,
to the best of our knowledge, there has only been one study [28] to date in which a method for
classifying BMIs using 3D human motion sequences has been investigated. According to the results
presented in [28], classification accuracy was improved up to only 40%. Motivated by these results,
in this study, we investigate a method that facilitates the improvement of the classification accuracy of
BMI. A block diagram of the proposed BMI classification method is presented in Figure 1.

The main contributions of this study can be summarized as follows.

• We determine why the BMI classification accuracy in [28] was poor. Because the dataset considered
had a class imbalance problem, the authors of [28] used the undersampling technique to
balance classes. During our investigation, it was determined that the reason for performance
degradation stemmed from the use of this technique. Therefore, we found that it is better to use
an oversampling technique rather than an undersampling technique in terms of performance.

• We demonstrate the usefulness of anthropometric features in the BMI classification problem.
During this study, we observe that feature values calculated for each frame are not consistent over
time, as a result of the inaccuracy in pose estimation. Furthermore, for some motion sequences,
a large variance in feature values was observed over specific periods. Therefore, instead of using
traditional anthropometric features, we employ anthropometric features measured over several
different time periods (i.e., long/mid/short-term periods). The use of these features contributes
to our ensemble model being able to obtain robust and accurate classification results.

• We propose an ensemble model capable of classifying BMIs from 3D human motion sequences.
In the proposed model, multiple k-nearest neighbor (k-NN) classifiers are trained separately using
anthropometric features calculated from different time windows. Generalized results are then
obtained by integrating the classification results obtained from the k-nearest neighbor (k-NN)
classifiers. The evaluation results for the dataset considered in [28] demonstrate that the proposed
model achieves state-of-the-art performance.
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Figure 1. Block diagram for classifying the body mass index (BMI) from 3D human motion sequence.

The remainder of this paper is organized as follows. Section 2 presents a review of related work.
The motivation for our study is discussed in Section 3. Our methodology for classifying BMIs from 3D
human motion sequences is described in Section 4. The experimental setup is described in Section 5.
The results and discussion are presented in Sections 6 and 7, respectively. Conclusions are presented
in Section 8.

2. Related Work

Previous studies on BMI classification have mainly focused on calculating human weight or
BMI from facial images [8–10,29]. For example, Coetzee et al. [8] demonstrated that three facial
features, namely the width-to-height ratio, perimeter-to-area ratio and cheek-to-jaw-width ratio,
are highly related to both human weight and BMI. Additionally, they proposed the use of these three
features to judge the body weight and BMI of an individual. Motivated by this study, Pham et al. [9]
assessed the relationship between these facial features and BMIs for facial images of 911 subjects.
They demonstrated that the eye size and average eyebrow height are also related to the BMI. Wen and
Guo [10] investigated a method for predicting the BMIs of people from face images. To achieve this
goal, they extracted the facial features proposed in [8,9] from passport-style frontal face images with
clean backgrounds. They then trained a support vector regression (SVR) model using these features
and demonstrated the feasibility of using SVR to predict BMIs. Kocabey et al. [29] explored a method
for predicting the BMI using low-quality facial images collected from social media. To achieve this
goal, they used the convolutional neural network (CNN) proposed in [30]. They then used the outputs
from the sixth fully connected layer of the CNN as features for the BMI prediction. They trained an
SVR model using these features and evaluated their model using a publicly available social media
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face dataset. The evaluation results demonstrated the feasibility of BMI prediction using low-quality
facial images.

BMI prediction/classification based on full-body person images has also been studied [11–13].
For example, Bipembi et al. [11] proposed a method for obtaining the BMI of an individual from their
full-body silhouette image. To achieve this goal, the authors captured frontal full-body images of
standing individuals. They then converted these images into silhouette images. Based on a silhouette
image, they calculated the area and height of an individual. The area was defined as the number of
pixels occupied by a silhouette, and the height was defined as the distance between the highest and
lowest pixels in a silhouette. Finally, the BMI was calculated using the extracted values of the area
and height. Amador et al. [12] also used human silhouette images for BMI classification. A total of
57 shape features introduced in [31] were extracted from images. Four machine learning algorithms,
namely logistic regression, a Bayesian classifier, an artificial neural network and support vector
machine (SVM), were tested on their own dataset consisting of 122 subjects. According to their results,
the SVM outperformed the other algorithms and achieved an accuracy of approximately 72.16%.
Madariaga et al. [13] proposed the calculation of human height from full-body images using the
vanishing point and camera height information. For body weight calculation, a sensor called the
Wheatstone bridge load cell was used. Using the estimated height and measured body weight
information, the BMI was calculated.

Nahavandi et al. [32] investigated a method for estimating BMIs from depth images of people.
To achieve this goal, the deep residual network (ResNet) proposed in [33] was used. To train
the ResNet, 3D human polygon models were generated using the MakeHuman open-source
software. The body surface area (BSA) of each model was calculated. By using the formula
BSA = 1/6(body weight× height)0.5 [34], the body weight of each model was estimated. For each
polygon model, a BMI was then obtained using the height and estimated body weight. These were then
used as ground truth BMI values to train the ResNet. Additionally, 3D depth images were obtained
from 3D human polygon models using a rendering software and encoded using red–green–blue (RGB)
colorization. These colorized depth images were then used as training data for the ResNet. The authors
tested their proposed method on their own dataset. According to their results, the ResNet achieved
an accuracy of 95%.

The concept of using anthropometric features for BMI classification was first proposed by
Andersson et al. [28]. For BMI classification, they used 20 anthropometric features, including the
average length of each limb and the average height of the 3D human skeleton. To test the performance
of their model, they constructed a dataset consisting of 112 subjects. Three classes of “underweight”,
“normal weight” and “overweight” were used to classify BMIs. However, in their dataset, the number
of people categorized as underweight was too small. Most people were categorized as normal weight.
It is well known that if a classifier is trained using a dataset with an unequal distribution of classes,
that classifier will exhibit poor classification performance for minority classes [35–37]. Therefore,
in their experiments, Andersson et al. used an undersampling technique that randomly removed
some samples from the majority classes to alleviate the imbalance in the dataset. They applied
three machine learning algorithms, namely the SVM, k-NN model and multi-layer perceptron (MLP),
to the undersampled dataset. According to their results, the BMI classification accuracies of the SVM,
k-NN model and MLP were 40%, 25% and 35%, respectively. Because the accuracies of all algorithms
were poor, the authors concluded that the anthropometric features were unhelpful for classifying BMIs.

3. Motivation

According to the results of some studies [38–40], undersampling techniques do not provide a
good solution to the class imbalance problem because they may remove some important and useful
data from majority classes. This loss of data can result in the performance degradation of a classifier
for both majority and minority classes. Therefore, it can be concluded that the performance drop
in terms of classification accuracy [28] may stem from the use of undersampling, rather than the
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unreliability of anthropometric features. To solve this issue, we generated a training dataset by
employing the synthetic minority oversampling technique (SMOTE) proposed in [41] to overcome the
lack of minority samples. Additionally, for comparison, we generated a training dataset by employing
the undersampling technique used in [28].

Figure 2 illustrates the change of the number of datasets according to the used sampling
technique. As shown in Figure 2, the number of samples belonging to the underweight class is
significantly lower than the numbers of samples belonging to the other two classes. In this figure,
one can see that the original dataset has a class imbalance problem. To overcome this problem,
the undersampling technique was employed. Accordingly, some samples were removed from the
majority classes. As a result, as shown Figure 2, the normal weight and overweight classes have the
same number of samples as the underweight class. Although the class imbalance problem is alleviated
by the undersampling technique, the total number of samples in the undersampled training dataset
is significantly reduced compared to that in the original dataset. Instead of removing some samples
from majority classes, SMOTE augments the samples of minority classes by generating new synthetic
samples. As a result, as shown in Figure 2, the number of samples in each minority class is the same as
that in the majority class.

Figure 2. Change of the number of datasets according to sampling technique. Here, the underweight,
normal weight and overweight classes are denoted as Classes I, II and III, respectively.

Using the training dataset generated by SMOTE, we trained three machine learning algorithms:
C-SVM, nu-SVM and k-NN. We then tested these algorithms on the testing dataset. It is noteworthy
that the performance of average BMI classification for all three schemes improved significantly.
k-NN achieved an accuracy of 92.97%, outperforming the other algorithms.

Therefore, we can confirm that anthropometric features hold validity for the classification of BMIs.
Next, we investigated a method for improving BMI classification accuracy. To this end, we carefully
reviewed the generation process for anthropometric features and measured the effects of each feature
on classification. Traditionally, anthropometric features have been calculated using the length of each
limb and the height of an individual averaged over the given frames. Figure 3 presents the body
height of an individual over multiple frames (the height of the fourth subject in the dataset proposed
by Andersson et al. [28]). As shown in this figure, the values are not consistent between frames as a
result of the inaccuracy in pose estimation. Furthermore, there is a specific period during which a large
variance among the values can be observed.

Therefore, if anthropometric features are simply extracted, ignoring such large variance over
time, BMI classification accuracy could be significantly reduced. To overcome this problem, it is
desirable to use anthropometric features localized over several different time periods rather than using
features averaged over all frames. Therefore, in this paper, we propose an ensemble model for BMI
classification. In the next section, we discuss our methodology in detail.
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Figure 3. Body heights calculated at each frame.

4. Ensemble for BMI Classification

Figure 4 presents a schematic overview of the proposed method for skeleton-based BMI
classification. One can see that a 3D human skeleton sequence is used as an input and is divided
into several segments of equal length. In this study, we divide an original sequence into T different
segments. Specifically, we let W be the total length of the input motion sequence. In the frame division
process, T · (1 + T)/2 segments corresponding to each length are generated (one for W, two for W/2,
three for W/3, four for W/4, five for W/5, · · · , T for W/T).

k
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Figure 4. Schematic overview of the proposed method for skeleton-based BMI classification.

For each segment described above, anthropometric features are calculated. For clarification,
suppose that a 3D human skeleton model consists of N joints and M limbs. Let J = {1, · · · , N} be
the set of joint indices and L = {(i, j)|i 6= j, i ∈ J, j ∈ J} be the set of joint pairs for constructing
limbs. The values of N and M depend on the product specifications of motion capture sensors. For the
Microsoft Kinect sensor [42], N and M are 20 and 19, respectively, as shown in Figure 5.
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Figure 5. Three-dimensional human skeleton model consisting of 20 joints and 19 limbs.

Let Pj[k] = (xj[k], yj[k], zj[k]) be the position of the jth joint at the kth frame in the world coordinate
system, where xj[k], yj[k], and zj[k] are the coordinates of the jth joint at the kth frame on the X, Y,
and Z axes, respectively. The Euclidean distance between the ith and jth joints at the kth frame is then
calculated as

d(Pi[k], Pj[k]) =
√
(xi[k]−xj[k])2+(yi[k]−yj[k])2+(zi[k]−zj[k])2. (1)

In [43–50], the average length of each limb and average height of the target individual were used
as anthropometric features. In this study, we used these features for BMI classification. To obtain
anthropometric features for each segment, the length of each limb and height of the individual
are measured in each frame. Average values are then used as the anthropometric features for the
corresponding segment.

For clarity, let F ∈ {W, W/2, W/3, · · · , W/(T − 1), W/T} be the frame length of a segmented
sequence. The average length of each limb over F is then calculated as

AFi,j =
1
F

F

∑
k=1

d(Pi[k], Pj[k]), (i, j) ∈ L. (2)

For simplicity, we define a feature vector AF1 as

AF1 =
[
AFi,j for (i, j) in L

]
. (3)

Because we consider the 19 limbs presented in Figure 5, the dimension of AF1 in (3) is 19.
In general, human height is measured as the distance from the bottom of the feet to the top of

the head in a human body. According to this definition of human height, the height of a 3D human
skeleton also can be calculated as the distance from the joint of feet to the joint of head. However,
to measure the height using this traditional method, it is necessary for the user to stand straight up
during height measurement. If the user moves during height measurement, the measured height may
be inaccurate. In [43], Araujo et al. proposed a method that is capable of estimating the height of
the person even if the person moves. This method is widely used to estimate the height of human
skeletons [44–50]. In this study, we used the method to estimate the skeleton’s height. According
to the method proposed in [43], the target individual’s height is calculated as the sum of their neck
length, upper and lower spine lengths and average lengths of the right and left hips, thighs and shanks.
For clarity, let H[k] be the subject’s height at the kth frame. Then, H[k] is defined as
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H[k] = d(P1[k], P2[k])︸ ︷︷ ︸
= length of neck

+ d(P2[k], P11[k])︸ ︷︷ ︸
= length of upper spine

+ d(P11[k], P12[k])︸ ︷︷ ︸
= length of lower spine

+ {d(P12[k], P13[k]) + d(P12[k], P14[k])}/2︸ ︷︷ ︸
= average length of the right and left hips

+ {d(P13[k], P15[k]) + d(P14[k], P16[k])}/2︸ ︷︷ ︸
= average length of the right and left thighs

+ {d(P15[k], P17[k]) + d(P16[k], P18[k])}/2︸ ︷︷ ︸
= average length of the right and left shanks

. (4)

By using H[k] from (4), the average height over F is obtained as

AF2 =
1
F

F

∑
k=1

H[k]. (5)

After the anthropometric features are obtained using (2) and (5), these features are concatenated
into a feature vector as

AF = concat (AF1, AF2) , (6)

where concat(AF1, AF2) is an operator that concatenates AF2 onto the end of AF1. As a result,
the dimension of AF in (6) is 20.

We present the pseudo-code for the proposed ensemble learning algorithm in Algorithm 1.
As shown in Figure 4, in the proposed method, the ensemble model consists of multiple
(i.e., T · (T + 1)/2) k-NNs. For simplicity, hereafter, we refer to the T · (T + 1)/2 k-NNs as k-NN1,
k-NN2, k-NN3, · · · , k-NNT·(T+1)/2−1, and k-NNT·(T+1)/2. In the training (testing) phase, each AF
extracted from the T · (T + 1)/2 sequence segments is inputted into the corresponding k-NN. This can
be explained as follows. As shown in Figure 3, the lengths of body parts and the height of the
target individual vary over time as a result of the inaccuracy in pose estimation. Since, traditionally,
the average values of anthropometric features over all frames (i.e., W) are calculated, the performance
of classifiers trained using them can be affected by the variance of features.

In contrast, in the proposed ensemble learning method, anthropometric feature vectors are
calculated as averages over long/mid/short-term periods (i.e., W, W/2, W/3, · · · , W/T). Through the
frame division process, the periods in which the variance exists are divided into sub-periods. As a
result, the variance for each of the T · (T + 1)/2 segments is reduced. Additionally, the AFs calculated
for T · (T + 1)/2 segments are used to train the k-NNs in the ensemble model. The use of such AFs
helps each k-NN to obtain robust and accurate classification results (i.e., BMI classes).

Let Q = {1, 2, 3, · · · , T · (T + 1)/2− 1, T · (T + 1)/2} be the set of indices of k-NNs and q be the
index of a k-NN (i.e., q ∈ Q). Additionally, let Cq be the classification result of k-NNq. For simplicity,
we define a classification result vector CQ as

CQ =
[
Cq for q in Q

]
=
[
C1, C2, · · · , CT·(T+1)/2−1, CT·(T+1)/2

]
. (7)

To derive a final classification result from CQ in (7), in this study, the majority voting algorithm was
adopted. The pseudo-code for the majority voting algorithm is presented in Algorithm 2.
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Algorithm 1 Pseudo-code for the proposed ensemble learning algorithm (training phase).

Input: Training data Dtrain consisting of Ntrain human motion sequences
Output: Trained ensemble model E

1: Set the frame division parameter T;
2: Create a 3D matrix of zeros M3d;
3: for seq_idx = 1:1:Ntrain do

4: seq = Dtrain[seq_idx];
5: len = size(seq);
6: Initialize the index of k-NN q = 0;
7: for div_idx = 1:1:T do

8: for seg_idx = 1:1:div_idx do

9: q = q + 1;
10: stard_idx = round(len*(seg_idx-1)/div_idx)+1;
11: end_idx = round(len*(seg_idx)/div_idx);
12: seg_range = start_idx:1:end_idx;
13: segemented_data = Dtrain[seg_range];
14: Extract AF from segmented_data using (6);
15: M3d[seq_idx, 1 : 20, q] = AF;
16: M3d[seq_idx, 21, q] = corresponding_BMI_class;
17: end for
18: end for
19: end for
20: model = build_model(T);

# In build_model, an ensemble model consisting of T · (T + 1)/2 k-NNs are constructed.
21: E = ensemble_learning(model, M3d);
22: return E;

Algorithm 2 Pseudo-code for the majority voting algorithm.

Input: CQ in (7)
Output: majority class CM

1: Set the class set S = [1, 2, · · · , NC];

# Here, elements in S indicate BMI classes.
2: Create a 1-by-NC vector of zeros V = [0, 0, · · · , 0];
3: Initialize the majority class CM to 0;

# Count the frequency of each class in CQ.
4: for q = 1:1:size(CQ) do

5: V[CQ[q]] = V[CQ[q]] + 1;
6: end for
7: Set CM to the index that corresponds to the maximum value in V;
8: return CM;

5. Experimental Setup

We evaluated the proposed method on an existing publicly available BMI classification dataset [28].
This dataset is a unique BMI classification dataset that contains 3D human skeleton sequences as well
as the body weights and heights of subjects. To assess the performance of the proposed ensemble
model, we used five-fold cross-validation and leave-one-person-out cross-validation.

5.1. Five-Fold Cross Validation

The dataset consists of 112 people with five skeleton sequences for each person. However, for one
individual, denoted as “Person158”, only four sequences exist. To implement five-fold cross-validation,
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we decided to eliminate this individual from the dataset. Additionally, there are six sequences for the
following four individuals: “Person034”, “Person036”, “Person053” and “Person096”. After examining
the six sequences for each of these individuals, we discarded the noisiest sequence for each individual.
As a result, the first sequence for “Person034”, the third sequence for “Person036”, the fifth sequence
for “Person053” and the sixth sequence for “Person096” were excluded from the dataset. As a result,
the final dataset contained a total of 555 sequences (equaling 111 people × 5 sequences per person).

By using the body weights and heights of the 111 people mentioned above, we calculated the BMI
for each individual and categorized the people according to their nutritional statuses. As shown in
Table 1, only one person was categorized as “obesity class II”, and there were no people categorized
as “obesity class III”. We decided to group “pre-obesity”, “obesity class I”, “obesity class II” and
“obesity class III” into one class, called “overweight”. As a result, the number of people included
in the overweight class was 32(= 25 + 6 + 1). In our experiments, the people included in the class
of “underweight” were labeled as “1”. The people included in the classes of “normal weight” and
overweight were labeled as “2” and “3”, respectively.

Table 1. Number of people for each nutritional status.

BMI Nutritional Status # of Persons

Below 18.5 Underweight 6

18.5–24.9 Normal weight 73

25.0–29.9

Obesity

Pre-obesity 25

30.0–34.9 Obesity class I 6

35.0–39.9 Obesity class II 1

Above 40.0 Obesity class III 0

In each cross-validation fold, for each person, four sequences were selected from the five available
sequences. The selected 444 sequences (i.e., 111 people × 4 sequences per person) were used to train
the proposed model. The remaining 111 (i.e., 555− 444) sequences were used to test the model.

Although the number of subjects in class 3 (overweight) was increased by consolidation, the three
classes were still imbalanced. As shown in Table 1, the number of subjects in class 1 (underweight)
was too low. The number of subjects in class 2 (normal weight) was greater than the numbers of
subjects in the other classes. During the training phase of the proposed model, we used the SMOTE
algorithm proposed in [41] to balance the three classes. For class 2, the number of anthropometric
feature vectors was 292 (i.e., 73 people × 4 sequences per person). Therefore, according to the
application of SMOTE, the numbers of anthropometric feature vectors for classes 1 and 3 were also
292. As a result, in each cross-validation fold, the model was trained using 876 anthropometric feature
vectors (i.e., 292 vectors per class× 3 classes).

5.2. Leave-One-Person-Out Cross-Validation

Unlike five-fold cross-validation, all the sequences for 112 people were used in leave-one-person-out
cross-validation. As a result, the dataset contained a total of 563 sequences (i.e., 107 people ×
5 sequences per person + 1 person × 4 sequences per person + 4 people × 6 sequences per person).
In addition, since the BMI of Person158 was greater than 25, Person158 was categorized as class
3 (overweight). As a result, the number of subjects included in classes 1, 2 and 3 were 6, 73 and 33,
respectively. In each validation round, the skeleton sequences for one person were used to test the
model, while the sequences for the remaining 111 people were used for training. In addition, since the
three classes were imbalanced, we used the SMOTE algorithm to balance the three classes during the
training phase of the proposed model.
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5.3. Performance Measurement

In each cross-validation fold (round), to evaluate the performance of the proposed ensemble
model, we used the following measures: the true positive rate (TPR), positive predictive value (PPV)
and F1 score. Here, for each class, the TPR, which is also called recall, is defined as

TPR =
∑ True positive

∑ Condition positive
. (8)

For each class, PPV, which is also called precision, is defined as

PPV =
∑ True positive

∑ Predicted condition positive
. (9)

Based on (8) and (9), the F1 score for each class is calculated as

F1 = 2 · TPR · PPV
TPR + PPV

. (10)

Additionally, the accuracy becomes

Accuracy =
∑ True positive + ∑ True negative

∑ Total population
. (11)

Furthermore, we computed the macro-average values for TPR, PPV and F1 for each cross-validation
fold as follows:

Macro-average of TPR =
∑B

b=1 TPR(class b)
B

, (12)

Macro-average of PPV =
∑B

b=1 PPV(class b)
B

, (13)

Macro-average of F1 =
∑B

b=1 F1(class b)
B

, (14)

where B is the number of classes. Here, B = 3 because there are three classes: underweight (class 1),
normal weight (class 2) and overweight (class 3).

6. Results

We investigated the main factors for the low accuracy of BMI classification reported in [28].
The main reason for this low accuracy was that Andersson et al. in [28] used an undersampling
technique to overcome the class imbalance problem in their dataset. For benchmarking, we tested
five machine learning algorithms, namely C-SVM, nu-SVM, k-NN, Naive Bayes (NB) and decision
tree (DT), in conjunction with the undersampling technique. C-SVM and nu-SVM were implemented
using LIBSVM (version 3.21), which is an open-source library for SVMs [51]. Additionally, according
to the recommendations in [52], the radial basis function (RBF) kernel was used for the C-SVM and
nu-SVM models. C-SVM has a cost parameter denoted as c whose value ranges from zero to infinity.
nu-SVM has a regularization parameter denoted as g whose value lies within [0, 1]. The RBF kernel
has a gamma parameter denoted as γ. The grid search method was used to find the best parameter
combination for the C-SVM and nu-SVM models. The remaining k-NN, NB and DT models were
implemented using the MATLAB functions “fitcknn”, “fitcnb” and “fitctree”, respectively. Additionally,
to determine the best hyperparameter configuration for each model, we executed the hyperparameter
optimization processes supported by the aforementioned functions. To this end, we used “Statistics
and Machine Learning Toolbox”. In addition, the models were implemented and tested in MATLAB
R2018a (9.4.0.813654).
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6.1. Results of Five-Fold Cross-Validation

During the development of the proposed ensemble model, determining the optimal number of
k-NN models to be used was a significant challenge. To this end, we constructed several ensemble
models with different numbers of k-NN models and compared the resulting performance metrics.
To implement each ensemble model, we used the MATLAB function “fitcknn”. To this end, we used
“Statistics and Machine Learning Toolbox”. To determine the optimal hyperparameter configuration
for each k-NN model, we performed hyperparameter optimization using the aforementioned function.
For the hyperparameter optimization process, there were five optimizable parameters: the value
of k, the distance metric, the distance weighting function, the Minkowski distance exponent and
a flag to standardize predictors. During the training phase for each model, these five parameters
were optimized using the hyperparameter optimization process. The proposed ensemble model
was implemented and tested in MATLAB R2018a (9.4.0.813654). The MATLAB code is available at
https://sites.google.com/view/beomkwon/bmi-classification.

Table 2 lists the performance metrics for the ensemble models with different numbers of k-NN
models. A detailed description of the experimental setup is listed in Table 3. In Table 2, the proposed
ensemble model consists of 15 k-NNq models (q ∈ {1, 2, · · · , 14, 15}). “Comparison model #1”
consists of three k-NNq models (q ∈ {1, 2, 3}). “Comparison model #2” consists of six k-NNq models
(q ∈ {1, 2, · · · , 5, 6}). “Comparison model #3” consists of 10 k-NNq models (q ∈ {1, 2, · · · , 9, 10}).
“Comparison model #4” consists of 16 k-NNq models (q ∈ {1, 2, · · · , 15, 16}). “Comparison model
#5” consists of 17 k-NNq models (q ∈ {1, 2, · · · , 16, 17}). “Comparison model #6” consists of
18 k-NNq models (q ∈ {1, 2, · · · , 17, 18}). “Comparison model #7” consists of 19 k-NNq models
(q ∈ {1, 2, · · · , 18, 19}). “Comparison model #8” consists of 20 k-NNq models (q ∈ {1, 2, · · · , 19, 20}).
“Comparison model #9” consists of 21 k-NNq models (q ∈ {1, 2, · · · , 20, 21}). One can see that the
performance of the ensemble model increased as the number of k-NN models increased. However,
when the number of k-NN models was greater than 15, the performance of the ensemble model was
not improved. Based on these results, we selected an ensemble model consisting of 15 k-NN models
for additional testing. However, as shown in Table 2, since the average running time of the ensemble
model increased as the number of k-NN models increased, the trade-off between classification accuracy
and running time needs to be considered in real-world applications.

Table 2. Five-fold cross-validation performance comparisons between ensemble models with different
numbers of k-NN models. TPR: true positive rate; PPV: positive predictive value.

Method # of k-NNs
Macro-Average

Accuracy Running Time
TPR PPV F1

Comparison model #1 3 0.9588 0.8676 0.9001 0.9441 0.5565 s
Comparison model #2 6 0.9677 0.9092 0.9315 0.9640 0.9856 s
Comparison model #3 10 0.9790 0.9428 0.9585 0.9748 1.5512 s
Proposed ensemble model 15 0.9862 0.9603 0.9721 0.9820 2.2610 s
Comparison model #4 16 0.9758 0.9566 0.9646 0.9730 2.3994 s
Comparison model #5 17 0.9746 0.9575 0.9643 0.9730 2.5386 s
Comparison model #6 18 0.9776 0.9595 0.9669 0.9766 2.6790 s
Comparison model #7 19 0.9746 0.9575 0.9643 0.9730 2.8217 s
Comparison model #8 20 0.9686 0.9585 0.9627 0.9766 2.9629 s
Comparions model #9 21 0.9809 0.9594 0.9689 0.9784 3.1046 s

Table 3. Experimental setup.

Item Explanation

Operating System Windows 10 Pro
Processor Inter(R) Core(TM) i5-8250U CPU @ 1.60 GHz
Memory 8.00 GB
GPU Intel(R) UHD Graphics 620

https://sites.google.com/view/beomkwon/bmi-classification
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Table 4 lists the optimized parameter settings for the ensemble model consisting of 15 k-NN
models in each cross-validation fold.

Table 4. Parameter settings for the proposed ensemble model in five-fold cross-validation.

Fold #1 Fold #2 Fold #3 Fold #4 Fold #5

k-NN1 (1, m, in, 0.7140, 0) (1, c3, sq, -, 1) (1, s, sq, -, 0) (1, c3, sq, -, 1) (1, c1, sq, -, 0)
k-NN2 (1, m, eq, 0.7075, 1) (1, c2, sq, -, 1) (1, c3, sq, -, 1) (1, c3, eq, -, 1) (1, e, sq, -, 1)
k-NN3 (2, c3, in, -, 1) (1, c2, sq, -, 1) (1, m, sq, 0.6965, 1) (1, e, sq, -, 1) (1, e, in, -, 1)
k-NN4 (1, c3, in, -, 1) (1, m, eq, 0.5485, 1) (1, c3, in, -, 1) (1, c3, sq, -, 1) (1, m, sq, 0.6046, 0)
k-NN5 (1, c3, sq, -, 1) (1, c3, sq, -, 1) (2, c3, in, -, 1) (1, m, sq, 1.2213, 1) (3, c3, sq, -, 1)
k-NN6 (1, m, sq, 0.7156, 1) (1, c3, in, -, 1) (1, m, eq, 0.7499, 1) (1, m, sq, 1.1226, 1) (1, c1, sq, -, 1)
k-NN7 (1, m, sq, 0.7317, 0) (1, s, in, -, 0) (1, e, sq, -, 1) (1, s, sq, -, 0) (1, m, eq, 0.8746, 1)
k-NN8 (1, e, sq, -, 1) (1, c3, sq, -, 1) (1, m, sq, 0.7044, 1) (1, c1, sq, -, 1) (1, m, in, 0.5390, 1)
k-NN9 (1, e, sq, -, 1) (1, c1, sq, -, 1) (1, e, sq, -, 1) (1, m, eq, 1.5315, 1) (1, c2, in, -, 1)
k-NN10 (1, m, in, 0.9299, 0) (1, c3, in, -, 1) (1, c3, sq, -, 1) (1, m, in, 0.6912, 0) (1, m, eq, 1.3160, 0)
k-NN11 (1, m, in, 0.7098, 1) (1, m, eq, 1.7090, 1) (1, c2, sq, -, 1) (1, m, eq, 0.8312, 0) (1, s, sq, -, 0)
k-NN12 (1, e, sq, -, 1) (1, m, sq, 1.0923, 1) (1, e, sq, -, 1) (1, m, sq, 1.1597, 1) (1, e, sq, -, 1)
k-NN13 (1, c3, sq, -, 1) (1, m, in, 1.4446, 0) (2, c3, in, -, 1) (1, e, sq, -, 1) (2, c1, in, -, 0)
k-NN14 (1, c1, eq, -, 0) (1, e, sq, -, 1) (1, m, sq, 1.0183, 1) (1, c1, sq, -, 1) (1, m, sq, 1.3201, 1)
k-NN15 (1, e, sq, -, 1) (1, s, eq, -, 0) (1, c3, sq, -, 1) (1, s, sq, -, 0) (1, c3, sq, -, 1)

Note: Elements in brackets indicate k, distance metric, distance weighting function, Minkowski distance
exponent, and flag to standardize predictors, respectively. In this table, the distance metrics “cityblock”,
“correlation”, “cosine”, “euclidean”, “minkowski” and “seuclidean” are represented as “c1”, “c2”, “c3”,
“e”, “m”, and “s”, respectively. The distance weighting functions “equal”, “inverse” and “squaredinverse”
are denoted as “eq”, “in” and “sq”, respectively. k-NN: k-nearest neighbor.

Table 5 lists the five-fold cross-validation results of the five benchmark methods discussed above.
Here, instead of SMOTE, the undersampling technique was used for performance evaluations.
Therefore, during the training phase of each cross-validation fold, for class 2, 268 (i.e, 73× 4− 6× 4)
anthropometric feature vectors were randomly selected among the 292 total vectors and removed
from the training dataset. For class 3, 104 (i.e., 32 × 4 − 6 × 4) vectors were randomly
selected among the 128 total vectors and removed from the training dataset. The remaining 72
(i.e., 24 anthropometric feature vectors per class× 3 classes) vectors were used to train the algorithm
for each method. As shown in the table, for each method, there were significant variations in the TPR,
PPV and F1 values over the three classes. These results demonstrate that the undersampling technique
used in [28] is not effective in overcoming the class imbalance problem.

Table 5. Five-fold cross-validation results of the five benchmark methods when the undersampling
technique is used. SVM: support vector machine; NB: naive Bayes; DT: decision tree.

Method Class
Fold #1 Fold #2 Fold #3 Fold #4 Fold #5

TPR PPV F1 TPR PPV F1 TPR PPV F1 TPR PPV F1 TPR PPV F1

C-SVM
1 1.00 0.17 0.29 0.67 0.80 0.73 0.67 0.67 0.67 0.67 1.00 0.80 0.83 0.71 0.77
2 0.41 0.86 0.56 0.92 0.77 0.84 0.86 0.79 0.82 0.92 0.79 0.85 0.95 0.79 0.86
3 0.56 0.44 0.49 0.41 0.68 0.51 0.53 0.68 0.60 0.50 0.73 0.59 0.41 0.76 0.53

nu-SVM
1 0.67 0.36 0.47 0.67 0.57 0.62 0.67 0.67 0.67 0.67 1.00 0.80 0.83 0.71 0.77
2 0.75 0.80 0.77 0.86 0.78 0.82 0.84 0.80 0.82 0.96 0.76 0.85 0.93 0.80 0.86
3 0.53 0.55 0.54 0.44 0.61 0.51 0.59 0.66 0.62 0.38 0.80 0.51 0.44 0.74 0.55

k-NN [28]
1 1.00 0.27 0.43 1.00 0.25 0.40 0.83 0.17 0.28 1.00 0.23 0.38 1.00 0.25 0.40
2 0.45 0.77 0.57 0.52 0.90 0.66 0.47 0.89 0.61 0.41 0.75 0.53 0.52 0.83 0.64
3 0.59 0.41 0.49 0.75 0.53 0.62 0.66 0.49 0.56 0.56 0.40 0.47 0.59 0.46 0.52

NB
1 0.33 0.10 0.15 0.33 0.08 0.13 0.50 0.11 0.18 0.83 0.08 0.14 0.83 0.37 0.59
2 0.41 0.81 0.55 0.12 0.56 0.20 0.52 0.75 0.61 0.29 0.81 0.42 0.19 0.77 0.38
3 0.63 0.38 0.47 0.69 0.32 0.44 0.41 0.41 0.41 0.28 0.43 0.34 0.31 0.50 0.46

DT
1 0.33 0.06 0.10 0.67 0.14 0.23 0.50 0.10 0.17 0.50 0.17 0.25 0.83 0.13 0.23
2 0.47 0.71 0.56 0.38 0.82 0.52 0.44 0.74 0.55 0.42 0.63 0.51 0.29 0.64 0.40
3 0.38 0.41 0.39 0.53 0.35 0.43 0.38 0.32 0.34 0.44 0.32 0.37 0.47 0.38 0.42
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Table 6 lists the five-fold cross-validation results of the five benchmark methods when SMOTE
is used to alleviate the class imbalance problem. The results in this table demonstrate that SMOTE
improves the TPR, PPV and F1 score values of the five methods compared to the results in Table 5.
By using (12) to (14), we computed the average metric values over five-fold cross-validation, as shown
in Table 7. The results in this table demonstrate that it is better to use SMOTE instead of the
undersampling technique to alleviate the class imbalance problem. For all benchmark methods,
average performance improvements are achieved when SMOTE is applied. In particular, the k-NN
model outperforms the other methods, achieving results of TPR = 0.9276, PPV = 0.8512, F1 = 0.8798
and accuracy = 0.9279. Based on these results, we decided to use k-NN models to construct the
proposed ensemble model.

Table 6. Five-fold cross-validation results of the five benchmark methods when the synthetic minority
oversampling technique (SMOTE) is used.

Method Class
Fold #1 Fold #2 Fold #3 Fold #4 Fold #5

TPR PPV F1 TPR PPV F1 TPR PPV F1 TPR PPV F1 TPR PPV F1

C-SVM
1 0.50 0.75 0.60 0.67 1.00 0.80 0.67 1.00 0.80 0.83 1.00 0.91 1.00 0.75 0.86
2 0.97 0.85 0.90 0.96 0.93 0.95 1.00 0.95 0.97 0.97 0.99 0.98 0.99 0.92 0.95
3 0.66 0.91 0.76 0.91 0.91 0.91 0.91 0.97 0.94 1.00 0.94 0.97 0.75 0.96 0.84

nu-SVM
1 0.50 0.75 0.60 0.67 1.00 0.80 0.67 1.00 0.80 0.83 1.00 0.91 1.00 0.75 0.86
2 0.96 0.85 0.90 0.95 0.92 0.93 1.00 0.95 0.97 0.97 0.99 0.98 0.99 0.94 0.96
3 0.69 0.88 0.77 0.88 0.88 0.88 0.91 0.97 0.94 1.00 0.94 0.97 0.78 0.96 0.86

k-NN [28]
1 0.83 0.50 0.63 1.00 0.86 0.92 0.83 0.71 0.77 1.00 0.75 0.86 1.00 0.55 0.76
2 0.90 0.93 0.92 0.97 0.97 0.97 0.96 1.00 0.98 0.93 1.00 0.96 0.92 0.97 0.94
3 0.78 0.83 0.81 0.91 0.94 0.92 1.00 0.94 0.97 1.00 0.91 0.96 0.88 0.90 0.89

NB
1 0.33 0.13 0.19 0.17 0.13 0.14 0.50 0.38 0.43 0.33 0.29 0.31 0.67 0.27 0.38
2 0.68 0.79 0.74 0.78 0.79 0.79 0.78 0.83 0.80 0.73 0.87 0.79 0.64 0.87 0.74
3 0.53 0.52 0.52 0.63 0.65 0.63 0.63 0.59 0.61 0.78 0.58 0.67 0.66 0.50 0.57

DT
1 0.17 0.10 0.13 0.50 0.20 0.29 0.50 0.43 0.46 0.50 0.43 0.46 0.67 0.31 0.42
2 0.71 0.71 0.71 0.73 0.79 0.76 0.77 0.77 0.77 0.82 0.90 0.86 0.70 0.78 0.74
3 0.38 0.43 0.40 0.53 0.59 0.56 0.47 0.48 0.48 0.75 0.65 0.70 0.53 0.52 0.52

Table 7. Average performance comparisons of five benchmark methods over five-fold cross validation.

Method
Macro-Average

Accuracy
TPR PPV F1

C-SVM + undersampling 0.6863 0.7096 0.6604 0.7135
C-SVM + SMOTE 0.8517 0.9215 0.8760 0.9261

nu-SVM + undersampling 0.6812 0.7069 0.6783 0.7459
nu-SVM + SMOTE 0.8520 0.9178 0.8752 0.9243

k-NN + undersampling [28] 0.6906 0.5074 0.5035 0.5459
k-NN + SMOTE 0.9276 0.8512 0.8798 0.9297

NB + undersampling 0.4760 0.4106 0.3537 0.4054
NB + SMOTE 0.5890 0.5444 0.5536 0.6829

DT + undersampling 0.4681 0.3945 0.3640 0.4198
DT + SMOTE 0.5810 0.5385 0.5493 0.6685

Figure 6 presents the confusion matrices for the proposed ensemble model for each
cross-validation fold. The diagonal elements in each confusion matrix indicate the numbers of correctly
classified samples. The other elements indicate the numbers of incorrectly classified samples. One can
see that the proposed ensemble model classifies class 1 as the minority class among the three classes
without misclassification. Additionally, for class 3 (the second minority class), the ensemble model
also exhibits a low misclassification rate.



Appl. Sci. 2020, 10, 7812 15 of 23

(a) Fold #1 (b) Fold #2 (c) Fold #3

(d) Fold #4 (e) Fold #5

Figure 6. Confusion matrices for the proposed ensemble model for different cross-validation folds.

Based on the results in the confusion matrices in Figure 6, we computed the TPR, PPV and F1

score values of each class for five-fold cross-validation. Additionally, we computed the macro-average
values of these metrics and classification accuracy. The performance evaluation results for the proposed
ensemble model are summarized in Table 8. As shown in this table, the proposed model exhibits
a robust and accurate classification performance for the minority class and majority class, achieving
approximately 98.2% average classification accuracy.

Table 8. Results of five-fold cross-validation for the proposed ensemble model.

Fold # Class TPR PPV F1
Macro-Average

Accuracy
TPR PPV F1

1
Underweight 1.0000 0.8571 0.9231

0.9505 0.9072 0.9270 0.9369Normal weight 0.9452 0.9583 0.9517
Overweight 0.9063 0.9063 0.9063

2
Underweight 1.0000 0.8571 0.9231

0.9850 0.9420 0.9616 0.9820Normal weight 0.9863 1.0000 0.9931
Overweight 0.9688 0.9688 0.9688

3
Underweight 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000Normal weight 1.0000 1.0000 1.0000
Overweight 1.0000 1.0000 1.0000

4
Underweight 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000Normal weight 1.0000 1.0000 1.0000
Overweight 1.0000 1.0000 1.0000

5
Underweight 1.0000 0.8571 0.9231

0.9954 0.9524 0.9721 0.9910Normal weight 0.9863 1.0000 0.9931
Overweight 1.0000 1.0000 1.0000

Average 0.9862 0.9603 0.9721 0.9820

Table 9 lists the macro-average values of TPR, PPV and F1 scores, as well as the accuracy
of each method over five-fold cross-validation. One can see that the proposed ensemble model
performs best in terms of all evaluation metrics. This is because the ensemble model is trained using
anthropometric features calculated over long/mid/short-term periods. In other words, the use of such
features enables the ensemble model to be trained effectively by minimizing the adverse effects of
variance in extracted features. As a result, the proposed model can achieve robust and accurate BMI
classification performance. Among the considered benchmark methods, the k-NN model achieves
the best performance, whereas DT achieves the worst performance. The classification accuracy of the
proposed model is approximately 5.23% greater than that of a single k-NN model.
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Table 9. Five-fold cross-validation performance comparisons between the proposed ensemble model
and five benchmark methods.

Method
Macro-Average

Accuracy
TPR PPV F1

C-SVM 0.8517 0.9215 0.8760 0.9261
nu-SVM 0.8520 0.9178 0.8752 0.9243
k-NN [28] 0.9276 0.8512 0.8798 0.9297
NB 0.5890 0.5444 0.5536 0.6829
DT 0.5810 0.5385 0.5493 0.6685
Proposed 0.9862 0.9603 0.9721 0.9820

To verify the benefits of using the anthropometric features calculated for various different periods
in the BMI classification task, we analyzed the standard deviations of the anthropometric features.
For explanation, let AF(r) be AF for the rth skeleton sequence in the dataset. Here, according to the
definition of AF in (6), the dimension of AF(r) is 20. In addition, let AF(r)[u], u ∈ {1, 2, · · · , 19, 20},
be the uth element of AF(r). Then, the average value of AF(r)[u] over the whole sequences can be
obtained as

AVG[u] =
R

∑
r=1

AF(r)[u], u ∈ {1, 2, · · · , 19, 20}, (15)

where R is the total number of skeleton sequences.
Based on (15), the standard deviation of each of the 20 anthropometric features is calculated as

STD[u] =

√
∑R

r=1{AF(r)[u]− AVG[u]}2

R− 1
, u ∈ {1, 2, · · · , 19, 20}, (16)

Figure 7 presents the standard deviations of the 20 anthropometric features for five different
periods (i.e., W, W/2, W/3, W/4 and W/5). In this figure, for the cases of W/2, W/3, W/4 and W/5,
we calculated the average of the standard deviations. For example, for W/5, there are five equal-length
segments according to the frame division process of the proposed method. We calculated the standard
deviations in (16) for each of the segements, and then calculated the average of them over the five
segments. As shown in Figure 7a, the features have high standard deviations when they are calculated
for all frames (i.e., W). In contrast, the features calculated for W/2, W/3, W/4 and W/5 have
relatively low standard deviations. In particular, the features calculated for W/5 have the lowest
standard deviation values. A low standard deviation indicates that the features are clustered around
the average. A high standard deviation means that the features are spread out over a wide range.
Because the anthropometric features are calculated as average lengths over a given segment sequence,
the high standard deviations shown in Figure 7a may adversely affect the performance of machine
learning algorithms. In contrast, in our ensemble learning method, anthropometric features with low
standard deviations are used to train/test multiple k-NN models. Based on the use of these features,
the proposed ensemble model can be trained effectively by minimizing the adverse effects of variance
in extracted features, resulting in state-of-the-art performance.

6.2. Results of Leave-One-Person-Out Cross-Validation

Figure 8 shows the leave-one-person-out cross-validation process used in this work. As shown
in the figure, in each validation round, the skeleton sequences for one person were used to test the
classifier, and the sequences for the remaining 111 people were used for training. In each validation
round, the predicted results (i.e., predicted BMI classes) for the testing skeleton sequences were
obtained. After all 112 validations rounds were completed, we calculated a confusion matrix using all
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predicted results. Based on the confusion matrix, we calculated the TPR, PPV and F1 values over the
three classes in order to evaluate the performance of the classifier.
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(a) segment length = W
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(b) segment length = W/2
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(c) segment length = W/3
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(d) segment length = W/4
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(e) segment length = W/5

Figure 7. Standard deviations of 20 anthropometric features for long/mid/short-term periods.

Figure 8. Leave-one-person-out cross-validation process to evaluate the performance of each method.

Table 10 shows the leave-one-person-out cross-validation results of the five benchmark
methods when the undersampling technique was used. On the other hand, Table 11 shows
the leave-one-person-out cross-validation results when SMOTE was used. By using (12) to (14),
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we computed the macro-average values of these metrics over the three classes. In addition,
we calculated the classification accuracy of each benchmark method. The performance evaluation
results for the five benchmark methods are summarized in Table 12. From the table, it is seen that
SMOTE improves the macro-average of the TPR, PPV and F1 of each benchmark method, compared
with the results where the undersampling technique was used. In addition, the BMI classification
accuracy of each method also improved when SMOTE was used. These results demonstrate that
SMOTE is more effective at overcoming the class imbalance problem in the dataset used in [28] than
the undersampling technique.

Table 10. Leave-one-person-out cross-validation results of the five benchmark methods when the
undersampling technique is used.

Method Class TPR PPV F1
Macro-Average

Accuracy
TPR PPV F1

C-SVM
Underweight 0.2667 0.0563 0.0930

0.3397 0.3493 0.3057 0.3837Normal weight 0.4130 0.7273 0.5269
Overweight 0.3394 0.2642 0.2971

nu-SVM
Underweight 0.2667 0.0533 0.0889

0.3361 0.3474 0.3019 0.3766Normal weight 0.4022 0.7184 0.5157
Overweight 0.3394 0.2705 0.3011

k-NN [28]
Underweight 0.2000 0.0405 0.0674

0.3054 0.3162 0.2774 0.3410Normal weight 0.3342 0.6150 0.4331
Overweight 0.3818 0.2930 0.3316

NB
Underweight 0.1000 0.0211 0.0349

0.2616 0.2949 0.2606 0.3393Normal weight 0.3696 0.5913 0.4548
Overweight 0.3152 0.2723 0.2921

DT
Underweight 0.2000 0.0405 0.0674

0.3054 0.3162 0.2774 0.3410Normal weight 0.3342 0.6150 0.4331
Overweight 0.3818 0.2930 0.3316

Table 11. Leave-one-person-out cross-validation results of the five benchmark methods when SMOTE
is used.

Method Class TPR PPV F1
Macro-Average

Accuracy
TPR PPV F1

C-SVM
Underweight 0.1667 0.1163 0.1370

0.3981 0.3904 0.3926 0.5560Normal weight 0.6821 0.6896 0.6858
Overweight 0.3455 0.3654 0.3551

nu-SVM
Underweight 0.0333 0.0303 0.0317

0.3620 0.3662 0.3633 0.5719Normal weight 0.7255 0.6881 0.7063
Overweight 0.3273 0.3803 0.3518

k-NN [28]
Underweight 0.3000 0.2000 0.2400

0.4852 0.4536 0.4627 0.5790Normal weight 0.6223 0.7316 0.6725
Overweight 0.5333 0.4293 0.4757

NB
Underweight 0.0333 0.0227 0.0270

0.3404 0.3450 0.3422 0.5187Normal weight 0.6304 0.6610 0.6453
Overweight 0.3576 0.3512 0.3544

DT
Underweight 0.0769 0.1000 0.0870

0.3387 0.3411 0.3394 0.5062Normal weight 0.6474 0.6386 0.6430
Overweight 0.2919 0.2848 0.2883
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Table 12. Performance comparisons of the five benchmark methods over leave-one-person-out
cross validation.

Method
Macro-Average

Accuracy
TPR PPV F1

C-SVM + undersampling 0.3397 0.3493 0.3057 0.3837
C-SVM + SMOTE 0.3981 0.3904 0.3926 0.5560

nu-SVM + undersampling 0.3361 0.3474 0.3019 0.3766
nu-SVM + SMOTE 0.3620 0.3662 0.3633 0.5719

k-NN + undersampling [28] 0.3054 0.3162 0.2774 0.3410
k-NN + SMOTE 0.4852 0.4536 0.4627 0.5790

NB + undersampling 0.2616 0.2949 0.2606 0.3393
NB + SMOTE 0.3404 0.3450 0.3422 0.5187

DT + undersampling 0.3054 0.3162 0.2774 0.3410
DT + SMOTE 0.3387 0.3411 0.3394 0.5062

To find the optimal number of k-NN classifiers in the proposed ensemble model, we evaluated
the performance of the ensemble models with different numbers of k-NN classifiers. Table 13 lists the
performance metrics for each model. From this table, it can be seen that the best performance was
achieved when the ensemble model consisted of 15 k-NNq models (q ∈ {1, 2, · · · , 14, 15}). Based on
these results, we selected an ensemble model consisting of 15 k-NN models for additional testing.

Table 13. Leave-one-person-out cross-validation performance comparisons between ensemble models
with different numbers of k-NN classifiers.

Method # of k-NNs
Macro-Average

Accuracy
TPR PPV F1

Comparison model #1 3 0.4889 0.4559 0.4646 0.5950
Comparison model #2 6 0.5300 0.4997 0.5030 0.6448
Comparison model #3 10 0.5825 0.5450 0.5579 0.6927
Proposed ensemble model 15 0.6422 0.5878 0.6058 0.7300
Comparions model #4 21 0.5864 0.5564 0.5676 0.7069

Table 14 lists the macro-average values of TPR, PPV and F1 scores, as well as the accuracy of each
method over leave-one-person-out cross-validation. As shown in the table, for all evaluation metrics,
the proposed method outperforms the other methods, achieving a BMI classification accuracy of 73%.
In the proposed method, anthropometric features calculated over long/mid/short-term periods were
used for the training of the ensemble model. In addition, the use of such features in the training phase
could reduce the adverse effects of a variance in extracted features. As a result, the model could be
trained effectively and achieved the best performance among the methods.

Table 14. Leave-one-person-out cross-validation performance comparisons between the proposed
ensemble model and five benchmark methods.

Method
Macro-Average

Accuracy
TPR PPV F1

C-SVM 0.3981 0.3904 0.3926 0.5560
nu-SVM 0.3620 0.3662 0.3633 0.5719
k-NN [28] 0.4852 0.4536 0.4627 0.5690
NB 0.3404 0.3450 0.3422 0.5187
DT 0.3387 0.3411 0.3394 0.5062
Proposed 0.6422 0.5878 0.6058 0.7300
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7. Discussion

In this study, we used human body joints estimated from depth images captured by the Kinect (v1)
sensor [42]. These estimated joints generally contain the noise and error introduced by an uncertainty.
The majority of the uncertainty is caused by occlusion and depth ambiguity [17]. Due to this uncertainty,
the values of anthropometric features vary by measurement time, even if they are extracted from the
same parts of the human body. In conventional methods, for each anthropometric feature, the average
value is calculated over the whole period. Then, the average values for the features are used as inputs
to classifiers. The performance of classifiers trained using these values can be affected by the variance
of features. In order to minimize this adverse effect, we propose the use of anthropometric features
calculated over several different time periods. However, after the Kinect v1 sensor was released in
2010, the Kinect v2 sensor was released in 2014, and Wang et al. [53] evaluated the human body joint
estimation accuracies of the Kinect v1 and v2 sensors; according to the results in [53], compared with
the Kinect v1 sensor, the Kinect v2 sensor had better accuracy in joint estimation and showed more
robust results for occlusion and body rotation. Recently, the new version of the Kinect sensor, called
Azure Kinect, was released in 2019. Albert et al. [54] reviewed the improved hardware implementation
and motion tracking algorithm of the Azure Kinect sensor. The authors also evaluated the motion
tracking performances of the Kinect v2 and Azure Kinect sensors. Their results demonstrated that
the Azure Kinect sensor achieved higher accuracy in human motion tracking than the Kinect v2
sensor. Furthermore, with the advancements in camera techniques, releases of new sensors with better
hardware and motion tracking algorithms will continue. Due to the use of state-of-the-art sensors,
if the noise and error in the estimated joints are reduced and the anthropometric features extracted at
each time all become exactly equal, the feature vectors calculated over different time periods by the
method will all become equal. Therefore, the usefulness and effectiveness of our proposed method
could be limited in this case.

8. Conclusions

In general, there are variances in anthropometric features calculated over all frames of a sequence
as a result of the inaccuracy in pose estimation. These variances adversely affect the classification
performance of machine learning algorithms. Therefore, to minimize these adverse effects, we proposed
the use of anthropometric features that are calculated over long/mid/short-term periods. Additionally,
we proposed a novel ensemble model consisting of 15 k-NN models trained using features calculated
over several different time periods. Experimental results demonstrated that the proposed ensemble
model outperforms five benchmark methods and achieves state-of-the-art performance on a publicly
available BMI classification dataset. In practical situations, some joints can be invisible due to occlusions.
If the joints are invisible over the whole time interval, the corresponding anthropometric features cannot
be obtained. In this case, the anthropometric feature vector may contain “not a number”, called NaN.
As the occlusions become severe, the number of such NaN values in the anthropometric feature vector
increases. The use of these vectors in BMI classification can adversely affect the classification accuracy
of the ensemble model. However, in this study, we considered only the condition that there was no
occlusion and that all 20 joints were visible during the whole time interval. Therefore, as part of our
future work, we plan to extend our method to classify the BMIs of people for whom some body parts
are occluded.
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