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Abstract: This paper presents the design, simulation and experimental verification of adaptive
feedforward motion control for a hydraulic differential cylinder. The proposed solution is implemented
on a hydraulic loader crane. Based on common adaptation methods, a typical electro-hydraulic motion
control system has been extended with a novel adaptive feedforward controller that has two separate
feedforward states, i.e, one for each direction of motion. Simulations show convergence of the
feedforward states, as well as 23% reduction in root mean square (RMS) cylinder position error
compared to a fixed gain feedforward controller. The experiments show an even more pronounced
advantage of the proposed controller, with an 80% reduction in RMS cylinder position error, and that
the separate feedforward states are able to adapt to model uncertainties in both directions of motion.
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1. Introduction

For hydraulically actuated systems such as cranes, the hydraulic cylinder is the most common
actuator since it can provide a linear motion with, generally speaking, a large force to volume ratio,
a high efficiency and at a modest price. For systems which require a cylinder force in both directions,
a double acting cylinder is needed, and the differential cylinder is an obvious choice due to its low cost
and simple design. The main disadvantage is the difference in effective hydraulic area which leads to
a jump in both velocity and force gain when changing sign of direction, i.e., around zero velocity.

For many hydraulic systems, the pressure compensated directional control valve is a practical
choice due to the fact that it provides load independent flow control of the actuators. The pressure
compensator senses the load pressure, and adjusts the pressure drop over the directional control valve
to give a load independent flow. Since the velocity of the actuator is proportional to the hydraulic
flow through the valve, this translates to load independent velocity control. For manually operated
systems, the velocity control makes it easy for an operator to control systems that are subjected to large
variations in external load.

For closed loop control systems, the load independent velocity control can be utilized in a control
system using feedforward [1]. In this case, both a position reference and a velocity reference are
generated in the control system. An example of a typical closed loop electro-hydraulic motion control
system with feedforward is shown in Figure 1. The feedback controller uses the position reference
and the measured cylinder position, whereas the feedforward controller uses the velocity reference.
The pressure compensator is connected to a supply line which is shared with other actuators. The red
dashed lines show the hydraulic pilot lines for the counterbalance valve and the pressure compensator.

It should be noted that feedforward control cannot be used alone. A feedback controller is also
needed to help track the position reference, to eliminate steady state position error, and to counteract
any drift. Normally the feedforward gain is based on system components, and is defined as the
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ratio of valve opening to actuator velocity. With this in mind, it follows that modeling errors and
model uncertainties, in addition to external disturbances and system dynamics, may yield sub-optimal
performance with a fixed feedforward gain.

This paper focuses on modeling and motion control of a hydraulic loader crane with pressure
compensated differential cylinders. An adaptive feedforward controller is investigated to improve
performance of the motion control system. Two different approaches to feedforward control have
been implemented, the first is based on the MIT-rule [2], and the second is based on the sign-sign
algorithm [3].
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Figure 1. Electro-hydraulic motion control system with feedforward.

2. Background and Method

Adaptive systems have long been used for system identification and parameter estimation. One of
the first methods is described in [4]. Another common method is the least mean squares algorithm,
which was developed in [5]. An example of this is shown in Equations (1)–(3). Given the linear system:

Y = θT · X (1)

E = Y− θ̂T · X (2)
˙̂θ = γ · X · ET (3)

where

Y = system output;
θ = system parameters;
X = system input;
E = estimation error;
θ̂ = estimated parameters;
γ = adaptation gain, constant.

The estimated parameters will converge towards the system parameters. The idea of using the
sign function in the adaptive law comes from the sign-sign least mean squares algorithm, and was first
introduced by [3]. Equation (3) then becomes:
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˙̂θ = γ · sign(X) · sign(ET) (4)

By taking the sign of the estimation error and system input, the adaptation becomes insensitive to
the magnitudes of E and X, and as such only the adaptation gain γ sets the adaptation speed.

The MIT rule is also used for adaptive control, and is described in [2]. A typical application is
model reference adaptive control, shown in Figure 2. Based on the model output ym, an additional
control output û is multiplied with the command signal uc to shape the plant output y. The equations
for the model reference adaptive control is shown in Equations (5) and (6).

˙̂u = −γ · ym · (y− ym) (5)

u = uc · û (6)

where

u = control output;
û = adaptive control output;
uc = command signal;
ym = model output;
y = plant output.

Early work in adaptive control can be found in [6–10]. Other work on adaptive control include [11]
which investigates adaptive feedback and feedforward control of robot manipulators, Reference [12]
which models and implements adaptive control of a flexible arm, and [13] which uses model reference
adaptive control on linear time-varying plants. Adaptive fuzzy sliding mode control is investigated
and implemented on an inverted pendulum in [14].
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Figure 2. Model reference adaptive control based on MIT-rule.

Newer applications of adaptive control systems include adaptive friction compensation with
an adaptive velocity estimator to compensate for the estimated non-linear friction force [15]. In [16],
a fuzzy model reference adaptive control of an active magnetic bearing for a milling process is
investigated to reduce the milling dynamics. Adaptive integral robust control of an electro-hydraulic
servo system is investigated in [17], using parameter estimation and integral control to compensate for
disturbances and plant uncertainties. Adaptive control of quadrotors is investigated in [18], which uses
an cerebellar model arithmetic computer to adapt to model uncertainties and disturbances. In [19],
adaptive control based on least-mean-fourth is implemented for a three-phase grid connected solar
system, which is able to provide load balancing and power factor correction.

As for motion control of hydraulic systems, different approaches have previously been investigated,
including vector control [20], pressure control [21,22], force control [23,24], and feedforward control [25].
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To the knowledge of the authors, adaptive feedforward motion control of hydraulic cylinders has not
previously been investigated, and this paper will focus on this novel concept.

In this paper, two adaptive controllers have been tested on a hydraulic differential cylinder and
compared to a fixed gain feedforward controller. Based on a typical fixed gain feedforward controller,
an adaptive controller can be made by extending it with the MIT rule. An illustration of a control
system with feedforward with fixed gain is shown in Figure 3.
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Figure 3. Feedforward with fixed gain.

Defining the position error e as the position reference xre f minus the measured position x,
the control output for this control system is given in Equation (7)

u = kp · e + k f f · vre f (7)

where

u = controller output;
kp = proportional gain;
e = position error;
k f f = feedforward gain;
vre f = velocity reference.

Extending the traditional feedforward controller into an adaptive feedforward controller is done
by replacing the fixed feedforward gain with the MIT-rule. An illustration of the adaptive feedforward
scheme is shown in Figure 4.
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Figure 4. MIT-rule adaptive feedforward.

The MIT-rule adaptive feedforward controller uses the position error, the velocity reference, and
the constant γ to update the feedforward gain. The update law and the control output for this adaptive
control system is then given in Equations (8) and (9).

ż f f = γ · vre f · e (8)

u = kp · e + z f f · vre f (9)
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where

γ = adaptation gain;
z f f = feedforward gain.

Extending this controller to use sign-sign is then straightforward. An illustration of the sign-sign
adaptive feedforward scheme is shown in Figure 5.
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Figure 5. Sign-sign adaptive feedforward.

The update law and the control output for this adaptive control system is shown in
Equations (10) and (11).

ż f f = γ · sign(vre f ) · sign(e) (10)

u = kp · e + z f f · vre f (11)

It should be noted that the sign function can produce unnecessary chattering when the input
is oscillating around zero, due to the inherent discontinuity. Therefore the sign function has been
replaced with the tanh function, shown in Equation (12).

sign(e) ≈ tanh(k · e) (12)

This gives a smooth output when the input is oscillating around zero. Increasing the parameter k
gives a sharper rise and a closer approximation to sign(e). Another advantage of using tanh is that the
adaptation stops when the position error is zero. The parameter k has been set to k = 100 m−1 and
k = 100 s ·m−1 for the position error and velocity reference, respectively.

3. Considered System

In this paper an 2020K4 loader crane made by HMF Group A/S, Højbjerg, Denmark has been
used for experiments. An illustration of the crane is shown in Figure 6. This crane has two hydraulic
differential cylinders: the main cylinder, and the knuckle cylinder. For this paper, the knuckle cylinder
has been used for simulation and experiments, since it can experience both resistive and assistive loads
in both directions of motion, equivalent to four quadrant operation. The relevant data for the knuckle
cylinder is shown in Table 1, and the data for the knuckle boom is given in Figure 7 and Table 2.

Each actuator is controlled via a pressure compensated proportional directional control valve
which ensures load independent flow control of the actuators. Counterbalance valves made by Oil
Control S.p.A, Modena, Italy are also used for load holding, assisting in lowering of the booms,
and pressure relief of pressure surges. An illustration of the hydraulic system for the knuckle cylinder
is shown in Figure 8.
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Figure 6. Illustration of the HMF 2020K4 loader crane.

Table 1. Knuckle cylinder data.

Name Parameter Value

Piston diameter Dp 0.15 m
Piston area A 0.0177 m2

Rod diameter Dr 0.1 m
Annulus area Aa 0.0098 m2

Piston area ratio φ = Aa
A 0.5556

Valve maximum flow Qmax 40 L/min

z

y

Figure 7. Knuckle boom center of mass.

Table 2. Knuckle boom data.

Name Parameter Value

Mass mk 851.972 kg

Inertia matrix Ik

579.552 8.74629 11.5456
8.74629 573.285 0.174433
11.5456 0.174433 32.2491

 kg·m2

The control system is implemented on a CompactRIO 9075 controller made by National
Instruments, Austin, TX, USA. The CompactRIO contains the reference generator and feedforward
motion controllers. The block diagram of the connections is shown in Figure 9.

The CompactRIO communicates with a PC, sends control signals to the valves, and reads the
sensors on the crane.
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Figure 8. Hydraulic system for the knuckle cylinder.
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Figure 9. Connection between the crane and CompactRIO controller.

4. Modelling

A dynamic model of the crane has been made in SimscapeTM by MathWorks R©, Natick, MA, USA.
3D computer-aided design (CAD) models have been imported into the model using the Multibody
library. The hydraulic circuit has been made using the hydraulic library of SimscapeTM. A picture of
the CAD model is shown in Figure 10.

In the configuration shown in Figure 10, the knuckle cylinder experiences both resistive and
assistive loads in both directions of motion when retracting fully, and extending back out again.
The knuckle cylinder is controlled by a pressure compensated directional control valve, shown in
Figure 11.

The pressure compensator ensures that there is a constant pressure drop over the directional
control valve, which gives a load independent flow. The governing equations of the pressure
compensator are given in Equations (13)–(15).

upc =
pset + pload − pp

∆p
(13)

pload =

{
pa if uspool ≥ 0

pb otherwise
(14)

Qpc = kpc · upc ·
√

pi − pp (15)
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where

upc = opening of compensator, 0 ≤ upc ≤ 1
pp = compensated pressure at port p;
∆p = pressure difference between fully closed and fully open;
pa = pressure at port a;
pb = pressure at port b;
pt = tank pressure;
pset = spring pressure setting;
pload = load pressure;
uspool = position of the main spool, −1 ≤ uspool ≤ 1;
Qpc = flow in pressure compensator;
kpc = flow gain of compensator;
pi = compensator inlet pressure.

Figure 10. 3D view of the simulation model of the HMF 2020K4 in Simscape.

pset

pi pt

pa pb

pp

pload

Figure 11. Hydraulic pressure compensated directional control valve for the knuckle cylinder.
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The steady state of pp is then given by Equation (16).

pp = pload + pset (16)

The sensing of the load pressures pa and pb ensures that the pressure drop over the directional
control valve always equals pset, and that the flow is load independent. This is shown in the orifice
equation in Equation (17).

Q = Cd · Ad · uspool ·
√

2
ρ
· (pp − pload)

= Cd · Ad · uspool ·
√

2
ρ
· pset (17)

= Qmax · uspool

where

Q = flow in the valve;
Cd = discharge coefficient;
Ad = maximum discharge area;
ρ = mass density;
Qmax = maximum valve flow;

Double counterbalance valves are used on the knuckle cylinder. An illustration of the
counterbalance valves is shown in Figure 12.

pa1 pb1

pa2 pb2

pcrack,a pcrack,b

Figure 12. Double counterbalance valve.

The unitless openings of the counterbalance valves are calculated in Equations (18) and (19).

ua =
pa2 + ψ · pb1 − pcrack,a

∆p
(18)

ub =
pb2 + ψ · pa1 − pcrack,b

∆p
(19)

where

ua = opening of valve a, 0 ≤ ua ≤ 1;
ub = opening of valve b, 0 ≤ ub ≤ 1;
pa1 = pressure at valve a input side;
pa2 = pressure at valve a actuator side;
pb1 = pressure at valve b input side;
pb2 = pressure at valve b actuator side;
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pcrack,a = crack pressure of valve a;
pcrack,b = crack pressure of valve b;
ψ = pilot area ratio;
∆p = pressure difference between fully closed and fully open.

When ua and ub are 0, the valves are closed. When they are 1, the valves are fully open.
During assistive loads the valves tend to be somewhere between 0 and 1, meaning that they are
throttling the flow. The dynamics of the valves are included as a time constant, since the valves have a
finite bandwidth.

5. Adaptive Control Design

Since the actuator is a hydraulic differential cylinder, two separate states z+f f and z−f f are used for
out-stroke and in-stroke motion to handle model uncertainties both directions of motion. Consequently,
both the feedforward control output and the update law for the two gains are only active during
out-stroke or in-stroke motion respectively. To handle this, some switching logic is introduced based on
the sign of the velocity reference. The block diagram for the differential MIT-rule adaptive feedforward
is shown in Figure 13.

vref

e

>0>0
0

∫ ∫  γ 
zff
+

∫ ∫  γ 
zff

_
>0>0

>0>0

uff

Figure 13. Differential MIT-rule adaptive feedforward.

The governing equations for the differential MIT-rule adaptive feedforward are shown in
Equations (20)–(23).

ż+f f =

{
γ · vre f · e, vre f > 0

0, otherwise
(20)

ż−f f =

{
0, vre f > 0

γ · vre f · e, otherwise
(21)

u f f =

z+f f · vre f , vre f > 0

z−f f · vre f , otherwise
(22)

u = kp · e + u f f (23)

where

z+f f = out-stroke feedforward gain;

z−f f = in-stroke feedforward gain;
u f f = feedforward controller output.

Extending the controller to sign-sign is straightforward. The block diagram for the differential
sign-sign adaptive feedforward is shown in Figure 14.
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Figure 14. Differential sign-sign adaptive feedforward.

The governing equations for the differential sign-sign adaptive feedforward are shown in
Equations (24)–(27).

ż+f f =

{
γ · sign(vre f ) · sign(e), vre f > 0

0, otherwise
(24)

ż−f f =

{
0, vre f > 0

γ · sign(vre f ) · sign(e), otherwise
(25)

u f f =

z+f f · vre f , vre f > 0

z−f f · vre f , otherwise
(26)

u = kp · e + u f f (27)

6. Simulation Results

For the simulation, a point-to-point trapezoidal velocity path generator has been used as a
reference. The point-to-point path generator has previously been developed in [26]. The path generator
operates in actuator space, which eliminates the effects of the non-linearities between the hydraulic
cylinder strokes and the joint angles in joint space. A path has been made such that the cylinder
experiences both resistive and assistive loads in both directions of motion. The references for position
and velocity are shown in Figure 15. The adaptation gain γ is different for the two controllers, due to
the use of sign(x), and has been experimentally set to γ = 200 s ·m−3 for the MIT-rule feedforward,
and γ = 0.1 m−1 for the sign-sign feedforward. The unit is adapted accordingly to obtain the
correct output.

The position error for the MIT-rule feedforward simulation is shown in Figure 16. The position
error decreases towards a bounded error of ±6 mm, which is shown with the dashed lines. The RMS
error after convergence is 1.6 mm, showing high performance.

The states z f f for the MIT-rule feedforward simulation are shown in Figure 17. The dashed lines
show the theoretical values for a fixed feedforward gain. The states converge to values slightly larger
than the theoretical ones. This small discrepancy can be attributed to the constant velocity reference
and ramped position reference. When moving with a ramp position reference, there will always be a
small constant position error without an integrator in the position controller. Having a slightly larger
feedforward gain helps reducing this constant position error by giving the cylinder a small velocity
boost. Since the position error is measured, the adaptive controller is able to adapt the feedforward
gains to minimize the position error.
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Figure 15. Point-to-point path references for simulation. (a) Position reference; (b) Velocity reference.
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Figure 16. Cylinder position error during MIT-rule feedforward simulation, γ = 200 s ·m−3.
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Figure 17. Feedforward states during MIT-rule feedforward simulation, γ = 200 s ·m−3.

Figure 18 shows the control signals u f f and u f b from the feedforward and feedback controller,
respectively. Given that the total control signal u = u f b + u f f , it can be seen that the contribution from
the feedforward controller clearly dominates, providing more than 95% at steady state.
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Figure 18. Control signals from feedforward and feedback during simulation, γ = 200 s ·m−3.

The position error for the sign-sign feedforward simulation is shown in Figure 19. The same
bounded error of ±6 mm is shown with the dashed lines. The RMS error after convergence is 2.1 mm.
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Figure 19. Cylinder position error during sign-sign feedforward simulation, γ = 0.1 m−1.

The states z f f for the sign-sign feedforward simulation are shown in Figure 20. The dashed lines
show the theoretical values for a fixed feedforward gain. The same results can be seen here as with the
MIT-rule, the states converge to values slightly larger than the theoretical ones, although convergence
is slower with 700 s compared to 400 s.
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Figure 20. Feedforward states during sign-sign feedforward simulation, γ = 0.1 m−1.
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To show the difference in performance between the fixed gain controller and the adaptive
controllers, a simulation with fixed gain feedforward has been made and compared with the MIT-rule
feedforward at a simulation time where the states z f f have converged, at t = 800 s. This is shown in
Figure 21. It can be seen that the position error for the MIT-rule feedforward is lower compared to the
fixed gain feedforward, showing that the MIT-rule feedforward controller outperforms the fixed gain
controller even with an ideal model with correlation between cylinder velocity and feedforward gain.

800 825 850 875 900 925 950 975 1000
-7

-3.5

0

3.5

7
10-3

Figure 21. Position error comparison between MIT-rule and fixed gain feedforward in simulation.

The RMS position error for each controller after convergence of the states z f f is shown in Table 3.
Even though the fixed gain feedforward is based on an ideal model, the MIT-rule adaptive feedforward
controller yields better position tracking with a 23% decrease in RMS position error. This shows the
improved performance of the adaptive controller.

Table 3. Comparison of RMS position error after convergence in simulation.

MIT-Rule Sign-Sign Fixed Gain

RMS error 1.6 mm 2.1 mm 2.1 mm

7. Experimental Results

The three controllers have been implemented on the CompactRIO controller in the laboratory.
The control laws are implemented in discrete-time based on backward euler integration. A picture of
the HMF 2020K4 loader crane in the laboratory is shown in Figure 22. The figure shows the crane in
the starting position. During motion the knuckle boom is folded down.

There is some deadband in the valves on the HMF 2020K4 loader crane, and therefore deadband
compensation has been implemented for the laboratory experiments. The identified deadbands for the
knuckle boom valve are shown in Table 4.

Table 4. Identified deadbands for the knuckle boom valve.

Name Parameter Value

Out-stroke deadband u+ 0.21
In-stroke deadband u− −0.31
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The equation for the deadband compensation is shown in Equation (28). By adding a small
deadband ũ, it is ensured that the valve will be able to stay closed when no movement is needed.

û =


u+ + (1− u+) · u, u > ũ

u− + (1 + u−) · u, u < −ũ

0, otherwise

(28)

where

û = compensated control signal;
u = control signal;
u+ = Out-stroke deadband;
u− = In-stroke deadband;
ũ = desired deadband, 0.001.

1

Knuckle 

boom

Figure 22. HMF 2020K4 loader crane in the laboratory.

The cylinder is running with a point-to-point path in actuator space equal to the simulations.
The position error for the MIT-rule feedforward is shown in Figure 23. It is shown that the position
error decreases towards a bounded error of ±14 mm. The RMS error after convergence is 5.2 mm.
The convergence of the position error is similar to the simulations, showing that the proposed adaptive
controller is feasible in a real world scenario, albeit with slightly larger position error.

The states z f f for the MIT-rule feedforward experiment are shown in Figure 24. The dashed lines
show the theoretical values for a fixed feedforward gain. The states converge to values that differ
from the theoretical ones. The state z+f f is higher than the theoretical, while the state z−f f is lower. This
means that there exist some model uncertainties that the controller is able to adapt to. In addition,

the ratio of the feedforward gains differs from the cylinder area ratio φ, i. e.
z−f f

z+f f
6= Aa

A , showing the

importance of using two separate feedforward states. Since the two states are not mathematically
linked by the cylinder area ratio φ, they are able to converge to values that minimizes position error
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in both directions of motion regardless of their ratio. This would not be possible if the traditional
MIT-rule with a single state was used.
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Figure 23. Position error during MIT-rule feedforward experiment, γ = 200 s ·m−3.
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Figure 24. Feedforward states during MIT-rule feedforward experiment, γ = 200 s ·m−3.

The position error for the sign-sign feedforward is shown in Figure 25. The same bounded error
of ±14 mm is shown. The RMS error after convergence is 5.3 mm.

The states z f f for the sign-sign feedforward experiment are shown in Figure 26. Similar results
can be seen here as with the MIT-rule, the states converge to values that differ from the theoretical
ones. The dashed lines show the theoretical values for a fixed feedforward gain. The convergence is
slower than the MIT-rule feedforward, and even though convergence speed is not critical, it may be a
minor disadvantage compared to the MIT-rule feedforward.
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Figure 25. Position error during sign-sign feedforward experiment, γ = 0.1 m−1.
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The same comparison as in the simulations is made in the laboratory. An experiment with fixed
gain feedforward has been made and compared with the MIT-rule feedforward at a time where the
states z f f have converged, at t = 800 s. Figure 27 shows the difference in performance between the
fixed gain controller and the adaptive controller, where the position error for the MIT-rule feedforward
is significantly lower compared to the fixed gain feedforward.

The RMS position error for each controller after convergence of the states z f f is shown in Table 5.
The two adaptive feedforward controllers yield excellent performance with an 80% decrease in RMS
position error.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

Figure 26. Feedforward states during sign-sign feedforward experiment, γ = 0.1 m−1.

In general, the RMS position errors are slightly larger than in the simulations, but this is expected
and can be attributed to the unmodeled flexibility of the crane, and other unmodeled dynamics.
However, the advantage of the adaptive feedforward controller is clear. The independent adaptation
of the out-stroke and in-stroke states z+f f and z−f f provides significantly increased performance on a
physical system with model uncertainties.

Table 5. Comparison of RMS position error after convergence in experiment.

MIT-Rule Sign-Sign Fixed Gain

RMS error 5.2 mm 5.3 mm 24.9 mm

800 825 850 875 900 925 950 975 1000
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Figure 27. Position error with fixed and adaptive gains.
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8. Conclusions

In this paper two adaptive feedforward motion controllers are designed, simulated, evaluated,
implemented and experimentally verified on a loader crane with hydraulic differential cylinders.
The controllers are based on common and proven adaptation methods to extend a typical
electro-hydraulic motion control system into a novel adaptive feedforward motion controller. One of
the challenges associated with a differential cylinder, namely the jump in both velocity and force gain
when changing sign of direction, is solved by creating two separate feedforward states for out-stroke
and in-stroke motion of the hydraulic differential cylinder, respectively. This separation makes the
controller able to adapt to model uncertainties where the ratio between the in-stroke and out-stroke
feedforward gains is not equal to the cylinder area ratio φ. Adaptation of the feedforward states
only occurs when the hydraulic cylinder is moving in the direction of motion associated with the
feedforward state.

Simulation results show high performance with good position tracking and that the states z f f
converge to values slightly higher than the theoretical ones. The cylinder position error is lowest for
the MIT-rule controller with an RMS error of 1.6 mm, and shows faster convergence than the sign-sign
controller. Compared to a fixed gain feedforward controller, where the gain is equal to the ratio of valve
opening to cylinder velocity, the RMS error is reduced by 23%, showing the improved performance of
the novel adaptive feedforward controllers.

Experiments in the laboratory show even better results than in the simulations. The adaptive
feedforward controllers converge and show good position tracking, while the MIT-rule feedforward
converges faster than the sign-sign feedforward. Compared to a fixed gain feedforward, the RMS
position error is reduced by 80% to 5.2 mm for the MIT-rule. The results show the feasabillty of the
novel adaptive feedforward controllers on a physical system. In addition, the differential structure
of the controllers shows its advantage, as the ratio of the feedforward states converges to values
different than the cylinder area ratio φ, showing the excellent performance of the adaptive feedforward
controller and its capability of handling model uncertainties in both directions of motion.

Future work may include stability analysis of the adaptive controllers, since the feedforward
gains are dependent on feedback of the cylinder position error e. The effects of the adaptation gain γ

may also be investigated to see if there exists an upper boundary where the system becomes unstable.
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