Deep Neural Network-Based Guidance Law Using Supervised Learning
Abstract
:1. Introduction
2. Problem Statement
2.1. Equations of Motion
2.2. Engagement Scenario
3. Proportional Navigation Guidance Law
4. DNN-Based Guidance (DNNG) Law
4.1. Data Collection
4.2. DNNG Architecture
4.3. Training
4.4. Evaluation
4.5. Simulation Results
5. Results
5.1. Additional Experiment
5.2. Initial Conditions Outside of the Learning Range
5.3. Design of the Controller Model
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Qi, Z.K.; Lin, D.F. Design of Guidance and Control Systems for Tactical Missiles, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020; ISBN -13: 978-03-6726-041-5. [Google Scholar]
- Raj, K.D.S. Performance Evaluation of Proportional Navigation Guidance for Low-Maneuvering Targets. Int. J. Sci. Eng. Res. 2014, 5, 93–99. [Google Scholar]
- Bryson, A.E.; Ho, Y.C. Applied Optimal Control: Optimization, Estimation, and Control, 1st ed.; Taylor & Francis Group: New York, NY, USA, 1975; ISBN 978-0470114810. [Google Scholar]
- Yang, C.D.; Yang, C.C. Optimal Pure Proportional Navigation for Maneuvering Targets. IEEE Trans. Aerosp. Electr. Syst. 1997, 33, 949–957. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, H.J. Robust Proportional Navigation Guidance Against Highly Maneuvering Targets. In Proceedings of the 13th International Conference on Control, Automation and Systems (ICCAS 2013), Gwangju, South Korea, 20–23 October 2013. [Google Scholar] [CrossRef]
- Yann, L.C.; Bengio, Y.S.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Balakrishnan, S.N.; Biega, V. A New Neural Architecture for Homing Missile Guidance. In Proceedings of the 1995 American Control Conference (ACC95), Seattle, WA, USA, 21–23 June 1995. [Google Scholar] [CrossRef]
- Lee, H.G.; Lee, Y.I.; Song, E.J.; Sun, B.C.; Tahk, M.J. Missile guidance using neural networks. Control Eng. Pr. 1997, 5, 753–762. [Google Scholar] [CrossRef]
- Lee, Y.I.; Lee, H.; Sun, B.C.; Tahk, M.J. BTT Missile Guidance Using Neural Networks. In Proceedings of the 13th World Congress of IFAC, San Francisco, CA, USA, 30 June–5 July 1996. [Google Scholar] [CrossRef]
- Rahbar, N.; Bahrami, M. Synthesis of optimal feedback guidance law for homing missiles using neural networks. Optim. Control Appl. Methods 2000, 21, 137–142. [Google Scholar] [CrossRef]
- Jan, H.Y.; Lin, C.L.; Chen, K.M.; Lai, C.W.; Hwang, T.S. Missile Guidance Design Using Optimal Trajectory Shaping and Neural Network. 16th IFAC World Congress 2005, 38, 277–282. [Google Scholar] [CrossRef]
- Wang, C.H.; Chen, C.Y. Intelligent Missile Guidance by Using Adaptive Recurrent Neural Networks. In Proceedings of the 11th IEEE International Conference on Networking, Sensing and Control, Miami, FL, USA, 7–9 April 2014. [Google Scholar] [CrossRef]
- Li, Z.; Xia, Y.; Su, C.Y.; Jun, D.; Jun, F.; He, W. Missile Guidance Law Based on Robust Model Predictive Control Using Neural-Network Optimization. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 1803–1809. [Google Scholar] [CrossRef] [PubMed]
- Rajagopalan, A.; Faruqi, F.A.; Nandagopal, D.N. Intelligent missile guidance using artificial neural networks. Artif. Intell. Res. 2015, 4. [Google Scholar] [CrossRef] [Green Version]
- Diederik, P.K.; Ba, J.L. ADAM: A method for stochastic optimization. arXiv 2017, arXiv:1412.6980v9. [Google Scholar]
- Hong, D.S.; Kim, M.J.; Park, S.S. Study on Reinforcement Learning-Based Missile Guidance Law. Appl. Sci. 2020, 10, 6567. [Google Scholar] [CrossRef]
Guidance Law | Energy | ||
---|---|---|---|
PNG | |||
DNNG | |||
RLG [16] | 113.0026 | 0.9789 | 1670.2785 |
Guidance Law | Energy | ||
---|---|---|---|
DNNLG |
Guidance Law | Hit Rate (%) | Energy |
---|---|---|
PNG | ||
DNNG | ||
DNNLG | ||
RLG [16] | 100 |
Time Constant | Guidance | Hit Rate (%) | Energy |
---|---|---|---|
PNG | |||
DNNG | |||
DNNLG | |||
PNG | |||
DNNG | |||
DNNLG | |||
PNG | |||
DNNG | |||
DNNLG | |||
PNG | |||
DNNG | |||
DNNLG | |||
PNG | |||
DNNG | |||
DNNLG | |||
PNG | |||
DNNG | |||
DNNLG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Hong, D.; Park, S. Deep Neural Network-Based Guidance Law Using Supervised Learning. Appl. Sci. 2020, 10, 7865. https://doi.org/10.3390/app10217865
Kim M, Hong D, Park S. Deep Neural Network-Based Guidance Law Using Supervised Learning. Applied Sciences. 2020; 10(21):7865. https://doi.org/10.3390/app10217865
Chicago/Turabian StyleKim, Minjeong, Daseon Hong, and Sungsu Park. 2020. "Deep Neural Network-Based Guidance Law Using Supervised Learning" Applied Sciences 10, no. 21: 7865. https://doi.org/10.3390/app10217865
APA StyleKim, M., Hong, D., & Park, S. (2020). Deep Neural Network-Based Guidance Law Using Supervised Learning. Applied Sciences, 10(21), 7865. https://doi.org/10.3390/app10217865