Antibacterial Effect of an Active Absorbent Pad on Fresh Beef Meat during the Shelf-Life: Preliminary Results
Abstract
:1. Introduction
2. Materials and Methods
2.1. Active Absorbent Pad
2.2. Sample Preparation
2.3. Chemical–Physical Parameters
2.4. Microbiological Analyses
2.5. Data Analysis
3. Results and Discussion
3.1. Physico-Chemical Parameters
3.2. Microbiological Analyses
4. Conclusions
5. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sheridan, J.J. Sources of Contamination During Slaughter. J. Food Saf. 1998, 18, 321–339. [Google Scholar] [CrossRef]
- Nel, S.; Lues, J.F.R.; Buys, E.M.; Venter, P. Bacterial populations associated with meat from the deboning room of a high throughput red meat abattoir. Meat Sci. 2004, 66, 667–674. [Google Scholar] [CrossRef]
- Gaikwad, K.K.; Singh, S.; Lee, Y.S. A pyrogallol-coated modified LDPE film as an oxygen scavenging film for active packaging materials. Prog. Org. Coat. 2017. [Google Scholar] [CrossRef]
- Singh, S.; Gaikwad, K.K.; Lee, Y.S. Phase change materials for advanced cooling packaging. Environ. Chem. Lett. 2018, 16, 845–859. [Google Scholar] [CrossRef]
- Choi, H.Y.; Lee, Y.S. Characteristics of moisture-absorbing film impregnated with synthesized attapulgite with acrylamide and its effect on the quality of seasoned laver during storage. J. Food Eng. 2013. [Google Scholar] [CrossRef]
- Gaikwad, K.K.; Singh, S.; Lee, Y.S. Antimicrobial and improved barrier properties of natural phenolic compound-coated polymeric films for active packaging applications. J. Coat. Technol. Res. 2019. [Google Scholar] [CrossRef]
- Singh, S.; Gaikwad, K.K.; Lee, M.; Lee, Y.S. Temperature sensitive smart packaging for monitoring the shelf life of fresh beef. J. Food Eng. 2018. [Google Scholar] [CrossRef]
- Holman, B.W.B.; Kerry, J.P.; Hopkins, D.L. Meat packaging solutions to current industry challenges: A review. Meat Sci. 2018, 144, 159–168. [Google Scholar] [CrossRef]
- Panseri, S.; Martino, P.A.; Cagnardi, P.; Celano, G.; Tedesco, D.; Castrica, M.; Balzaretti, C.; Chiesa, L.M. Feasibility of biodegradable based packaging used for red meat storage during shelf-life: A pilot study. Food Chem. 2018. [Google Scholar] [CrossRef]
- Łopacka, J.; Półtorak, A.; Wierzbicka, A. Effect of MAP, vacuum skin-pack and combined packaging methods on physicochemical properties of beef steaks stored up to 12 days. Meat Sci. 2016. [Google Scholar] [CrossRef]
- McMillin, K.W. Where is MAP Going? A review and future potential of modified atmosphere packaging for meat. Meat Sci. 2008, 90, 43–65. [Google Scholar] [CrossRef]
- Otoni, C.G.; Espitia, P.J.P.; Avena-Bustillos, R.J.; McHugh, T.H. Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Res. Int. 2016, 83, 60–73. [Google Scholar] [CrossRef]
- Ahvenainen, R. Novel Food Packaging Techniques; Elsevier: Amsterdam, The Netherlands, 2003; ISBN 9781855736757. [Google Scholar]
- Appendini, P.; Hotchkiss, J.H. Review of antimicrobial food packaging. Innov. Food Sci. Emerg. Technol. 2002. [Google Scholar] [CrossRef]
- Goldberg, S.; Doyle, R.J.; Rosenberg, M. Mechanism of enhancement of microbial cell hydrophobicity by cationic polymers. J. Bacteriol. 1990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daifas, D.P.; Smith, J.P.; Tarte, I.; Blanchfield, B.; Austin, J.W. Effect of ethanol vapor on growth and toxin production by Clostridium botulinum in a high moisture bakery product. J. Food Saf. 2000. [Google Scholar] [CrossRef]
- Pereira, A.P.; Ferreira, I.C.F.R.; Marcelino, F.; Valentão, P.; Andrade, P.B.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J.A. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules 2007, 12, 1153. [Google Scholar] [CrossRef] [PubMed]
- Fernández, A.; Picouet, P.; Lloret, E. Reduction of the spoilage-related microflora in absorbent pads by silver nanotechnology during modified atmosphere packaging of beef meat. J. Food Prot. 2010, 73, 2263–2269. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Stratakos, A.C. Application of modified atmosphere packaging and active/smart technologies to red meat and poultry: A review. Food Bioprocess Technol. 2012, 5, 1423–1456. [Google Scholar] [CrossRef]
- Han, J.H.; Patel, D.; Kim, J.E.; Min, S.C. Retardation of Listeria monocytogenes growth in mozzarella cheese using antimicrobial sachets containing rosemary oil and thyme oil. J. Food Sci. 2014. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; González-Aguilar, G.A. Optimizing the use of garlic oil as antimicrobial agent on fresh-cut tomato through a controlled release system. J. Food Sci. 2010. [Google Scholar] [CrossRef]
- Medeiros, E.A.A.; Soares, N.D.F.F.; Polito, T.D.O.S.; Sousa, M.M.D.; Silva, D.F.P. Sachês antimicrobianos em pós-colheita de manga. Rev. Bras. Frutic. 2011. [Google Scholar] [CrossRef]
- Sharma, G. Digital Color Imaging Handbook; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781420041484. [Google Scholar]
- Castrica, M.; Menchetti, L.; Balzaretti, C.M.; Branciari, R.; Ranucci, D.; Cotozzolo, E.; Vigo, D.; Curone, G.; Brecchia, G.; Miraglia, D. Impact of dietary supplementation with goji berries (lycium barbarum) on microbiological quality, physico-chemical, and sensory characteristics of rabbit meat. Foods 2020, 9, 1480. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Calleja, J.M.; García-López, M.L.; Santos, J.A.; Otero, A. Development of the aerobic spoilage flora of chilled rabbit meat. Meat Sci. 2005. [Google Scholar] [CrossRef]
- Dave, D.; Ghaly, A.E. Meat spoilage mechanisms and preservation techniques: A critical review. Am. J. Agric. Biol. Sci. 2011. [Google Scholar] [CrossRef] [Green Version]
- Faustman, C.; Cassens, R.G. The biochemical basis for discoloration in fresh meat: A review. J. Muscle Foods 1990. [Google Scholar] [CrossRef]
- Jeyamkondan, S.; Jayas, D.S.; Holley, R.A. Review of centralized packaging systems for distribution of retail-ready meet. J. Food Prot. 2000, 63, 796–806. [Google Scholar] [CrossRef]
- Renerre, M. Oxidative processes and myoglobin. In Antioxidants in Muscle Foods: Nutritional Strategies to Improve Quality; John Wiley & Sons: Hoboken, NJ, USA, 2000; ISBN 0-471-31454-4. [Google Scholar]
- Arvanitoyannis, I.S.; Tsitsika, E.V.; Panagiotaki, P. Implementation of quality control methods (physicochemical, microbiological and sensory) in conjunction with multivariate analysis towards fish authenticity. Int. J. Food Sci. Technol. 2005, 40, 237–263. [Google Scholar] [CrossRef]
- Sun, X.D.; Holley, R.A. Antimicrobial and antioxidative strategies to reduce pathogens and extend the shelf life of fresh red meats. Compr. Rev. Food Sci. Food Saf. 2012. [Google Scholar] [CrossRef]
- O’Sullivan, M.G.; Kerry, J.P. Instrumental assessment of the sensory quality of meat, poultry and fish. Instrum. Assess. Food Sens. Qual. 2013. [Google Scholar] [CrossRef]
- Doulgeraki, A.I.; Ercolini, D.; Villani, F.; Nychas, G.J.E. Spoilage microbiota associated to the storage of raw meat in different conditions. Int. J. Food Microbiol. 2012, 157, 130–141. [Google Scholar] [CrossRef]
- Koutsoumanis, K.; Stamatiou, A.; Skandamis, P.; Nychas, G.J.E. Development of a microbial model for the combined effect of temperature and pH on spoilage of ground meat, and validation of the model under dynamic temperature conditions. Appl. Environ. Microbiol. 2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nychas, G.J.E.; Skandamis, P.N.; Tassou, C.C.; Koutsoumanis, K.P. Meat spoilage during distribution. Meat Sci. 2008. [Google Scholar] [CrossRef] [PubMed]
- Corry, J.E.L. Spoilage organisms of red meat and poultry. In Microbiological Analysis of Red Meat, Poultry and Eggs: A Volume in Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2006; ISBN 9781845690595. [Google Scholar]
- Nychas, G.J.E.; Skandamis, P.N. Fresh meat spoilage and modified atmosphere packaging (MAP). In Improving the Safety of Fresh Meat; Elsevier: Amsterdam, The Nederlanden, 2005; ISBN 9781855739550. [Google Scholar]
- Ercolini, D.; Casaburi, A.; Nasi, A.; Ferrocino, I.; Di Monaco, R.; Ferranti, P.; Mauriello, G.; Villani, F. Different molecular types of Pseudomonas fragi have the same overall behaviour as meat spoilers. Int. J. Food Microbiol. 2010. [Google Scholar] [CrossRef]
- Silva, F.; Domingues, F.C.; Nerín, C. Control microbial growth on fresh chicken meat using pinosylvin inclusion complexes based packaging absorbent pads. LWT Food Sci. Technol. 2018, 89, 148–154. [Google Scholar] [CrossRef]
- Ren, T.; Qiao, M.; Huang, T.S.; Weese, J.; Ren, X. Efficacy of N-halamine compound on reduction of microorganisms in absorbent food pads of raw beef. Food Control 2018, 84, 255–262. [Google Scholar] [CrossRef]
- Fang, Z.; Zhao, Y.; Warner, R.D.; Johnson, S.K. Active and intelligent packaging in meat industry. Trends Food Sci. Technol. 2017, 61, 60–71. [Google Scholar] [CrossRef]
- Coma, V. Bioactive packaging technologies for extended shelf life of meat-based products. Meat Sci. 2008, 78, 90. [Google Scholar] [CrossRef]
- Kerry, J.P.; O’Grady, M.N.; Hogan, S.A. Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review. Meat Sci. 2006. [Google Scholar] [CrossRef]
- Quintavalla, S.; Vicini, L. Antimicrobial food packaging in meat industry. Meat Sci. 2002. [Google Scholar] [CrossRef]
- Realini, C.E.; Marcos, B. Active and intelligent packaging systems for a modern society. Meat Sci. 2014. [Google Scholar] [CrossRef] [Green Version]
Parameter | Day | Group | Significance | |||
---|---|---|---|---|---|---|
Control | PAD | Group | Time | Group × Time | ||
pH | 0 | 5.54 ± 0.01 | 0.008 | <0.001 | <0.001 | |
3 | 5.42 a ± 0.02 | 5.49 b ± 0.02 | ||||
6 | 5.56 a ± 0.02 | 5.58 a ± 0.02 | ||||
L* | 0 | 45.90 ± 0.24 | <0.001 | <0.001 | <0.001 | |
3 | 45.22 a ± 0.25 | 45.04 a ± 0.25 | ||||
6 | 36.83 a ± 0.25 | 42.15 b ± 0.25 | ||||
a* | 0 | 22.43 ± 0.07 | 0.562 | <0.001 | 0.087 | |
3 | 21.40 a ± 0.15 | 22.23 a ± 0.15 | ||||
6 | 19.86 a ± 0.71 | 19.44 a ± 0.27 | ||||
b* | 0 | 14.54 ± 0.10 | 0.198 | <0.001 | 0.908 | |
3 | 13.58 a ± 0.09 | 13.33 a ± 0.07 | ||||
6 | 11.62 a ± 0.35 | 11.41 a ± 0.08 |
Storage Time | |||
---|---|---|---|
Day 0 | Control vs. PAD Day 3 | Control vs. PAD Day 6 | |
1.69 | 5.35 * | ||
D0–D3 | D3–D6 | D0–D6 | |
Control | 1.41 | 9.34 * | 9.88 * |
PAD | 1.96 | 4.05 * | 5.73 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castrica, M.; Miraglia, D.; Menchetti, L.; Branciari, R.; Ranucci, D.; Balzaretti, C.M. Antibacterial Effect of an Active Absorbent Pad on Fresh Beef Meat during the Shelf-Life: Preliminary Results. Appl. Sci. 2020, 10, 7904. https://doi.org/10.3390/app10217904
Castrica M, Miraglia D, Menchetti L, Branciari R, Ranucci D, Balzaretti CM. Antibacterial Effect of an Active Absorbent Pad on Fresh Beef Meat during the Shelf-Life: Preliminary Results. Applied Sciences. 2020; 10(21):7904. https://doi.org/10.3390/app10217904
Chicago/Turabian StyleCastrica, Marta, Dino Miraglia, Laura Menchetti, Raffaella Branciari, David Ranucci, and Claudia M. Balzaretti. 2020. "Antibacterial Effect of an Active Absorbent Pad on Fresh Beef Meat during the Shelf-Life: Preliminary Results" Applied Sciences 10, no. 21: 7904. https://doi.org/10.3390/app10217904
APA StyleCastrica, M., Miraglia, D., Menchetti, L., Branciari, R., Ranucci, D., & Balzaretti, C. M. (2020). Antibacterial Effect of an Active Absorbent Pad on Fresh Beef Meat during the Shelf-Life: Preliminary Results. Applied Sciences, 10(21), 7904. https://doi.org/10.3390/app10217904